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ABSTRACT—The authors report impact properties for colli-
sions of small, nearly spherical particles that present interest-
ing experimental challenges. They consider difficulties aris-
ing with surface reflectivity, slight asphericity, surface dam-
age and collisions with particles affixed to a rigid plate. To
measure these impact properties, the authors refine the ex-
perimental technique of Foerster et al. To permit straightfor-
ward incorporation in rapid granular theories, the impacts are
described with three coefficients. The first is the Newtonian
coefficient of normal restitution. The second represents the
frictional properties of the contact surfaces. The last char-
acterizes the restitution of the tangential component of the
contact point velocity for impacts that involve negligible slid-
ing.

Background

Flows of granular materials occur in industrial processes
involving solid transport and in phenomena as diverse as
avalanches, landslides and planetary ring formation. Al-
though these flows generally combine several mechanisms
of grain interaction, an important regime is where grains ex-
change momentum and energy through individual impacts.
This regime is called rapid granular flows.! Theories of rapid
granular flows are generally developed for spherical grains.
They adopt a model for a collision between a pair of rigid
spheres, then proceed to calculate the average properties of
the flow using appropriate velocity distribution functions.

To keep the corresponding integrations tractable, these
theories generally treat individual collisions using the sim-
plified model of Walton? rather than describe the evolution
of each impact in detail. Walton’s model is based upon three
constant impact coefficients that permit unambiguous deter-
mination of the linear and angular velocities of each sphere
after impact. Before carrying out meaningful tests of a rapid
granular theory that employs this impact model, it is essential
to verify that the three impact coefficients provide an ade-
quate description of the collision and, if so, determine their
values. Unfortunately, because their measurement involves
the precise control of the trajectories of small particles, these
coefficients were seldom determined in the past.

In this context, Foerster et al.> described an experimen-
tal apparatus that measures the collision properties of spheres
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as small as 3 mm in diameter. Their apparatus included a
mechanism that brought two identical particles into a colli-
sion without initial spin and a stroboscopic setup that pho-
tographed the dynamics of their flights. The setup could also
produce impacts between a single sphere and a flat plate.
In that paper, Foerster et al. reported impact coefficients
for binary collisions of 3-mm glass and 6-mm cellulose ac-
etate spheres and for collisions of these spheres with a thick,
smooth, fiat aluminum plate. They showed that Walton’s
model captures the behavior of the impact over a wide range
of incident angles. Dave, Yu and Rosato* reached similar
conclusions with impacts of two larger nylon spheres 25 mm
in diameter. Massah et al.> employed this model to interpret
the trajectories of 190-pm glass spheres and 90-pm fluid-
cracking-catalyst particles impacting a flat wall in the con-
siderably more complex environment of a wind tunnel.

The principal objective of the present paper is to report
measurements in situations that eluded Foerster et al. In par-
ticular, we consider difficulties arising with surface reflec-
tivity, slight asphericity, surface damage and collisions with
spheres affixed to a rigid plate. We also report properties of
binary collisions for other sphere materials commonly em-
ployed in granular experiments. We begin with a discussion
of Walton’s impact model and its limitations. We then de-
scribe the apparatus and discuss each series of experiments.

Impact Model

Consider rigid spheres of diameters o1 and o3, center of
mass velocities ¢ and ¢7, and spins w; and w; before impact
(Fig. 1). The relative velocity of the contact point is

g=(@ - (Jor+2Zw)xn, (1)
2 2
where n is the unit normal vector joining the centers of the
spheres at contact. The incident angle y between g and n
characterizes the impact geometry, coty = g.n/|g x n|. Be-
cause impacts occur when g.n < 0, this angle lies in the range
n/2<y=<T.

The postcollision velocities are derived by writing the bal-
ance of linear and angular momenta in the collision and by
invoking a closure that captures details of the impact pro-
cess. Walton’s closure is based on threc constant impact
coefficients.? The Newtonian coefficient of normal restitu-
tion e characterizes the incomplete restitution of the normal
component of g,

ng = —eng, ¥))



Fig. 1—Typical geometry of a binary collision projected on the
collision plane. The velocities are shown before the impact

where 0 < e < 1 and prime denotes conditions after the
collision.

