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We studied flows of agitated spherical grains in a gas. When the grains have

large enough inertia and when collisions constitute the dominant mechanism for

momentum transfer among them, the particle velocity distribution is determined

by collisional rather than by hydrodynamic interactions, and the granular flow is

governed by equations derived from the kinetic theory.

To solve these equations, we determined boundary conditions for agitated grains

at solid walls of practical interest by considering the change of momentum and

fluctuation energy of the grains in collisions with the wall. Using these condi-

tions, solutions of the governing equations captured granular flows in microgravity

experiments and in event-driven simulations.

We extended the theory to gas-particle flows with moderately large grain in-

ertia, in which the viscous gas introduces an additional dissipation mechanism of

particle fluctuation energy. When there is also a mean relative velocity between

the gas and the particles, the gas gives rise to particle fluctuation energy and

to mean drag. Solutions of the resulting equations compared well with Lattice-

Boltzmann simulations at large to moderate Stokes numbers. However, theoretical

predictions deviated from simulations at small Stokes number or at large particle

Reynolds number.



Using a method analogous to the integral treatment of laminar boundary lay-

ers, we derived averaged equations to study the development of granular and gas-

particle flows in rectangular channels. The corresponding predictions of the stream-

wise evolution of averaged flow variables such as the mean particle velocity, the

granular temperature, and the mean gas velocity agreed well with event-driven

simulations.

Finally, we used our analyses to prescribe microgravity experiments in which

to test theories for gas-particle interactions with large to moderate particle inertia

and small gas inertia. We also predicted uncertainties in measuring the granular

mean and fluctuation velocities from a computer vision analysis of video images of

the flow.
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Chapter 1

Introduction

Flows involving a fluid and dispersed solid particles are ubiquitous, from sand

storms that can travel thousands of kilometers to industrial flows in fluidized beds

and transport lines. As Figure 1.1 suggests, such flows may be organized on a

map featuring the Stokes and Reynolds numbers. The Stokes number St ≡ τvU/σ

measures the relative importance of particle inertia and fluid viscosity. It does

so by comparing the particle viscous relaxation time τv = ρsσ
2/18µf and a char-

acteristic time U/σ for the flow. For example, in shear flows, the characteristic

velocity U may be related to the mean strain rate γ using U = γσ. The Reynolds

number Re ≡ ρfUσ/µf compares the roles of inertia and viscosity in the fluid. In

these expressions, ρs and ρf are the material density of the solid and the fluid,

respectively, σ is the particle diameter, and µ is the gas viscosity.

The Stokes and Reynolds numbers are related through the ratio of fluid and

solid material densities, ρf/ρs, which measures the relative importance of fluid and

solid inertia. With a gas, this ratio is small enough that forces proportional to the

fluid density, such as added mass and history forces, are negligible. In this work,

we only consider flows where the system size L is much larger than a microscale l

so that continuum descriptions of both the fluid and particle phases are possible.

For the fluid, the microscale is the mean free path. For the particle phase, it is

either the diameter σ of individual particles, or their own mean free path.

In many situations, the particle size is so small that the fluid inertia is negligible

(Re ¿ 1). Because the corresponding flows are locally governed by the Stokes

equation, which is linear, these flows have been the subject of several theories and
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Einstein (1906)
Happel & Brenner (1965)

viscous suspensions collisional granular flows in a viscous gas

Sangani et al. (1996), Koch & Sangani (1999)
Jenkins & Richman (1985)
Lun et al. (1984)

granular flows

StSt>>1St<<1 St=1
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Re

particles suspended in a turbulent flow field

Sundaram & Collins (1997,1999)

Verberg & Koch (2003), Wylie, Koch & Ladd (2003)
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Dasgupta, Jackson & Sundaresan (1994)
Sinclair & Jackson (1989)

Figure 1.1: Categories of fluid-particle flow.

numerical simulations. Although the Reynolds number based on a macroscale such

as the vessel size can be large enough for the mean flow to be turbulent, individual

particles often react to the local flow field according to the Stokes equation [116,

117].

When particle inertia is small (St¿ 1), solid particles follow fluid streamlines

closely. Since Einstein’s classical work [31], such suspensions have been studied

extensively [42] and are often treated as a single phase with an enhanced effective

viscosity.

As particle inertia increases, collisional interactions between particles may

transfer a significant amount of momentum. In his famous experiments with

sheared suspension of neutrally buoyant spheres, Bagnold [9] identified three differ-

ent flow regimes, which he distinguished by a dimensionless number that is directly

proportional to the Stokes number. For small Bagnold numbers (small St), the

suspension behaves as a Newtonian fluid, in which both shear and normal stresses
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are proportional to the shear rate. Bagnold called this regime “macro-viscous”.

For large Bagnold numbers (large St), Bagnold found a quadratic dependence

of stresses on shear rate. In this “grain-inertia” regime, Bagnold argued that

collisional interactions provide the main mechanism for momentum transfer. He

attributed the quadratic dependence to the proportionality of both the collision

rate and the momentum change during each collision to the shear rate. Between

the two regimes, Bagnold identified a transition at moderate Bagnold number. Al-

though Bagnold’s data have recently been challenged because of the questionable

design of his experimental apparatus [47], his physical arguments were essentially

correct and promoted the development of theories in fluid suspension and granu-

lar flow. Subsequent experiments by Savage & Sayed [109] verified the quadratic

dependence of stresses on shear rate with dry granular materials.

For gas-particle flows with large particle Stokes number, the interstitial gas does

not affect the particle motion. In such granular flows, two limiting regimes can be

distinguished. The first is called “rapid” granular flow. Here, particles are violently

agitated and the momentum is transferred entirely by collisional interactions. The

second is a quasi-static regime, where particles are in contact with their neighbors

at all times and the granular system behaves like a rate-independent plastic ma-

terial. Between these two extremes is a slow and generally dense granular flow

regime, where collisional interactions and longer-term contacts coexist.

The quasi-static regime is mainly the province of soil mechanics [131]. It is

challenging to derive its constitutive equations because of non-local effects of the

long-term contacts.

An intermediate regime between “rapid” flows and quasi-static assemblies ap-

pears to involve both long-term contacts and shorter-term impulses. In this regime,
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some ad hoc theories [108, 75, 77] were proposed to take into account simultane-

ously the contribution from collisions and long-term contacts, but the determina-

tion of the corresponding constitutive equations from first principles remains an

open problem.

Kinetic theory describes rapid granular flows successfully [87, 59, 62, 37, 111,

110, 36]. To do so, the theory exploits an analogy between agitated particles

and the molecules of a dense gas. In this framework, the Boltzmann equation

is solved approximately for the distribution of particle fluctuation velocity, and

the transport coefficients are then calculated once the velocity distribution is

known. This approach has been extended to granular flows with more than one

constituents [57, 58, 6, 3].

To make the mathematical treatment tractable, all current theories assume

“molecular chaos”, such that the velocities before a collision of any two colliding

particles are uncorrelated. This assumption is expected to break down in dense

flows, where particles mostly collide with their close neighbors. Another tacit

assumption is the isotropy of the pair distribution function, which means that the

probability to find another particle at a distance r from the center of the target

particle depends only on r. In a shear flow, however, the presence of compression

and extension directions in the flow field may cause a preferential distribution

of particles and the pair distribution is expected to be anisotropic. Nonetheless,

kinetic theories have been widely accepted for rapid granular flows, thanks in

part to the agreement among theory, physical experiments [80, 81] and molecular

dynamic simulations [78, 79, 81, 12], but also in anticipation of the difficulties

involved in resolving these issues.

A key concept in kinetic theory is the “granular temperature”, T ≡< C2 >
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/3, where C is the particle velocity fluctuation and <> represents an ensemble

average. As its name suggests, the granular temperature is the analog of the

thermal temperature in molecular gases. It is related to the granular pressure and

transport coefficients in a familiar way. However, unlike molecular gases, collisions

in granular flows do not conserve kinetic energy because of the inelastic nature of

the solid particles. Thus, an external forcing must be imposed on a granular flow

in order to maintain its granular temperature. Because the forcing is generally

applied through solid boundaries, energy losses in the interior of a typical flow

often let the granular temperature decay away from these boundaries.

The concept of granular temperature can be extended to gas-particle systems

where new mechanisms produce and dissipate particle fluctuation energy. For

moderate particle Stokes number, the role of the viscous gas cannot be ignored.

Sangani et al [107] studied the case where Re ¿ 1 and St is large enough that

the particle velocity distribution is still determined by inter-particle collisions, but

the viscous drag on particle fluctuation causes additional dissipation of granular

temperature. They also derived the constitutive equations for such a flow when

the inelastic dissipation is small. Koch & Sangani [67] extended the theory to

include the effect of relative mean velocity between the gas and the solid phase.

They found that the gas velocity disturbance gives rise to viscous forces on the

grains that create particle fluctuation kinetic energy.

When the particle Reynolds number increases, fluid inertia can no longer be

ignored. Because the full Navier-Stokes equation must be invoked in this case [66],

theoretical developments become more complicated. Verberg & Koch [123] ex-

tended the study of Sangani et al [107] to moderate particle Reynolds number and

found that the viscous dissipation of particle fluctuation energy increases linearly
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with the particle Reynolds number. In a similar work, Wylie et al [135] stud-

ied the effect of fluid inertia on both the energy dissipation and the mean drag.

At present, however, there are no constitutive equations for gas-particle flows at

moderate Reynolds number.

At small but finite particle Reynolds number, the Reynolds number based on

a macroscale can be large enough that the mean flow becomes turbulent. In a

turbulent flow, Sundaram & Collins [116, 117] studied clustering due to particle

inertia and the effects of particles on the flow. To that end, they assumed that

the drag on the solid particles is given by the Stokes law. Gas-particle flows at

even higher particle Reynolds number, such as in industrial fluidized beds, are

poorly understood because of the inherent instability of the homogeneous state of

fluidization [119].

Computer simulations have become a valuable tool to understand the complex

nature of fluid-particle flows and to lend insight to the derivation of theories.

Several simulation techniques have thus been developed.

For granular flows, where the effect of gas can be neglected, the two most

popular techniques are “hard-sphere” and “soft-sphere” simulations. In “hard-

sphere” simulations, see for example Campbell & Brennen [18] and Luding &

McNamara [85], collisions are assumed to be instantaneous. The occurrence of an

upcoming collision is determined by maintaining a list of future such events and

the simulation marches accordingly from one collision to the next. The discrete

element model (DEM) proposed by Cundall and Strack [27] inspired Walton and

Braun [127, 126] to develop a “soft-sphere” simulation, in which particles are al-

lowed to deform during collisions. The principal advantage of this technique is

to let the simulation capture long-lasting, as well as impulsive, granular interac-
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tions. Here, detailed contact dynamics are resolved in small time steps typically

much smaller than the time separating two successive collisions. As a variation of

the “hard-sphere” simulation, Hopkins & Louge [44] used a “hard-sphere/overlap”

simulation, in which collisions are also assumed to be instantaneous, but particles

can overlap slightly with each other before detecting the occurrence of a contact.

The simulation time increment is then adjusted to keep the mean overlap below a

certain tolerance. This technique makes it redundant to maintain a collision list

and facilitates simulations with complicated boundary geometry.

For gas-particle flows with Re ¿ 1, several simulations take advantage of

the linearity of the Stokes equation. These include, for example, the “Stokesian

Dynamics” of Brady & Bossis [14] and the multipole expansion of Sangani &

Mo [89, 106]. At moderate Reynolds number, numerical solutions of the suspen-

sion are more difficult because the full Navier-Stokes equations must be solved. For

these flows, the Lattice-Boltzmann simulations [69, 70, 23] are a suitable choice.

Unlike direct solutions of the Navier-Stokes equations, Lattice-Boltzmann simula-

tions are relatively easy to program and are, at least in principle, more accurate

because they solve directly the Boltzmann equation. Because the propagation

speed of information along the lattice must be large compared with the mean flow

velocity, the Lattice-Boltzmann method breaks down at high particle Reynolds

numbers. In turbulent flows, it is generally preferable to use Direct Numerical

Simulations [90, 116, 117].

In this work, we consider gas-particle flows with large particle inertia and small

to moderate gas inertia. We first focus on rapid granular flows where the influ-

ence of the gas is negligible and particles interact with each other only through

collisions. We solve the governing equations from the kinetic theory for bounded
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granular flows. We compare our results with microgravity experiments and com-

puter simulation data from “hard-sphere/overlap” simulations. We then extend

the theory to gas-particle flows with large St but small to moderate Re. We solve

the equations for averaged quantities in the particle and gas phase, and compare

the results with recent Lattice-Boltzmann simulations by Verberg & Koch [123].

This thesis is organized as follows. Chapter 2 first focuses on boundary con-

ditions. To use a continuum theory to analyze a granular flow, one must specify

conditions at the solid walls that bound the flow. In particular, the mean granular

velocity adjacent to the solid wall differs from the wall velocity. Given the exact

boundary geometry and the impact parameters of the wall, boundary conditions

may be derived from the collisional transfer of momentum and fluctuation energy

at the wall [61, 50, 56]. Because previous conditions at bumpy boundaries were

only valid for a small “slip velocity”, i.e., for a small relative velocity between the

mean granular flow and the solid wall, we derive in Chapter 2 the stresses and flux

of fluctuation energy at frictionless, bumpy walls over a large range of slip veloci-

ties. We also propose a simple superposition to calculate conditions at frictional,

bumpy walls.

In Chapter 3, we solve the governing equations with appropriate boundary

conditions for fully developed granular flows of a single constituent and binary

mixtures. Comparisons of the predictions of continuum theory with molecular

dynamic simulations and physical experiments in microgravity indicate that the

kinetic theory and its boundary conditions produce accurate predictions of the

principal flow variables.

When particle inertia decreases, the presence of an interstitial gas may affect

both the momentum and the energy balance of the particle phase. In Chapter4, we
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consider the case in which particle inertia is large enough that the particle velocity

distribution remains determined by collisions and the constitutive relations of the

kinetic theory are still valid. However, the viscous gas causes additional dissipation

of particle fluctuation energy [107, 123] and the mean relative velocity between the

gas and the particle phase imposes a mean drag on the particle phase [67]. We

thus introduce new terms in the governing equations for the granular phase and

additional equations for the conservation of mass and momentum in the gas phase.

Those equations are then solved with appropriate boundary conditions for each

phase. Comparisons between the theory and recent Lattice-Boltzmann simulations

reveal the smallest Stokes number for which the averaged equations still provide

accurate results.

In Chapter 5, we use the governing equations invoked earlier to study the devel-

opment of gas-particle flows in two types of bounded shear cells. The first is shaped

as a racetrack and the second is axisymmetric. In these cells, the flow undergoes

development because of the peculiar cell geometry or because of the presence of a

streamwise body force. Using a method analog to the integral treatment of laminar

boundary layers, we predict variations of cross-sectional averaged particle volume

fraction, mean velocity, fluctuation velocity and mean gas velocity along the flow

channel, and we verify these predictions with numerical simulations. The theory

reveals the role of side walls on flow development, and it provides general insight

on the presence of regions with nearly fully-developed flow in practical shear cells.

Chapter 6 turns to practical considerations for conducting experiments with

the shear cells mentioned earlier. It focuses on the accuracy of digital cine-

matography in providing measurements of the principal flow variables. Photo-

graphical techniques are commonly used to record particle velocity in granular
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flows [41, 132, 81, 10]. In these techniques, a sequence of digital images is analyzed

by computer vision algorithms to identify and track particles, and, from the known

image frequency, to infer their velocities. In Chapter 6, we predict errors that our

imaging system will produce on the particle mean velocity and fluctuation veloc-

ity. These errors are associated with the failure of the vision algorithm to track

fast-moving spheres, with uncertainties in determining the location of particle cen-

ters within a pixel, and with the possible occurrence of particle collisions between

images. We check the predictions by simulating the shortcomings of the physical

imaging system in our experiments. For a particular system and a certain error

tolerance, we then prescribe the required capabilities of the digital camera.

In the last chapter, we propose a set of experiments to study gas-particle in-

teractions in microgravity. Their goal is to measure the dissipation rate of particle

fluctuation energy due to the presence of a viscous gas at small to moderate particle

Reynolds number, and to quantify the role of particle agitation on the mean drag

between gas and particles. We use the theories developed in the previous chapters

to guide the design of experiments, to find out a practical range of conditions, and

to estimate experimental errors.



Chapter 2

Boundary Conditions for Collisional

Granular Flows

Unlike flows of ordinary fluids at normal pressure and temperature, in which the

“no-slip” boundary condition applies, granular flows generally move with respect

to solid boundaries. This phenomenon can be qualitatively explained by Maxwell’s

classical work on a molecular gas. Maxwell showed that the slip velocity between

a gas and a solid boundary is on the order of the product of the mean free path

of gas and the gradient of the mean velocity at the boundary. Because the mean

free path of an ordinary fluid is much smaller than characteristic length scales

of the flow, the “no-slip” boundary condition is generally a good approximation.

Collisional granular flows, however, are often driven by the surfaces that bound

them. Because collisions among grains dissipate energy, the characteristic length

scales of such flows are usually on the order of ten grain diameters. Thus, accord-

ing to Maxwell’s argument, the slip velocity at the boundary cannot be neglected.

Moreover, because granular flows have a relatively small thickness, their bound-

aries play a crucial role, which was clearly revealed in the experiments by Savage

& Sayed [109], Hanes & Inman [40], and Craig et al [25] and in the computer

simulations by Campbell & Gong [19].

The scope of this chapter is to derive the stresses and flux of fluctuation energy

for the solid boundaries encountered in our experiments. Here, we are not con-

cerned with conditions at interfaces between regions within a granular material,

such as an “erodible” boundary between a solid-like and a fluid-like region (Jenk-

ins & Askari [53]), or a free surface (Jenkins & Hanes [55]). Likewise, we do not
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consider flows that involve long-lasting interactions between grains.

Boundary conditions for collisional granular flows at solid surfaces have been

studied extensively. Hui et al [46] and Johnson & Jackson [63] proposed heuris-

tic expressions, which depend upon adjustable constants that cannot be measured

independently. Instead, consistent with the derivation of constitutive relations

from the kinetic theory, our approach is to derive the stresses and flux of parti-

cle fluctuation energy at a solid boundary by averaging the collisional transfers of

momentum and energy over all possible collisions between flow particles and the

boundary. Calculations of this kind differ mainly in the choice of particle velocity

distribution used in the averaging. To derive boundary conditions for granular

flows of disks or spheres confined to a single plane, Pasquarell & Ackermann [102]

and Pasquarell [101] approximated the distribution with a simple δ-function. Jenk-

ins & Richman [61] employed a Maxwellian distribution to derive boundary con-

ditions for flow of disks over a bumpy, frictionless wall. For the same geometry,

Richman [104] and Richman & Chou [105] used the “dense-Maxwellian” velocity

distribution found by Jenkins & Richman [59] and a more accurate definition of

the location of the bumpy surface.

In this chapter, we derive conditions at solid surfaces using an approach similar

to that proposed by Jenkins & Richman [61]. We calculate the stresses and heat

flux at the wall by averaging over a continuous velocity distribution, but we relax

the original assumption of small slip velocity that Jenkins & Richman invoked.

An implication of their work is that there are no universal boundary conditions

for collisional granular flows. Stresses and heat fluxes at solid boundaries depend

on the detailed interactions between the flow particles and the wall. Different

boundary conditions have to be derived for walls with different geometrical shapes.
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In this section, we examine conditions for the following grains and wall geome-

try: first, we consider smooth spheres interacting with bumpy, frictionless walls up

to relatively large slip velocity; second, we examine “planar” flows of circular disks

or spheres confined to a single plane and colliding with a narrow flat, frictional

wall; third, we focus on other planar flows of circular disks or spheres at bumpy,

frictional walls; finally, we propose conditions for 3-dimensional flows of spheres at

bumpy, frictional walls.

Our theory is limited to the slightly inelastic, moderately bumpy, and slightly

frictional boundaries that we use in our experiments. We will later explain the

significance of these restrictions.