Grazing collisions with incident angles near 7/2 involve
gross sliding. For these, Walton assumes that sliding is re-
sisted by Coulomb friction and that the tangential and normal
components of the impulse J are related by the coefficient of
friction ,

n x J| = p@.y), ©))

where . > 0.

For greater values of the incident angle, the impact is closer
to head on, and gross sliding is no longer involved as parts
of the contact patch are brought to rest. When y exceeds the
limiting angle yo, Walton replaces eq (3) by

nxg =—Bonxg, 4

where yo = 7t — atan[7(1 + e)u/2(1 + Bo)] and By is the
tangential coefficient of restitution, with 0 < By < 1. For
simplicity, he then categorizes the collision as “sticking” and
assumes that the entire contact point is brought to rest dur-
ing impact. For sticking collisions, the definition of By in
eq (4) implies that some of the elastic strain energy stored
in the solid during impact is recoverable through tangential
compliance, so the tangential velocity of the point of contact
may be reversed. In this simple model, eqs (3) and (4) are
mutually exclusive, i.e., the point of contact is either sliding
[eq (3)] or sticking [eq (4)]. This distinction thus defines two
separate impact regimes.

A convenient way to interpret data from an impact exper-
iment is to follow Maw, Barber and Fawcett®” and produce
a plot of W, = —(g'.t)/(g.n) versus ¥; = —(g.t)/(g.n),
where t is a unit vector located in the collision plane (g, n)
and tangent to both spheres. In collisions of homogeneous
spheres that involve gross sliding,

7
Uy = Yy — 5(1 + e)p sign(g.t), %)

and in collisions that do not,

Yy = —Bo¥;. ©

For positive values of g.t, U1 represents the magnitude of the
tangent of the incident angle. Similarly, the ratio (W5 /e) is
the tangent of the recoil angle y' betweenn and g'. In the plot
of W, versus W1, the data fall on two distinct straight lines
[egs (5) and (6)] that permit unambiguous identification of
the sliding and sticking regimes. Foerster et al. provide a
detailed derivation of those equations.>

However, because of its inherent simplicity, Walton’s
model possesses limitations for particles other than nearly
rigid spheres. The principal problem is a failure of the con-
cept of normal restitution coefficient for certain impact ge-
ometries. While addressing this issue, Smith and Liu® recall
three definitions of this coefficient, each of which focuses
on the partial restitution of a different mechanical quantity.
The first, attributed to Newton, is the restitution of the nor-
mal component of the velocity at the contact point [eq (2)].
This kinematic approach is adequate for nearly rigid spheres
undergoing small deformation of the contact patch but, as
Smith? shows, it fails when the impact is not collinear, i.e.,
the normal at the contact point is not directed along the line
joining the centers of mass of the two colliding particles. For
certain pathological geometries, the Newtonian definition can
even predict creation of kinetic energy in the impact, which
violates the second law of thermodynamics.

The second definition of normal restitution circumvents
the energy paradox. It focuses on the normal impulse, which
represents the integral of the normal impact force over time.
Here, the impact is divided into compression and restitution
phases, separated by the instant when the relative contact
velocity vanishes. Inelastic impacts recover only a part of
the compression impulse during the restitution phase. Pois-
son’s hypothesis is that the ratio of the two impulses is the
coefficient of normal restitution. For two-dimensional im-
pacts, this hypothesis leads naturally to Routh’s graphical
method, which provides a convenient description of the im-
pact process.!? Stronge!! proposes a third definition, which
equates the square of the coefficient of restitution to the ratio
of the elastic strain energy released during restitution to that
absorbed during compression.

For collinear impacts, the definitions of Newton, Poisson
and Stronge are equivalent. Because the kinetic theory treats
rapid granular flows using statistical distributions of grain
velocities, it naturally incorporates a kinematic definition of
normal restitution. Therefore, the Newtonian coefficient is
the formalism that we adopt to report our experimental re-
sults. It remains to be established experimentally the sig-
nificance of producing impacts with slight departures from
collinearity.