2.1 Smooth Bumpy Boundaries

We analyze boundary interactions between granular flows of smooth, inelastic

spheres and a bumpy, frictionless wall made of cylindrical bumps, as sketched

in Figure 2.1. We consider cylindrical - rather than spherical - bumps, because

the former are more straightforward to manufacture in actual experiments. This

problem is very similar to that studied by Jenkins & Richman [61], Richman &

Chou [105], and Richman [104]. Because in those earlier calculations the slip

velocity was taken to be small compared with the granular fluctuation velocity,

quadratic or higher order terms in the slip velocity were neglected in the expres-

sions of the stresses and heat flux. In this section, we extend the results to larger

slip velocities.

As illustrated in Fig. 2.1, the diameter of the flow spheres is σ, the diameter of

the boundary cylinders is d, the separation between boundary cylinders is s. We

define σ̄ ≡ (d + σ)/2 as the average of the two diameters. The mass of the flow
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Figure 2.1: Geometry of the bumpy boundary.

sphere is m. The inward normal to the boundary is N. The unit vector j is parallel

to the axes of the boundary cylinders. A unit vector t is parallel to the wall but

perpendicular to the boundary cylinders. N, j, and t form the basis of the xyz

coordinate system. A unit vector k is defined in the plane passing through the

center of a colliding sphere and perpendicular to the axis of the boundary cylinder

involved in the collision. The direction of k is pointing into the flow. The angle

between k and N is k, and θ = arcsin((d+ s)/(d+ σ)) is the maximum value of k.

r is the position of the center of the flow sphere. p is the position of the center of

boundary cylinder. U is the velocity of the boundary. c is the velocity of the flow

sphere before the collision. g = U − c is the relative velocity of the wall and the

flow spheres. f(c, r) is the velocity distribution of the latter. By definition, the

number density of flow spheres is given by

n(r) =

∫

f(c, r)dc,
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and the mean velocity of the flow is

u(r) =
1

n

∫

cf(c, r)dc.

The fluctuation velocity is C = c− u, and v = U− u is the wall velocity relative

to the flow.

Because a smooth wall can only provide impulse in the direction normal to

its surface, Jenkins & Richman [61] expressed the collisional rate of momentum

production M and the collisional dissipation rate D with the following integrals:

M = αχm(1 + ew)

∫∫

kf(c,p+ σ̄k)σ̄(g · k)2dcdk, (2.1)

and

D =
1

2
αχm

(

1− e2w
)

∫∫

f(c,p+ σ̄k)σ̄(g · k)3dcdk, (2.2)

where χ is a factor that accounts for the effects of excluded area and collisional

shielding on collision frequency, α = 1/(d+ s) is the number of wall cylinders per

unit length of the wall, and ew is the coefficient of restitution for collisions between

a flow sphere and the wall. To be consistent with the constitutive relations for

granular flow, we assume that 1− ew is of order ε¿ 1. The integration is carried

out for all g · k ≥ 0 and −θ ≤ k ≤ θ .

We employ the velocity distribution found by Jenkins & Richman [59] for

slightly inelastic spheres. To the lowest order, their result is a corrected Maxwellian

distribution:

f(c, r) =
n

(2πT )3/2

[

1−
√

2

π

σB

T 3/2
C · D̂ ·C

]

e−
C2

2T , (2.3)

where T is granular temperature at r, B(ν) = π
12
√
2
(1 + 5

8G
) and G(ν) ≡ ν(2−ν)

2(1−ν)3

are functions of the particle volume fraction ν that incorporate the Carnahan &
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Starling [22] isotropic pair distribution function (1 − ν/2)/(1 − ν)3, and D̂ is the

deviatoric part of the symmetrical velocity gradient D.

Following Richman & Chou [105], we expand f(c,p + σ̄k) about p + σ̄N and

ignore terms involving σ∇ν and σ∇T
T
, which are assumed to be of order ε. The

resulting velocity distribution for colliding spheres is

f(c,p+σ̄k) =
n

(2πT )3/2

{

1+
σ̄

T

[

(

k·∇−N·∇
)

u
]

·C−
√

2

π

σB

T 3/2
C·D̂·C

}

e−
C2

2T , (2.4)

where all mean values are evaluated at p + σ̄N. In this framework, the flow

boundary is located at a distance σ̄N from the flat base of the bumpy wall. Equa-

tions (2.1) and (2.2) can be written as

M =
1

2

(

1 + ew
)

ρχ T
1

sin θ

∫

kψ(k)dk, (2.5)

and

D =
1

2

(

1− e2w
)

ρχ T 3/2 1

2 sin θ

∫

φ(k)dk, (2.6)

where

ψ(k) =
1

T (2πT )3/2

∫

g·k≥0
(g · k)2Λe−C2

2T dC, (2.7)

φ(k) =
1

T 3/2(2πT )3/2

∫

g·k≥0
(g · k)3Λe−C2

2T dC, (2.8)

and

Λ ≡ 1 +
σ̄

T

[

(

k ∇−N · ∇
)

u
]

·C−
√

2

π

σB

T 3/2
C · D̂ ·C. (2.9)

We first evaluate ψ(k) and φ(k) by integrating over C. Note that because

C = v−g and v is a constant, integrating over g ·k ≥ 0 is the same as integrating

over −C·k ≥ −v·k. For any k, we introduce another unit vector i, which, together

with k and j, forms a basis shown in Fig. 2.1. Then C can be decomposed as

C = −(ξi+ ζk+ zj),
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and g · k can be expressed as

g · k = (−C+ v) · k = −(C · k) + (v · k) = ζ + (v · k).

Then, the integrals (2.7) and (2.8) become

ψ(k) =
1

T (2πT )3/2

∫ ∞

ζ=−(v·k)

∫ ∞

ξ=−∞

∫ ∞

z=−∞

{

[

ζ2 + 2(v · k)ζ + (v · k)2
]

[

1−
√

2

π

σB

T 3/2

(

D11ξ
2 +D22ζ

2 +D33z
2 + 2D12ξζ + 2D13ξz + 2D23ζz

)

− η1ξ − η2ζ − η3z
]

e−
ξ2+ζ2+z2

2T

}

dzdξdζ (2.10)

and

φ(k) =
1

T 3/2(2πT )3/2

∫ ∞

ζ=−(v·k)

∫ ∞

ξ=−∞

∫ ∞

z=−∞

{

[

ζ3 + 3(v · k)ζ2 + 3(v · k)2ζ + (v · k)3
]

[

1−
√

2

π

σB

T 3/2

(

D11ξ
2 +D22ζ

2 +D33z
2 + 2D12ξζ + 2D13ξz + 2D23ζz

)

− η1ξ − η2ζ − η3z
]

e−
ξ2+ζ2+z2

2T

}

dzdξdζ (2.11)

where

ηi(k,u) =
σ̄

T

[

(

k · ∇ −N · ∇
)

u

]

· ei,

and

Dij = ei · D̂ · ej, (i, j = 1, 2, 3),

with

e1 = i, e2 = k, e3 = j.

Equations (2.10) and (2.11) can be integrated exactly by using the formulae
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listed in Appendix A. The results are

ψ(k) =

(

(v · k)2
2T

+
1

2

)(

1 + erf

(

v · k√
2T

)

)

+
1√
π

v · k√
2T

exp

(

− (v · k)2
2T

)

−
√
2η2T

1/2

[

v · k√
2T

(

1 + erf

(

v · k√
2T

)

)

+
1√
π
exp

(

− (v · k)2
2T

)]

− 1√
2π
B
σD22

T 1/2

(

1 + erf

(

v · k√
2T

)

)

, (2.12)

and

φ(k) =
v · k√
T

(

(v · k)2
2T

+
3

2

)(

1 + erf

(

v · k√
2T

)

)

+

√

2

π

(

(v · k)2
2T

+ 1

)

exp

(

− (v · k)2
2T

)

− 6√
π
B
σD22

T 1/2

[

v · k√
2T

(

1 + erf

(

v · k√
2T

)

)

+
1√
π
exp

(

− (v · k)2
2T

)]

− 3η2T
1
2

[(

(v · k)2
2T

+
1

2

)(

1 + erf

(

v · k√
2T

)

)

+
1√
π

v · k√
2T

exp

(

− (v · k)2
2T

)]

, (2.13)

where erf(x) is the error function. Note that

v · t = v, v · k = v sin k, and | sin k| ≤ sin θ.

We then treat v/
√
2T as an O(1) quantity, but regard sin θ as a small quantity

of order δ < 1. We expand the error and exponential functions as power series in

sin k and truncate them at the appropriate order. We further note that a term

involving sinn k in ψ (or φ) contributes a term of order O(δn) to M (or D) because

of the presence of the term σ̄α = 1/2 sin θ in integrals. In this work, we focus our

attention to boundaries with moderate bumpiness with δ = O(ε1/4) and ignore

terms of order ε or higher.
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Generally, a bumpy boundary with the geometry as shown in Fig. 2.1 is associ-

ated with nearly unidirectional granular flows, i.e., u = (u, 0, 0) and the variation

in the flow direction is much smaller than the variation in the transverse direction.