Another limitation of Walton’s model concerns tangential
compliance. For spheres, tangential compliance leads to the
possible reversal of the tangential component of the relative
velocity at contact. However, as Maw, Barber and Fawcett®’
and Stronge!? showed with an elastic continuum analysis and
an inelastic lumped parameter model, respectively, the tan-
gential coefficient of restitution in eq (4) becomes awkward
in situations where the ratio Wp/¥; is positive at low vai-
ues of Wy, i.e., with nearly head-on impacts. This situation
is exacerbated at large Poisson’s ratios and high elasticity.'?
Nevertheless, because head-on impacts occur infrequently in
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Fig. 2—Side perspective of the experimental apparatus. The
particles are drawn to an exaggerated scale

rapid granular flows, the errors resulting from the assumption
of a constant, positive Bg are likely to remain inconsequential.

Apparatus and Procedure

The experimental apparatus of Foerster et al.? is sketched
in Fig. 2. It consists of two mechanisms that release the small
particles in a free fall. In a binary collision experiment, the
top particle is dropped first from a height of 53.9 cm above
the landing stage. At a later time, the bottom particle is lib-
erated from a height of 27.9 cm, and its release mechanism
is promptly retracted using a solenoid to permit the top par-
ticle to catch up and eventually collide. An electronic timing
circuit coordinates the successive release of the top and bot-
tom particles, the retraction of the lower release mechanism
and the opening of the camera shutter. Calculations ensure
that the particles collide near the center of the camera’s field
of view. Through stroboscopic illumination, a photographic
camera records successive positions of the spheres before and
after the collision.

In this work, we refine the experiment of Foerster et al.3
by employing a Kodak DCS digital camera. This black-and-
white system 1mages the stroboscopic object on a CCD array
of 20. 5 x 16.4 mm,? with individual pixel resolution of 16 x
16 wm? up to an exposure index of 1600. Because it bypasses
the conventional photographic process, the new camera sim-
plifies the data processing considerably. By allowing rapid
inspection of the image, it also permits immediate adjustment
of the collision orientation.

The digitized pictures are analyzed using computer-aided
design software. A circle is superimposed on each particle
image to establish the location of its center. Because the
collision has a very short duration, it is not captured on film.
Instead, the position and velocity of each sphere at impact are
extrapolated from two successive images on the photograph.
From this extrapolation, we infer the unit normal n and the
linear velocities before impact ¢; and ¢z, and those following
impact ¢} and ). This permits us to evaluate the collisional
impulse

J=mi(c] — 1) = —ma(ch — ¢3), @]

where my and m3 are the masses of the two colliding spheres.
By conservation of angular momentum at the contact point,
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we then infer the impulsive change in spin of each particle
Qh/01)(w) — w1) = (21 /02)(wy — w2) = (n x J), (8)

where | = mo? /10 is the moment of inertia about the center
of a homogeneous sphere.

The principal feature of this apparatus is that it releases the
particles reproducibly and without initial spin Then, because
w1 = wz = 0, the postcollision spins w} and ) are calcu-
lated from measurements of n and linear velocmes using eqs
(7) and (8). In these experiments, it is therefore superfluous
to measure spin directly, which is a far more difficult task
for small particles than to record the linear velocities of their
centers of mass. From known linear and angular velocities,
we then calculate the relative velocities at contact g and g’
and plot the corresponding values of W; and Wy. Foerster et
al.? provide further details of the experimental apparatus and
data analysis.

In this work, we measure impact properties in several sit-
uations that eluded Foerster et al. We now describe details
of each series of experiments and discuss the corresponding
results.

Reflective Spheres

The photographic technique of Foerster ef al.? infers the
location of the center of the falling spheres from the circular
outline of their surface. It relies on diffuse reflection to obtain
sharp photographic contrast and to distinguish the edge of the
spheres without ambiguity. Figure 3 is a typical image with
diffusely refiective particles. Spheres with strong specular
refiection defeat this imaging technique. Because their sur-
faces reflect most stroboscopic light specularly, bright spots
overwhelm the photographs and prevent their circular edges
from being distinguished.

We resolve this difficulty by painting a portion of the
spheres that is not involved in the collision with a fluorescent
dye. The fluorescence produces bright diffuse regions that
clearly highlight the circular outline of the spheres. Stain-
less steel spheres provide a convenient demonstration of this
method. Figure 4 shows bright specular spots and regions
of diffuse fluorescence. Edges of the latter also confirm that
spin is negligible before impact and significant thereafter.
The corresponding impact data are plotted in Fig. 5. Here,
glancing impacts were recorded with values of W as large as
6.5. To show sticking collisions with clarity, we limit values
of Wy represented in Fig. 5.

Slight Asphericity and Surface Damage

Foerster et al.> measured the impact properties of nearly
perfect spheres. However, in experiments involving large
numbers of grains, the cost of perfect monodisperse spheres
is prohibitive. Slightly aspherical particies of relatively nar-
Tow size distribution are more affordable. In practical ex-
periments, it remains to be established whether the coliision
model of egs (5) and (6) stays valid despite slight departures
from perfect sphericity and monodispersity exhibited by in-
dividual particles.

To answer this question qualitatively, we tested the binary
collisions of randomly selected pairs of lead-free glass beads
3 mm in nominal diameter (Jaygo “Dragonite”). We inferred
the mean bead diameter of 2.968 + 0.020 mm from mea-
surements of the mass of 10 beads and knowledge of their



Fig. 3—Typical stroboscopic image showing the ballistic tra-
jectories of two acrylic spheres before and after impact. In
this experiment, ¥; = 1.103 and ¥, = 0.492

material density 2.50 + 0.04 g/cc. We further characterized
the asphericity of each of the 10 beads by recording their
width along 20 random orientations using a micrometric dial
caliper. On average, the relative excursion of the width was
approximately 1.1 percent of the mean diameter of each bead.
As Fig. 6(a) demonstrates, the random asphericity and size
distribution appear as additional scatter in the data. Despite
the scatter, it is still possible to extract meaningful impact pa-
rameters that may serve as convenient input to the granular
theory.

Another practical problem is associated with surface dam-
age. Because in a typical impact large forces are exerted on a
small contact area for a short period, the particle surface often
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Fig. 4—Stroboscopic image of the binary collision of two 5-
mm stainless steel spheres. In this experiment, ¥, = 1,156
and ¥; = 0.546
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Fig. 5—Resuits for the binary impacts of two 5-mm stainless
steel spheres. Solid lines are the best fit of egs (5) and (6)

experiences microscopic dislocations that modify its macro-
scopic properties. Brittle materials such as glass are particu-
larly subject to this gradual transformation. To demonstrate
this effect qualitatively, we circulated large numbers of fresh
3-mm Jaygo glass beads in our chute facility for a combined
period of at least 20 hours. In this facility, a conveyor belt
recycles the glass beads continuously onto an inclined alu-
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Fig. 6—Results for binary collisions of slightly aspherical glass
beads 3 mm in nominal diameter: (a) fresh beads, (b) spent
beads

minum plane. Emissions of microscopic glass dust rapidly
became evident. However, because the general shape of the
beads remained unchanged, the damage was probably lim-
ited to the particle surface. As Fig. 6(b) illustrates, collision
tests of the “spent” beads revealed changes in binary impact
properties primarily related to surface friction. In particular,
it is clear from Fig. 6 that the transition between sticking and
sliding contacts occurred at a larger value of W1 for the spent
beads.

Similarly, prolonged granular flow experiments exert con-
siderable microscopic damage to the bottom aluminum sur-
face of the chute. To substantiate this transformation, we
collided spent glass beads with a sample of the damaged alu-
minum surface and compared the results with fresh beads
impacting a smooth plate. We observed a small increase in
the coefficient of friction and a slightly greater inelasticity
in the experiments with damaged surfaces. However, as Ta-
ble 1 indicates, changes in the three coefficients were not
substantial.