Therefore, we assume ∂u
∂x

= ∂u
∂z

= 0 and ∂u
∂y

= u′. Hence the expressions for η2 and

D22 can be simplified as

η2 =
σ̄u′

T
sin k(cos k − 1), (2.14)

and

D22 = u′ sin k cos k. (2.15)

Upon substituting Eqs. (2.14) and (2.15) into Eqs. (2.12) and (2.13), and upon

invoking the assumption that σu′/T 1/2 is O(ε1/2), we obtain the following simplified

expressions for ψ(k) and φ(k), up to an error of order ε,

ψ(k) =
1

2
+

2√
π

v√
2T

sin k +
v2

2T
sin2k

−2

3

1√
π

(

v√
2T

)3

sin3k − 1√
2π
B
σu′

T 1/2
sin k cos k, (2.16)

and

φ(k) =

√

2

π
+

3√
2

v√
2T

sin k + 3

√

2

π

v2

2T
sin2k

−
√
2

(

v√
2T

)3

sin3k − 6

π
B
σu′

T 1/2
sin k cos k. (2.17)

With ψ(k) and φ(k) given by Eqs. (2.16) and (2.17), integrals (2.5) and (2.6)

become

M =
1

2

(

1 + ew
)

ρχT

[(

1 +
v2

3T
sin2θ

)

N+

√

2

π

v√
T

(

θ csc θ − cos θ
)

t

]

, (2.18)

and

D =
1

2

(

1− e2w
)

ρχT 3/2

√

2

π

[

θ csc θ +
3

4

(

θ csc θ − cos θ
)v2

T

]

. (2.19)
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In numerical solution of granular flows, it is convenient to express the momen-

tum boundary condition in the form of the ratio of shear to normal stresses at the

wall. With Eq. (2.18), the stress ratio at a frictionless, bumpy boundary is

S

N
=

√

2
π

(

θ csc θ − cos θ
)

v√
T

1 + v2

3T
sin2θ

(2.20)

Upon carrying out an energy balance on a pillbox control volume and skrinking

the thickness of the latter, Jenkins [50] showed that the flux of fluctuation energy

through the wall is Q = M · v −D. In our case,

Q =
1

2

(

1 + ew
)

ρχT 3/2

√

2

π

[

(

θ csc θ − cos θ
)v2

T
− θ csc θ

(

1− ew
)

]

. (2.21)

By assuming moderate bumpiness and small slip, Richman & Chou [105] cal-

culated a shear stress S ≡ M · t containing a term of order ε and, unlike our

result, obtained a normal stress N ≡M ·N that is independent of slip velocity. In

contrast, our expression for N increases with slip velocity. Consequently, while the

ratio of shear to normal stress in the theory of Richman & Chou increases linearly

with slip velocity, our stress ratio cannot exceed a maximum value for any bumpy

boundary. This maximum depends only on the geometry of the boundary,

(

S

N

)

max

=

√

3

2π

θ csc θ − cos θ

sin θ
, (2.22)

and it occurs at

v√
T

=

√
3

sin θ
.

It is also worth noting that although the stress ratio decreases as the slip velocity

increases, the shear stress itself increases monotonically with the slip velocity. In

this sense, a bumpy boundary can always provide enough shear to balance external

forces on granular flows.
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Figure 2.2: Stress ratio and heat flux at smooth, bumpy boundaries: comparison

of the present study (solid lines) and the results of Richman & Chou [105] (dashed

lines). Top plot: stress ratio. Bottom plot: dimensionless heat fluxes. The circles

are simulation data with σ = d = 2, s = 0; the squares are σ = 2, d = 3.2, s = 0;

ew = 0.96 in both cases.
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Because the normal stress grows with the slip velocity, the dimensionless heat

flux through a bumpy boundary approaches a finite maximum, once again contra-

dicting the linear calculation of Richman & Chou [105],
(

Q

N
√
T

)

max

= 3

√

2

π

θ csc θ − cos θ

sin2 θ
. (2.23)

However, Eq. (2.23) must be used with caution. This is because when the slip

velocity becomes large, our assumption of v/
√
2T of order O(1) eventually breaks

down, and terms containing higher order powers of sin k can no longer be neglected.

Our predictions for the stress ratio and heat flux are plotted in Figure 2.2 along

with the linear boundary condition of Richman & Chou and data from molecular

dynamic simulations. As the Fig. shows, our calculation agrees with simulations

over a wide range of slip velocity, while the linear boundary conditions can only

be used for small slip velocities.

Jenkins & Richman [61] also derived boundary conditions in the small slip

regime for bumpy boundaries that are made of randomly distributed spheres. Sim-

ilar to the boundary we considered earlier this chapter, boundaries consisted of

spheres can be characterised by the average bumpiness sin θ. It is then straight-

forward to carry out a similar analysis as we did in this section to find out the

transfer of momentum and energy at the boundary by collisional interactions for

dimensionless slip velocity v/
√
2T of order O(1). The results are

S

N
=

√

2
π
2
3

(

2
1+cos θ

− cos θ

]

v√
T

1 + 1
4
sin2 θ v2

T

, (2.24)

and

Q

N
√
T

=
S

N

v√
T
−

2√
π

2
1+cos θ

1 + 1
4
sin2 θ v2

T

(

1− ew
)

. (2.25)

In many collisional granular flows, the dimensionless slip velocity v/
√
T is not

very large. In this case, the boundary conditions derived by assuming a small slip

Michel Louge
Note
typo: the highlighted factor should be \sqrt{\frac{2}{\pi}}

Michel Louge
Highlight
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are good approximations, see for example Jenkins & Richman [61] and Richman

& Chou [105]. In contrast, flows involving large slip at boundaries require the

boundary conditions derived in this chapter. Large boundary slip can be caused

by streamwise body forces (Section 3.1.2) or flows of agitated particles in a viscous

gas with a large gas pressure gradient (Section 4.2.4).

2.2 Granular Flows of Disks interacting with Flat Fric-

tional Walls

Boundary conditions for frictionless walls can be derived for various geometries

using an approach similar to that used in the last section. In reality, grains and

the surfaces bounding them are frictional. The additional momentum and energy

transfer associated with friction can make the problem significantly more compli-

cated. Jenkins [50] derived boundary conditions for flowing spheres interacting

with a flat, frictional wall. In that case, the coupling between the velocity compo-

nents that are tangential and perpendicular to the wall prohibited his derivation

of expressions in closed form, but instead yielded analytical expressions for wall

stresses and heat fluxes in two limiting cases only.

Such difficulty is not present in two dimensions. In this section, we consider the

interaction between flowing disks (or planar flows of spheres) and a flat, frictional

wall, which is possibly the simplest problem of this kind. We are then able to

examine some of the assumptions that Jenkins [50] employed in his theory.

As shown in Figure 2.3, n is the outward normal of the flat wall, t is a unit

vector tangent to the wall, U is the velocity of the wall, u is the mean velocity of

the flow, v ≡ u − U is the slip velocity at the wall. m, σ, and ω are the mass,
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Figure 2.3: Geometry of the flat boundary.

diameter, and angular velocity of flowing disks, respectively. c is the instantaneous

velocity of a disk approaching the wall, and C ≡ c − v is its fluctuation velocity.

f(C, ω, r) is the velocity distribution of flow disks at position r; its integration over

velocity space gives the number density n of flow disks

n(r) =

∫∫

f(C, ω, r)dCdω

The average value of any particle property ψ is defined by

<ψ>=
1

n

∫∫

ψ(C, ω)f(C, ω, r)dCdω

where the dependence of <ψ> on r is to be understood. For example, the mean

relative velocity of flow disks is v =<c>.

The velocities of a colliding disk before and after collision are related to the

collisional impulse J by

m(c′ − c) = J, (2.26)

and

I(ω′ − ω) = −σ
2
n× J, (2.27)

where primes denote post-collision velocities and I = 1
8
mσ2 is the moment of

inertia for disks of uniform density.
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For convenience, we introduce the relative velocity g at the point of contact,

g = c− σ

2
ω × n.

The change of total kinetic energy per collision is related to the collision impulse

as

∆K = g · J+
1

2m
J · J+

1

m

(

n× J
)

·
(

n× J
)

. (2.28)

As Jenkins [50] showed, the rate of supply of linear momentum per unit area of

the wall M and the rate of energy dissipation per unit area D are

M = Θ[J] (2.29)

and

D = Θ[−∆K], (2.30)

where the operator Θ is defined as

Θ[ψ] ≡ −χ
∫∫

C·n≤0
ψf(C, ω)

(

C · n
)

dCdω.

In this expression, the factor χ accounts for the effects of the presence of the

flat wall on the particle number density, and the integration is over all collisions.

Jenkins also derived expression for the flux of fluctuation energy through the flat

wall into the flow, Q, as

Q = −g0 ·M−D, (2.31)

where g0 is the mean relative velocity at the contact point,

g0 = v − σ

2
<ω> ×n

For simplicity, we follow Jenkins [50] in ignoring the fluctuation in particle spin,

i.e., ω =<ω>. Then

g = g0 +C. (2.32)
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Note that with this assumption, f(C, ω) in any integrals may be replaced with

f(C).

Substituting Eqs. (2.28)–(2.30) and (2.32) into Eq. (2.31), we find that Q can

be expressed as

Q = Θ[q], (2.33)

where

q = C · J+
1

2m
J · J+

σ2

8I

(

n× J
)

·
(

n× J
)

. (2.34)

Walton [124] proposed a three-parameter model to characterize collisions, in

which the normal component of g before and after collision are related by the

coefficient of restitution e with

g′ · n = −e
(

g · n
)

. (2.35)

To determine the tangential component of g after collision, we distinguish two

kinds of collisions. If the contact point relative to the wall does not slide, the point

of contact is deemed to “stick”, and the tangential component of g before and after

the collision are related by a tangential coefficient of restitution β0 using

g′ · t = −β0
(

g · t
)

. (2.36)

In a collision that involves sliding, the tangential and normal components of the

impulse are related by Coulomb friction,

J · s = −µ
(

J · n
)

. (2.37)

where µ is the coefficient of friction, s is a unit vector in the direction of relative

velocity,

s ≡ g · t
|g · t|t.
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Foerster, et al. [33] verified experimentally the validity of Walton’s impact

model in Eqs. (2.35)–(2.37) for a variety of homogeneous spheres impacting a flat

plate or each other. However, there are instances for which Walton’s assumption of

constant impact coefficients fails. Louge & Adams observed anomalies in the ap-

parent coefficients of normal restitution and friction [74] for hard spheres impacting

a softer elastoplastic plate. Zener [137] outlined a theory for the broadcasting of

waves in thin plates that leads to a dependence of normal restitution coefficients

on plate thickness. More recently, Calsamiglia, et al. [15] confirmed the model for

disks, but also revealed anomalies in the normal restitution coefficients in two di-

mensions. Despite these occasional difficulties, we adopt Walton’s model for disks.

In this case, the collision impulse is,

J(1) = −m(1 + e)

[

(

n · g
)

n+
µ

µ̄0

(

t · g
)

t

]

(2.38)

for collisions that do not slide. For those that do,

J(2) = −m(1 + e)
(

n · g
)(

n− µs
)

, (2.39)

where µ̄0 is a normalised friction coefficient,

µ̄0 ≡
(

mσ2

4I
+ 1

)

1 + e

1 + β0
µ.

For disks of uniform density, µ̄0 =
3(1+e)
1+β0

µ. Sticking occurs as long as the tangential

component of impulse J is smaller than µ|J · n|, i.e., when

|g · t| ≤ µ̄0|g · n|.

Upon substituting Eqs. (2.38) and (2.39) into Eq. (2.34) and using n · g = n ·C,

we find for sticking collisions,

q(1) = −1

2
m(1+e)

{

(1−e)
(

C · n
)2
+
µ

µ̄0

(

g0+
(

C·t
)

)[

(

1−β0
)(

C·t
)

−
(

1+β0
)

g0

]

}

,

(2.40)
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and for sliding collisions

q(2) = −1

2
m(1 + e)

{

[

(1− e)− µµ̄0
(

1 + β0
)

]

(

C · n
)2

+ 2µ
(

C · n
)(

C · t
)

}

, (2.41)

where g0 ≡ g0 ·t. For convenience, we denote x ≡ C·t as the tangential component

of the fluctuation velocity and y ≡ C·n as the normal component of the fluctuation

velocity. The sticking and sliding regime are distinguished using

J = J(1), q = q(1) if µ̄0y − g0 ≤ x ≤ −µ̄0y − g0;

J = J(2), q = q(2) otherwise;

where we have noted that particles collide with the flat wall if and only if y =

C · n ≤ 0.

For the distribution of the pre-collisional linear velocity, we assume that the

particle velocity component in the direction perpendicular to the wall is uncorre-

lated to the component parallel to the wall. Then the velocity distribution can be

expressed as

f(C) = nX(x)Y (y),

where X(x) and Y (y) are functions of x and y satisfying

∫ ∞

−∞
X(x)dx =

∫ ∞

−∞
Y (y)dy = 1,

and
∫ ∞

−∞
xX(x)dx =

∫ ∞

−∞
yY (y)dy = 0.

Granular temperatures are defined as the second moments of the velocity distri-

bution,
∫ ∞

−∞
x2X(x)dx = Txx, and

∫ ∞

−∞
y2Y (y)dy = Tyy.

If the flow is isotropic, then Txx = Tyy.
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For flows near a flat wall, it is reasonable to assume that the x-component of

velocity obeys a Maxwellian distribution,

X(x) =
1√

2πTxx

e−
x2

2Txx ,

from which we evaluate Θ[J] and Θ[q] to find the surface traction M and heat flux

Q at the flat wall. After some manipulation, the results can be written

N = M · n = ρχ(1 + e)

∫ 0

−∞
y2Y (y)dy, (2.42)

S = −M · t =ρχ(1 + e)

{

µ

2

∫ 0

−∞

[

erf(r + ay) + erf(r − ay)
]

y2Y (y)dy

+
µ

2µ̄0
g0

∫ 0

−∞

[

erf(r + ay)− erf(r − ay)
]

yY (y)dy

+
µ

µ̄0

√

Txx

2π

∫ 0

−∞

[

e−(r+ay)2 − e−(r−ay)2
]

yY (y)dy

}

, (2.43)

and

Q =
1

2
ρχ(1 + e)

{

[

(1− e)− µµ̄0
(

1 + β0
)

] ∫ 0

−∞
y3Y (y)dy

+
1

2
µµ̄0
(

1 + β0
)

∫ 0

−∞

[

erf(r − ay)− erf(r + ay)

]

y3Y (y)dy

− µ
(

1 + β0
)

√

Txx

2π

∫ 0

−∞

[

e−(r+ay)2 + e−(r−ay)2
]

y2Y (y)dy

− µ

2µ̄0

[

(

1 + β0
)

g20 −
(

1− β0
)

Txx

] ∫ 0

−∞

[

erf(r − ay)− erf(r + ay)

]

yY (y)dy

− µ

µ̄0

(

1 + β0
)

g0

√

Txx

2π

∫ 0

−∞

[

e−(r−ay)2 − e−(r+ay)2
]

yY (y)dy

}

, (2.44)

where a ≡ µ̄0/
√
2Txx is a constant, r ≡ g0/

√
2Txx is the dimensionless slip velocity

at the contact point. If the distribution Y (y) is known, Eqs. (2.42)–(2.44) can be

used to find the final expressions for S, N , and Q.

In his treatment of flows of spheres over a flat, frictional wall, Jenkins [50]

assumed an isotropic velocity distribution consisting of twin δ functions. In his
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numerical simulations of spheres interacting with a flat, frictional wall, Louge [76]

instead observed that, while X(x) is well-represented by a Maxwellian, Y (y) in

fact resembles a Weibull function [130]. We assume that Louge’s result for spheres

also applies to disks.

A more consistent theoretical approach would be to derive the velocity dis-

tribution near the wall by solving the Boltzmann equation with an appropriate

collision operator. Recently, Kumaran [68] proposed an asymptotic velocity distri-

bution for simple shear flows near a flat wall. However, because Kumaran used a

different method than our kinetic theory derivation, it is not clear how to incorpo-

rate his result into our theoretical framework. For comparison, we consider three

distributions for Y (y),

1. twin δ-functions:

Y (y) =
1

2

[

δ
(

y +
√

Tyy

)

+ δ
(

y −
√

Tyy

)

]

;

2. a Maxwellian distribution:

Y (y) =
1

√

2πTyy

e
− y2

2Tyy ;

3. a Weibull distribution:

Y (y) =
|y|
Tyy

e
− y2

Tyy .

These distributions are shown in Figure 2.4. Because they are all symmetric in y,

∫ 0

−∞
y2Y (y)dy =

1

2
Tyy,

they all share the same expression for normal stress,

N =
1

2
ρχ(1 + e)Tyy, (2.45)
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Figure 2.4: Distributions of the y-component of the velocity. The solid line is the

Maxwellian distribution; the dashed line is the Weibull distribution; the arrows

indicate twin δ-functions.

but they differ in the stress ratio S/N and the dimensionless heat flux Q/NT
1/2
yy .

For the twin δ-functions,

S

N
=
µ

2

[

erf(r + γ) + erf(r − γ)
]

+
µ

2γ
r

[

erf(r + γ)− erf(r − γ)
]

+
µ

2
√
πγ

[

e−(r+γ)2 − e−(r−γ)2
]

, (2.46)

and

Q

NT
1/2
yy

=
1

2

[

µµ̄0
(

1 + β0
)

− (1− e)
]

+
1

4
µµ̄0
(

1 + β0
)

{

1

γ2

[

r2 − 1− 1

2

1− β0
1 + β0

]

[

erf(r + γ)− erf(r − γ)
]

− 1

γ
√
π

[

e−(r+γ)2 + e−(r−γ)2
]

− 1√
π

r

γ2

[

e−(r+γ)2 − e−(r−γ)2
]

}

, (2.47)
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where

γ ≡ µ̄0√
2

√

Tyy

Txx

,

is a constant. For a Maxwellian distribution,

S

N
=µ

2√
π

{

[

Ierf
(

r; 2,
√
2γ
)

+ Ierf
(

r; 2,−
√
2γ
)

]

+
r√
2γ

[

Ierf
(

r; 1,
√
2γ
)

− Ierf
(

r; 1,−
√
2γ)

]

+
1√
2πγ

[

Iexp
(

r; 1,
√
2γ
)

− Iexp
(

r; 1,−
√
2γ
)

]

}

, (2.48)

and

Q

NT
1/2
yy

=

√

2

π

[

µµ̄0
(

1 + β0
)

− (1− e)
]

+

√

2

π
µµ̄0
(

1 + β0
)

{

[

Ierf
(

r; 3,−
√
2γ
)

− Ierf
(

r; 3,
√
2γ
)

]

− 1

γ
√
2π

[

Iexp
(

r; 2,
√
2γ
)

+ Iexp
(

r; 2,−
√
2γ
)

]

+
1

2γ2

[

r2 − 1

2

1− β0
1 + β0

]

[

Ierf(r; 1,
√
2γ)− Ierf(r; 1,−

√
2γ)

]

+
1

2
√
π

r

γ2

[

Iexp
(

r; 1,
√
2γ
)

− Iexp
(

r; 1,−
√
2γ
)

]

}

, (2.49)

where

Iexp
(

r;n, a) ≡
∫ 0

−∞
tne−t2e−(r+at)2dt

and

Ierf
(

r;n, a) ≡
∫ 0

−∞
tne−t2 erf

(

r + at
)

dt

are functions of r having n and a as parameters. For a Weibull distribution,

S

N
=µ

{

[

Ierf
(

r; 3, γ
)

+ Ierf
(

r; 3,−γ
)

]

+
r

γ

[

Ierf
(

r; 2, γ
)

− Ierf
(

r; 2,−γ)
]

+
1

γ
√
π

[

Iexp
(

r; 2, γ
)

− Iexp
(

r; 2,−γ
)

]

}

, (2.50)
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and

Q

NT
1/2
yy

=
3
√
π

8

[

µµ̄0
(

1 + β0
)

− (1− e)
]

+ µµ̄0
(

1 + β0
)

{

[

Ierf
(

r; 4,−γ
)

− Ierf
(

r; 4, γ
)

]

− 1

γ
√
π

[

Iexp
(

r; 3, γ
)

+ Iexp
(

r; 3,−γ
)

]

+
1

γ2

[

r2 − 1

2

1− β0
1 + β0

]

[

Ierf(r; 2, γ)− Ierf(r; 2,−γ)
]

+
1√
π

r

γ2

[

Iexp
(

r; 2, γ
)

− Iexp
(

r; 2,−γ
)

]

}

. (2.51)

The above calculations for disks can be extended to flows of a monolayer of

spheres interacting with a perpendicular, narrow, flat frictional base. In the corre-

sponding experiment, the spheres may be constrained to reside in a narrow channel

bounded by two flat plates and the narrow base of interest. Because the moment

of inertia of homogeneous spheres of mass m and diameter σ is I = 1
10
mσ2, Equa-

tions 2.46 to 2.51 can be extended to such flows by replacing µ̄0 with

µ̄0 ≡
7(1 + e)

2(1 + β0)
µ.

Figure 2.5 shows the stress ratio and heat flux in terms of dimensionless slip

velocity g0/
√
Txx for various impact parameters e, µ and β0. In this Fig., the

functions Iexp and Ierf are evaluated numerically, and we plot a normalized stress

ratio

R ≡ µ̄0
µ

S

N

instead of S/N to magnify the effects of e and β0 on the ratio.