Bumpy Boundaries

Hanes, Jenkins and Richman!3 predicted that hemispheres
affixed to infinite paralle] boundaries may produce or dissi-
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Fig. 7—Typical stroboscopic image of the collision of a free
3-mm glass bead with a similar bead rigidly affixed to a plate.
In this experiment, ¥; = 0.838 and ¥, = 0.181

pate the fluctuating energy of a rapid granular flow of smooth
spheres sheared between the boundaries. They showed that
the rate and direction of transfer of the fluctuating energy
across this “bumpy boundary” depends on the boundary
spheres’ spacing, diameter and coefficient of restitution. Ex-
perimental verification of this and related theories (e.g., Jenk-
ins and Askari!#) therefore requires the knowledge of impact
parameters for collisions involving a free sphere and another
sphere rigidly affixed to a massive plate.

Figure 7 is a digital photograph of a typical impact be-
tween a free 3-mm glass bead and a similar bead affixed to
an aluminum plate with epoxy. In these tests, our objective
was to inform recent experiments of Hanes!® with granu-
lar flows of these beads on a similar bumpy, inclined chute.
For this reason, we employed Hanes’s nearly spherical beads
rather than perfect spheres and expected that some experi-
mental scatter would ensue. These beads were identical to
the spent beads mentioned in the previous section.

Hanes!® anticipated that the bonding of the sphere to the
plate would play an important role in determining the coeffi-
cient of restitution. In particular, he expected that the ability
of the epoxy to store or to dissipate clastic energy through
plastic deformations would probably affect the behavior of
the impact. Thus, for this bumpy boundary, Hanes rested the
sphere in a 2.2-mm hole drilled in an aluminum plate 1.3 mm
thick. The plate and the sphere were then bonded to another
flat aluminum plate 12.8 mm thick (Fig. 8). 1t is likely that
this arrangement transmits the impact stresses from the glass
sphere to the aluminum assembly without excessive dissipa-
tion of energy in the epoxy.

The bumpy boundary presents two principal challenges
for the impact experiment. The first is that only a limited



TABLE 1—EXPERIMENTAL RESULTS

Particle Relative Contact Velocities (m/sec)
Particle Diameter Impact Parameters lg.n| lg.t|
Material  Collisions of (mm) e T Bo min max min max
Polystyrene Two spheres 4.00 0.852 + 0189+ 0.46 £0.05 0.34 1.23 0.11 1.1
0.009 0.009
Acrylic  Two spheres 4.00 0.934 + 0.086+ 0.22+0.07 0.35 1.25 0.07 1.14
0.009 0.006
Stainless Two spheres 5.00 0985+0.03 0.099+ 0.32+0.08 0.17 1.2 0.15 1.2
steel 0.008
Fresh glass Twobeads 2.97+0.02 0922+ 0.048+ 0.37 £0.07 0.43 1.14 0.07 1.08
0.021 0.006
Spentglass Twobeads 297002 0972+ 0177+ 0.25+0.08 0.24 1.11 0.14 1.1
0.015 0.020
Fresh glass Beadon 297 +0.02 0.816 + 0.131 + 0.46 £ 0.24 0.80 1.92 0.07 1.64
smooth 0.013 0.007
aluminum
plate
Spentglass Beadon 297 +0.02 0.800 + 0.141 + 0.35 +0.31 0.91 1.94 0.07 1.53
spent 0.010 0.009
aluminum
plate
Spentglass Beadon 297 +0.02 0.865 + 0.126 £ 0.34 £ 0.16 0.73 1.67 0.29 1.51
similar 0.011 0.014
stationary
bead

Side view

Bin

Top view

Fig. 8—Geometry of the impact on the bumpy boundary. The
dimensions are shown in mm

range of incident angles produces trajectories of the rebound-
ing sphere that do not interfere with the plate. To ensure that
postcollision velocities are directed away from the plate, val-

ues of ¥y in the sliding regime are limited to a relatively smail
range,

Wy = tany < cot(6y — v), )

where v is the inclination of the plate and 6y is the smallest
possible latitude of the impact point on the boundary sphere;
89 is a solution to the following equation:

cosv = (1 + €)sin(8g — v) [sinBp + pcosBp].  (10)

In practice, the range of W is slightly smaller to permit the
rebounding particles to describe a discernible ballistic tra-
jectory after impact. With a horizontal plate and for typical
values of e and ., the upper bound of W1 for sliding con-
tacts is near unity. This upper bound increases with greater
inclination of the plate. Therefore, after performing a first
series of impacts with the horizontal plate, we tilted the plate
to the steeper inclination of v = 45 deg to extend ¥; further
into the sliding regime. However, at progressively steeper
plate inclinations, the angular position of the impact point
that generates a desired value of the incident angle y rotates
along the surface of the boundary sphere. Consequently, be-
cause two impacts at identical values of W but two different
plate inclinations have different points of contact, they ex-
hibit different distributions and time histories of the stress.
In principle, these differences could result in different values
of the collision parameters. Nevertheless, we failed to dis-
cern any trend in the data that would reveal a dependence of
the coefficient of restitution on plate inclination.

The second challenge arising with the bumpy boundary is
to gage the true orientation of the collision plane. In general,
because perfect control of the relative positions of the parti-
cles at impact is difficult, the collision plane does not coincide
exactly with the object plane of the camera. These two planes
differ by an angle a (Fig. 8). For binary collisions, Foerster
et al.? recorded the landing position of the two spheres on a
glass stage below the impact. From this, they measured a by
comparing the known projection of the camera’s object plane
and the line joining the landing positions of the two spheres.
Then, they inferred the angle & between n and the downward

vertical from the apparent angle 8* seen on the photograph
using
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Fig. 9—Resuits for the impact of a free bead on the bumpy
boundary of Fig. 8

tan 3 = tan §*/ cos a. (11)

They noted that because the apparatus releases the spheres
in vertical free-fall and without spin, g is aligned with the
vertical, so y = 3. Similarly, Foerster et al. calculated the
horizontal component ¢, of the velocity of the center of mass
of a sphere from its apparent value ¢} using

cx = ¢}/ cosa. (12)

For the bumpy boundary, the analysis is identical to that of
collisions of a sphere with a massive flat plate inclined at an
angle (7 ~ 3) from the horizontal.

Because Hanes’s bumpy boundary precluded the use of a
landing stage, the angle a could not be evaluated in our ex-
periment as conveniently as in Foerster’s. Instead, we con-
structed a bin designed to catch spheres with ja| < 15 deg
(Fig. 8), and deliberately excluded experiments that failed
to capture the free sphere in the bin. The rapid processing
capabilities of the digital camera made it relatively inconse-
quential to reject such experiments. We then analyzed valid
resuits by assuming a = 10 deg and evaluated the uncertain-
ties associated with treating o as an unknown variable in the
range 0 < |a| < 15 deg. The worst relative uncertainties in e
and . occur for glancing impacts. The corresponding errors
in Bo are negligible. At the worst, errors were 8 percent in e
and 1 percent in p.; more typically, they were approximately
4 percent in e and 0.2 percent in .

Figure 9 presents data obtained with the bumpy bound-
ary. There, closed and open symbols correspond to plate
inclinations of 0 deg and 45 deg, respectively. The vertical
dashed lines show upper bounds for ¥; predicted by egs (9)
and (10) at the plate inclinations shown. Because successive
measurements produce uncorrelated errors in e and |, the av-
erage values of these parameters inferred from Fig. 9 exhibit
considerably smaller uncertainties than those of individual
measurements.

Summary

Impact properties are summarized in Table 1. Because
they may depend on the relative velocity at contact,1® Table 1
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also lists a range for the components of that velocity. It also
provides data for binary collisions of acrylic and polystyrene
spheres 4 mm in diameter.

Our experiments confirm that Walton’s three-parameter
model is an adequate representation of the impact behavior
of nearly spherical particles. However, because the model has
limitations when impacts are not collinear, the reported val-
ues of the Newtonian coefficient of normal restitution should
not be interpreted as a material constant for other than nearly
spherical geometries. Similarly, the coefficient of tangential
restitution is merely a convenient way to simplify the treat-
ment of nearly head-on impacts. Finally, because our experi-
ence indicates that friction depends strongly on the state and
history of the surface, our recommendation is for the fric-
tion coefficient to be evaluated with particles having spent a
considerable time in the granular flow of interest.
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