As Fig. 2.5 indicates, the stress ratio is nearly independent of the assumed ve-

locity distribution. This is particularly true at large slip velocities g0/
√
Txx, where

S/N nearly equals the coefficient of friction. In contrast, the dimensionless heat
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Figure 2.5: Effects of the particle velocity distribution on the stress ratio and flux

of fluctuation energy at flat, frictional walls. Dotted lines: twin-δ distribution;

solid lines: Maxwellian distribution; dashed lines: Weibull distribution. Figures

in the top row show stress ratios and heat fluxes with µ = 0.1 and 0.3, and fixed

e = 0.9, and β0 = 0. Figures in the middle row correspond to e = 1 and 0.7,

fixed µ = 0.3 and β0 = 0. Figures in the bottom row are for β0 = 0 and 0.4, fixed

e = 0.9 and µ = 0.4.
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flux is sensitive to the velocity distribution. To choose an appropriate expression

for the latter near the flat wall, we must wait for data from numerical simula-

tions or for more sophisticated theories that allow the coupling of particle velocity

distribution and the interaction between particles and the wall.

In an attempt to improve the agreement in heat flux between Jenkins’ the-

ory [50] and Louge’s numerical simulation data [76] for 3D flows of spheres over

a flat, frictional wall, Jenkins & Louge [56] proposed that the normal and tan-

gential components of pre-collisional velocities are correlated. An evidence of the

correlation is that the dimensionless heat flux in the simulations depends on the

coefficient of restitution of binary collisions between flowing grains. It is true that,

at least in the sliding case, the two components of the post-collisional velocities are

correlated. This correlation could survive after several collisions within the flow,

and last until the next collision between the same grain and the flat wall. Jenkins

& Louge [56] assumed that, in sliding collisions with the wall, the pre-collisional

correlation is related to its post-collisional counterpart by a simple function of

the coefficient of restitution of binary collisions between flowing grains. By fitting

their simulation data, these authors improved their expression for heat flux in the

large slip regime. However, as Fig 2.5 shows, the velocity distribution also affects

the heat flux in that regime. The reality may involve both effects, namely the

persistence of a velocity component correlation before and after a collision, and

a significant departure of the velocity distribution from the twin δ-functions that

Jenkins & Louge assumed. An advanced theory informed with detailed simulation

data is needed to reveal the complicated interactions between colliding spheres and

a frictional wall.

In his treatment of 3D flows of spheres, Jenkins [50] calculated the stress ratio
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and the heat flux in two limiting regimes. Here, we calculate the corresponding

expressions in 2D. By comparing the results with the exact expressions, we deter-

mine the range of impact parameters where the simplified two-limit expressions is

a good approximation.

In the “small-friction/all-sliding” regime, the dimensionless slip velocity is so

large that almost all collisions involve sliding, thus J = J(2) and q = q(2) for all

collisions. Similarly, J = J(1) and q = q(1) for all collisions in the “small-slip/all-

sticking” regime that Jenkins [50] considered. In this section, we only quote results

with the twin δ-function distribution of the normal velocity component. Expres-

sions with the Maxwellian and Weibull distributions are given in Appendix B.

After evaluating the integrals in Eqs. (2.29) and (2.33) with appropriate expres-

sions for J and q, we find that, in the “all-sticking” regime,

S

N
=
µ

γ
r =
√
2

√

Txx

Tyy

µ

µ̄0

g0√
2Txx

, (2.52)

Q

N
√

Tyy

=
1

2γ2
µµ̄0
(

1 + β0
)

r2 − 1

4γ2
µµ̄0
(

1− β0
)

− 1

2
(1− e)

=
µ

µ̄0

(

1 + β0
)Txx

Tyy

(

g20
2Txx

)

− 1

2

µ

µ̄0

(

1− β0
)Txx

Tyy

− 1

2
(1− e), (2.53)

and in the “all-sliding” regime

S

N
= µ erf

(

g0√
2Txx

)

≈ µ, (2.54)

Q

N
√

Tyy

=
1

2
µµ̄0
(

1 + β0
)

− 1

2
(1− e)−

√

2

π
µ
Txx

Tyy

e−
g20

2Txx

≈ 1

2

[

µµ̄0
(

1 + β0
)

− (1− e)
]

, (2.55)

where we have used erf(x) ≈ 1 and e−x2 ≈ 0 when xÀ 1.

Alternately, the stress ratio and the heat flux in the small-slip and large-slip

limits can be obtained by assuming r ¿ γ and r À γ in Eqs. (2.46) and (2.47).
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The results in the “small-slip” regime are

S

N
=
µ

γ
erf(γ)r, (2.56)

Q

N
√

Tyy

=
1

2γ2
µµ̄0
(

1 + β0
)

erf(γ)r2 − 1

4γ2
µµ̄0
(

1− β0
)

− 1

2
(1− e)

+
1

2
µµ̄0
(

1 + β0
)

[

1− erf(γ)− 1√
πγ
e−γ2

]

, (2.57)

and in the “all-sliding” regime

S

N
= µ erf

(

g0√
2Txx

)

≈ µ, (2.58)

Q

N
√

Tyy

=
1

2
µµ̄0
(

1 + β0
)

− 1

2
(1− e). (2.59)

Since µ/µ̄0 is independent of µ, the stress ratio and heat flux in the small-

slip case calculated from the simplified “all-sticking” assumption in Eqs. (2.52)

and (2.53) are independent of the coefficient of friction. On the other hand, the

small-slip limit obtained from the exact expressions in Eqs. (2.56) and (2.57) de-

pend on µ through their dependence on γ. Figure 2.6 shows the exact calculation

Eqs. (2.46)-(2.47) and the simplified approximation Eqs. (2.52)-(2.55) for various

impact parameters. Both Eqs. (2.56)-(2.59) and Fig. 2.6 show that the two-limit

approximation agrees with the exact calculation for large slip but deviates from

the latter for small slip unless γ is large i.e., unless µ or e are large, and/or β0 is

small.

Finally, to use these boundary conditions in a continuum representation, we

need a prediction of <ω> to calculate g0. A common assumption is that the mean

spin is half the vorticity of the flow,

<ω>=
1

2
∇× u. (2.60)

The numerical simulations of Campbell [19] and Louge [76] show that, while this

assumption is valid in the interior of the flow, it breaks down near the boundary.
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Figure 2.6: Comparison of stress ratios and fluxes of fluctuation energy calculated

in the two limits of “all-sticking” and “all-sliding” with the exact calculation as-

suming a twin-δ distribution. Solid lines: exact calculation; dashed lines: two-limit

approximation. Figures in the top row show the stress ratio and heat flux corre-

sponding to µ = 0.1 and 0.3 with fixed e = 0.9, and β0 = 0. Figures in the middle

row correspond to e = 1 and 0.7, fixed µ = 0.3 and β0 = 0. Figures in the bottom

row are for β0 = 0 and 0.4, fixed e = 0.9 and µ = 0.4.
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However, our experience is that the contribution of particle spin on the mean

relative velocity at the contact point is small in practical situations [75].

2.3 Granular Flows of Disks interacting with Bumpy, Fric-

tional Walls

In the previous two sections, we derived the stress ratio and heat flux at smooth,

bumpy boundaries and at flat, frictional walls. However, because real bumpy walls

are also frictional, an analytical derivation of their boundary conditions is much

more difficult in the general case and, consequently, simplifying assumptions must

be invoked.

For such calculation, Cao et al [20] assumed that all collisions involve Coulomb

friction. Following Richman & Chou [105], they assumed that the dimensionless

slip velocity v/
√
T is a small quantity on the order of ε1/2. Except for a small

correction to the energy dissipation, their results implied that friction has almost

no effect on boundary conditions, which is counter-intuitive. In our present calcu-

lations, we show that the conclusions of Cao et al [20] only hold for very bumpy

boundaries with δ ≡ sin θ ∼ O(1), while for boundaries with moderate bumpiness,

such as what we considered in section 2.1, friction does contribute to both the wall

stress and the heat flux. In addition, Cao et al [20] ignored particle spin and ar-

gued that the rotational energy is much smaller than its translational counterpart

(see Appendix A of Cao et al [20]). However, because the ratio of the change of

rotational energy to the change of translational energy in a collision is proportional

to µ2/(1− e), particle rotation cannot be ignored if, as Cao et al assumed, µ is on

the order of ε1/2.
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Figure 2.7: Geometry of a bumpy, frictional boundary of half-cylinders in “planar”

granular flows.

In this section, we first show that the contribution to wall stress and energy

dissipation from friction is on the same order as the contribution from bumpy

features, even in the regime of small slip that Cao et al considered. We then

extend our analysis to large slip velocities v/
√
T ∼ O(1).

To make the analytical derivation tractable, we consider planar granular flows,

such as the disk flows or the flows of a monolayer of spheres considered in the

previous section. The boundary geometry is illustrated in Figure 2.7. For conve-

nience, we use the same notation as in section 2.1 wherever possible. For example,

U is the velocity of the moving boundary, u is the mean velocity of the flow, C

is the fluctuation velocity, v = U − u is the slip velocity, and g = v − C is the

velocity of the wall relative to the flow particles. The only new variable is the

angular velocity ω of the flow particle. The traction and the energy dissipation at

the wall are expressed as

M = C
[

J
]

,
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and

D = C
[

−∆K
]

,

where the operator C is defined as

C
[

ψ
]

= αχ

∫∫∫

g·k≥0
ψσ̄
(

g · k
)

f(c, ω,p+ σ̄k)dcdωdk,

J is the impulse and ∆K is the change of kinetic energy in a collision between a

particle and the wall.

For collisions with Coulomb friction, the collisional impulse and change of ki-

netic energy are derived as in section 2.2,

J = m(1 + e)
(

g · k
)(

k− µl
)

, (2.61)

and

∆K =
1

2
m(1+e)

{

(

g · k
)2
[

µµ0−(1−e)
]

+2µ
(

g · k
)

[(

g+
σ

2
ω×k

)

· l
]}

, (2.62)

where l is a unit vector in the direction of the relative velocity at the contact point,

l =











i if g · i ≤ σ
2
ω × k · i

−i if g · i > σ
2
ω × k · i

and µ0 is defined as,

µ0 ≡
(

mσ2

4I
+ 1

)

(1 + e)µ,

with µ0 = 3(1 + e)µ for disks and µ0 =
7
2
(1 + e)µ for spheres.

Following Jenkins [51], it is convenient to decompose the wall traction M and

heat flux D into separate contributions from the bumpy features and the friction,

M = MB +MF , (2.63)

and

D = DB +DF = DB +DF
1 +DF

2 , (2.64)
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with

MB = m(1 + e)C
[(

g · k
)

k
]

(2.65a)

MF = −µm(1 + e)C
[(

g · k
)

l
]

(2.65b)

DB =
1

2
m(1− e2)C

[

(

g · k
)2
]

(2.65c)

DF
1 = −1

2
m(1 + e)µµ0C

[

(

g · k
)2
]

= − µµ0
(1− e)D

B (2.65d)

DF
2 = −µm(1 + e)C

[

(

g · k
)

(

g +
σ

2
ω × k

)

· l
]

(2.65e)

As in section 2.2, we neglect fluctuations in angular velocity i.e., ω =<ω>, so

that the operator C can be simplified to

C
[

ψ
]

= αχ

∫∫∫

g·k≥0
ψσ̄
(

g · k
)

f(c,p+ σ̄k)dcdk.

For convenience, we define the rotational contribution to the linear velocity at the

contact point as

vr ≡
σ

2
k× <ω> ·i = σ

2
<ω> .

We assume that the velocity distribution of flow particles at the crest of the

boundary bumps is the “dense-Maxwellian” described by Eq. (2.3). Because

σ∇u/
√
T ∼ O(ε1/2) in the regime of small slip with v/

√
T ∼ O(ε1/2), the ve-

locity distribution (2.3) can be expanded at p+ σ̄k as

f(c,p+ σ̄k) =
n

2πT

{

1+
g · v
T
− σ̄

T

[

(

k ·∇−N ·∇
)

u
]

·g−
√

2

π

σB

T 3/2
g · D̂ ·g

}

e−
g2

2T .

(2.66)

It is at this stage that Cao et al [20] concluded that MF = 0 if µ ∼ O(ε1/2).

Their argument is as follows: because all terms except the first in the bracket of

Eq. (2.66) are O(ε1/2), and becauseMF involves the product of µ with these terms,

their contribution to MF are on the order of ε and can be neglected. Because Cao
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et al [20] ignored particle spin, the contribution to MF from the first term in the

bracket in Eq. (2.66) vanishes, the unit vector l is anti-symmetric about g, and

C[l] = 0.

In flows of spheres or disks confined to a plane, M can be evaluated analytically

from Eq. (2.63) with the velocity distribution in Eq. (2.66). The contribution of

the bumpy nature of the boundary to the traction, MB, is the same as that found

by Richman & Chou [105], while the frictional contribution, MF is

MF =
1

2
ρχ(1 + e)Tµ

{

− erf

(

vr√
2T

)

t

+
1√
2πT

[

(

II · v
)

exp

(

− v2r
2T

)

− 2
(

IK · v
)

erf

(

vr√
2T

)

]

+
σ̄√
2πT

[

(

II ·
(

∇u
)T

· v − IKI :
(

∇u
)T
)

exp

(

− v2r
2T

)

− 2

(

IK ·
(

∇u
)T

· v − IKK :
(

∇u
)T
)

erf

(

vr√
2T

)

]

−
√

2

π
B

σ

T 1/2

2

π

(

IKI : D̂
)

exp

(

− v2r
2T

)

}

, (2.67)

where II and IK are 2nd-rank tensors and IKI and IKK are 3rd-rank tensors,

II = (θ csc θ − cos θ)(nn) + (θ csc θ + cos θ)(tt),

IK = −(θ csc θ − cos θ)(nt) + (θ csc θ + cos θ)(tn),

IKI = 2(tnt) +
2

3
sin2θ

(

nnn− ntt− ttn− tnt
)

,

IKK = 2(tnn) +
2

3
sin2θ

(

ttt− nnt− ntn− tnn
)

.

If the flow is unidirectional and fully-developed, u = (u, 0), ∂u
∂x

= 0, and ∂u
∂y

= u′,

then the frictional contribution to the normal and shear stresses can be expressed
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as,

NF = MF · n =
1

2
(1 + e)ρχTµ

√

2

π
erf

(

vr√
2T

)

{

(

θ csc θ − cos θ
) v

T 1/2

+

[

(

θ csc θ − cos θ
)

− 2

3
sin2θ

]

σ̄u′

T 1/2

}

, (2.68)

and

SF = MF · t =1

2
(1 + e)ρχTµ

{

− erf

(

vr√
2T

)

+
1√
2π

exp

(

− v2r
2T

)

[

(

θ csc θ + cos θ
) v

T 1/2
−
(

(

θ csc θ + cos θ
)

− 2 +
2

3
sin2θ

− 4

π

σ

σ̄
B
(

2− 4

3
sin2θ

)

)

σ̄u′

T 1/2

]}

. (2.69)

The contribution of the bumpy character of the boundary to the normal and

shear stresses are,

NB = MB · t = 1

2
(1 + e)ρχT, (2.70)

and

SB = MB · t =1

2
(1 + e)ρχT

√

2

π

[

(

θ csc θ − cos θ
) v

T 1/2

−
(

(

θ csc θ − cos θ
)

− 2

3
sin2θ − 2

3

σ

σ̄
Bsin2θ

)

σ̄u′

T 1/2

]

. (2.71)

For the moderate bumpiness δ ≡ sin θ ∼ O(ε1/4) that we considered in section 2.1,

θ csc θ − cos θ ∼ O(ε1/2) but θ csc θ + cos θ ∼ O(1). Therefore, SF is on the same

order as SB, but NF is negligible compared to NB.

Our calculation above can be regarded as a correction to the results of Cao

et al [20]. However, as Walton’s impact model indicates [124], Coulomb friction

occurs only at large relative velocities, thus contradicting the assumption of a small

slip. In addition, collisional granular flows can involve large relative velocities with
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the boundary. Therefore, we assume v/
√
T ∼ O(1) and calculate the boundary

conditions using a method similar to that in section 2.1. However, for simplicity,

like Jenkins [50] we do so in the two limiting cases of all-sliding and all-sticking.

The all-sliding regime is the same as what we discussed earlier in this section but

with a relaxed assumption of slip velocity. Therefore, the boundary traction M

and energy dissipation D are given by Eqs. (2.63) and (2.63), and the collisional

impulse J and energy change ∆K found in Eqs. (2.61) and (2.62). However, the

velocity distribution in Eq. (2.66) is not valid. Instead, we use Eq. (2.4). For

convenience, we re-write Eq. (2.65) as

MB =
1

2
(1 + e)ρχT

1

sin θ

∫

kψB(k)dk (2.72a)

MF =
1

2
(1 + e)ρχT

µ

sin θ

∫

iψF (k)dk (2.72b)

DB =
1

2

(

1− e2
)

ρχ T 3/2 1

2 sin θ

∫

φB(k)dk (2.72c)

DF
1 = − µµ0

(1− e)D
B (2.72d)

DF
2 =

1

2
(1 + e)ρχ T 3/2 µ

sin θ

∫

φF (k)dk (2.72e)

where

ψB(k) =
1

2πT 2

∫

g·k≥0
(g · k)2Λe−C2

2T dC

ψF (k) =
1

2πT 2

∫

g·k≥0
(−l · i)(g · k)2Λe−C2

2T dC

φB(k) =
1

2πT 5/2

∫

g·k≥0
(g · k)3Λe−C2

2T dC

φF (k) =
1

2πT 5/2

∫

g·k≥0
(g · k)2

[

(

g +
σ

2
ω × k

)

· (−l)
]

Λe−
C2

2T dC,

in which Λ is given in Eq. (2.9).

As in section 2.1, we decompose the fluctuation velocity C as

C = −
(

ξi+ ζk
)

.
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The unit vector l tangential to bumps at the contact point is then

l =











i if ξ ≤ −(v · i− vr)

−i if ξ > −(v · i− vr)

Following the procedure of section 2.1 to evaluate the integrals, we find that

ψB(k) = ψ(k) and φB(k) = φ(k), where ψ(k) and φ(k) are given by Eq. (2.16)

and Eq. (2.17). Then, to an error on the order of ε,

ψF (k) = erf

(

g0√
2T

)

ψB(k),

and

φF (k) = erf

(

g0√
2T

)

φB(k),

where g0 ≡ v · i − vr = v cos k − vr is the relative velocity at the contact point.

When integrating ψF and φF , we approximate g0 by its average over a bump,

g0 ≈ ḡ0 ≡
1

2 sin θ

∫ θ

−θ

(v cos k − vr)dk = v − vrθ csc θ,

erf

(

g0√
2T

)

≈ erf

(

ḡ0√
2T

)

.

For moderate bumpiness δ ∼ O(ε1/4), the error associated with this approximation

is less than O(ε). With this approximation, the frictional contribution to M and

D are

SF ≡MF · t = µ erf

(

ḡ0√
2T

)

NB, (2.73a)

NF ≡MF · n = −µ erf
(

ḡ0√
2T

)

SB, (2.73b)

DF
1 = −µµ̄0

(1 + β0)

(1− e) D
B, (2.73c)

DF
2 = SF ḡ0. (2.73d)

In these expressions, NB = MB · n and SB = MB · t, MB is given by Eq. (2.18),

and DB derives from Eq. (2.19) as it did in section 2.1. The results of Eq. (2.73)
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are expected because, in pure sliding, the component of the collisional impulse

tangential to the contact line, which is due to the friction, is related to the normal

component, which is due to the elasticity, by the friction coefficient. If relative

velocities before the collision are all pointed in the same direction, then a simple

decomposition of the two impulses leads to a relation similar to Eq. (2.19) namely,

NF = −µSB, and SF = µNB. The factor erf( ḡ0√
2T
) in Eq. (2.19) betrays the fact

that some collisions involve relative velocities in the opposite direction, so that the

corresponding impulses, also in the opposite direction, produce smaller stresses

than what the simple unidirectional argument would yield.

With M and D given by Eq. (2.19), the contributions to the heat flux are

QB ≡ v ·MB −DB, (2.74a)

QF ≡ ḡ0 ·MF −DF
1 −DF

2

=
1

2
ρχT 3/2

√

2

π
µµ0θ csc θ, (2.74b)

and, therefore, QB is the same as in Eq. (2.21). The total heat flux is then

Q = QB +QF . (2.75)

If we assume µ ∼ O(ε1/2), then NF is on the order of ε and can be neglected, since

SB is on the order of ε1/2. Hence, to an error of O(ε), N = NB. Then the stress

ratio at a bumpy, frictional boundary is,

S

N
=
SB + SF

NB
=
SB

NB
+ µ erf

(

ḡ0√
2T

)

. (2.76)

We can also replace the θ csc θ in Eq. (2.74b) by 1 because µ(θ csc θ − 1) ∼ O(ε).

In section 2.2, we derived boundary conditions for granular flows of disks or

spheres confined to a plane and interaction with a flat, frictional wall. We found
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that in the regime of “all-sliding”, the stress ratio for an isotropic flow is

(

S

N

)F

= µ erf

(

g0√
2T

)

,

and the heat flux purely due to friction (without inelastic dissipation) is

QF =
1

2
ρχT 3/2

√

2

π
µµ̄0
(

1 + β0
)

=
1

2
ρχT 3/2

√

2

π
µµ0,

where, to be consistent with the assumed velocity distribution in Eq. (2.4), we

employ the result in Appendix B corresponding to a Maxwellian distribution in

the normal direction.

Therefore, we conclude that in the “all-sliding” regime, the stress ratio (or

heat flux) for a bumpy, frictional boundary can be approximated by the sum of

the stress ratio (or heat flux) of a frictionless, bumpy boundary and that of a flat,

frictional, elastic boundary. A slight correction is that the average relative velocity

at the contact point ḡ0 should be used to account for the effects of bumps.

Next, we evaluate the stresses and heat flux at a bumpy, frictional bound-

ary with “sticking” collisions only. Because the calculation resembles what we

presented earlier around Eqs. 2.75 – 2.76, we just outline it here briefly. The

collisional impulse is

J = m(1 + e)

[

(

g · k
)

k+
µ

µ̄0

(

g · i− vr
)

i

]

,

and the energy change during a collision is

∆K = −1

2
m(1 + e)

[

(1− e)
(

g · k
)2

+
µ

µ̄0

(

1− β0
)(

g · i− vr
)2
]

,

where µ̄0 is defined in section 2.2. The contributions MB and DB from the bound-

ary’s bumpiness are the same as in the “all-sliding” case. The frictional contribu-

tions are

MF =
1

2
(1 + e)ρχT

µ

µ̄0 sin θ

∫

iψF (k)dk, (2.77)
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Figure 2.8: Stress ratio S/N (top) and dimensionless flux of fluctuation energy

Q/N
√
T (bottom) for planar flows of spheres at a bumpy, frictional boundary.

The dashed and dotted lines represent the respective contributions of bumps and

friction. The solid lines show the total S/N or Q/N
√
T . The boundary parameters

are σ/d = 1, s/d = 1/2, e = 0.9, µ = 0.1, and β0 = 0.
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and

DF =
1

2
(1 + e)ρχ T 3/2 µ

µ̄0

(

1− β0
) 1

2 sin θ

∫

φF (k)dk, (2.78)

where

ψF (k) =
1

2πT 2

∫

g·k≥0
(g · i− vr)(g · k)Λe−

C2

2T dC

φF (k) =
1

2πT 5/2

∫

g·k≥0
(g · k)

(

g · i− vr
)2

Λe−
C2

2T dC.

Following the same approach that we used to evaluate ψF and φF and using ḡ0

to approximate g0, we find that up to an error on the order of ε

NF = 0, (2.79a)

SF =
1

2
(1 + e)ρχT

2√
π

µ

µ̄0

ḡ0√
2T

, (2.79b)

DF =
1

2
(1 + e)ρχT 3/2

√

2

π

µ

µ̄0

(

1− β0
)

(

θ csc θ +
ḡ20
T

)

, (2.80)

and

QF = SF ḡ0 −DF

=
1

2
(1 + e)ρχT 3/2

√

2

π

µ

µ̄0

[

(

1 + β0
) ḡ20
2T
− 1

2

(

1− β0
)

θ csc θ

]

, (2.81)

Hence, the total stress ratio and heat flux are

S

N
=

SB + SF

NB +NF
=
SB

NB
+
SF

NB
≈ SB

NB
+

2√
π

µ

µ̄0

ḡ0√
2T

, (2.82)

and

Q = QB +QF = QB +
1

2
(1 + e)ρχT 3/2

√

2

π

µ

µ̄0

[

(

1 + β0
) ḡ20
2T
− 1

2

(

1− β0
)

]

, (2.83)

in which we have neglected O(ε) terms containing µsin2θ and µ(θ csc θ− 1). Com-

paring Eqs. (2.82) and (2.83) with the stress ratio and heat flux in Appendix B,

we conclude that, in the “all-sticking” regime, the total stress ratio (or heat flux)
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can also be obtained by superposing the contributions from a bumpy, friction-

less boundary and a flat, frictional, elastic boundary with appropriate properties.

This, together with our earlier result for the “all-sliding” case, suggests the fol-

lowing boundary conditions for plane granular flows interacting with a bumpy,

frictional boundary,

S

N
=

(

S

N

)B

+

(

S

N

)F

, (2.84)

and

Q = QB +QF , (2.85)

where (S/N)B and QB are found in section 2.1, and (S/N)F and QF are the

boundary conditions derived in section 2.2. For example, if a Maxwellian veloc-

ity distribution is assumed for the velocity component normal to the wall, then

Eqs. (2.48) and (2.49) are used. Figure 2.8 shows the corresponding stress ratios

and heat fluxes in this case.

2.4 Three-Dimensional Flows of Spheres interacting with

Bumpy, Frictional Walls

We consider the cylindrical bumps sketched in Fig 2.1. Jenkins [51] proposed that

boundary conditions for a bumpy, frictional boundary be approximated by a super-

position of the boundary conditions for a bumpy, frictionless boundary and those

for a flat, frictional boundary. In that approach, Jenkins [51] used the boundary

conditions derived by Richman & Chou [105] for a bumpy, frictionless boundary

and he superimposed the wall stresses directly. In this work, we will use the more

general boundary conditions derived in Section 2.1 for bumpy, frictionless walls.

In addition, our direct two-dimensional calculations in section 2.3 suggest that
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Figure 2.9: Stress ratio S/N for 3-D flows of spheres at a bumpy, frictional bound-

ary. Top plot: σ = 2, d = 3.2, s = 0; bottom plot: σ = d = 2, s = 0. Lines are the

superposition Eq. (2.86), symbols are simulation results. Solid lines and squares:

µw = 0.1; dashed lines and circles: µw = 0.0.
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our superposition of the stress ratios is appropriate for treating bumpy, frictional

boundaries, rather than superimposing the stresses themselves.

S

N
=

(

S

N

)B

+

(

S

N

)F

, (2.86)

and the fluxes of fluctuation energy

Q = QB +QF . (2.87)

In these Eqs., the superscripts B and F represent contributions from the bumps

and from friction, respectively. The bumpy contributions to stress and flux of fluc-

tuation energy are given by Eqs. (2.20) and (2.21), respectively. Because inelastic

energy loss is included in QB (Eq. 2.21), QF is the heat flux due to friction alone.

In this work, we adopt the stress ratios obtained by Jenkins [50] for (S/N)F

and the heat flux of Jenkins & Louge [56] for QF ,

(

S

N

)F

=











√

3
2

µ
µ̄0

ḡ0√
2T

if ḡ0√
2T
≤
√

2
3
µ̄0

µ otherwise
(2.88)

and

QF

1
2
ρχT 3/2

=











(

π
2

)3/2
µ
( ḡ2

0

3T
− 1
)

if
ḡ2
0

3T
≤ 1 + 28

3π2µ
√

2
π
7
3
µ2 otherwise

(2.89)

where µ̄0 ≡ 7(1+β0)
2(1+e)

µ for homogeneous spheres. To produce these expressions, we

have replaced the relative velocity g0 at the contact point that was invoked in the

original works of Jenkins [50] and Jenkins & Louge [56] by its average over a bump,

ḡ0 ≡ v − σ

2
(n× <ω> ·i)θ csc θ

Figure 2.9 shows stress ratios and heat fluxes for a typical boundary.

The frictional contributions (S/N)F andQF above are derived by assuming that

all collisions are sliding if the slip velocity is large and all collisions are sticking
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if it is small. As section 2.2 shows, the stress and heat flux obtained from these

limiting case calculations are subject to errors, especially in the small-slip regime.



Chapter 3

Solutions of the Kinetic Theory for

Bounded Collisional Granular Flows

In “rapid” granular flows, particles interact with one another through impulsive

collisions rather than long-lasting contacts. These flows can be studied in three

different ways: by conducting experiments; by deriving theories and solving the

resulting set of equations; or by simulating the behavior of individual particles on

a computer.

The challenge of experiments is to ensure that the particles do not experience

long-lasting contacts, but rather interact briefly through impulsive, mostly binary

collisions. From a practical standpoint, this implies that gravitational accelerations

must be defeated by raising the particle agitation sufficiently [81].

Predictions for rapid granular flows are derived from kinetic theories that ex-

ploit analogies between the colliding particles and agitated molecules in a dense

gas. The theories produce a set of partial differential equations and boundary

conditions. Because analytical solutions are only possible in the simplest of cases,

the differential equations are generally solved numerically by discretizing the flow

domain and by employing numerical techniques that are robust enough to handle

non-linearities in the system of equations. The success of theories in predicting

practical flows is predicated upon an accurate experimental determination of the

properties of individual impacts, see for example [33].

The principal difference between granular flows and dense gases is that kinetic

energy is dissipated in collisions. In this paper, we consider cases in which the col-

lisional energy dissipation is small. The corresponding theories were developed, for

55
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example, by Lun et al [87], Jenkins and Richman [59], Goldshtein and Shapiro [37],

Sela et al [111], Sela and Goldhirsch [110], and Montanero et al [92] for inelastic,

smooth particles, and by Jenkins and Richman [60], Lun [86], and Luding et al [84]

for inelastic, frictional particles. These theories have also been extended to flows of

mixtures, in which grains of different properties are separated in a spatial gradient

of fluctuation energy. Following the derivation by López de Haro and Cohen [73]

and Kincaid et al [65, 64] of kinetic theories for molecular mixtures, Jenkins and

Mancini [57] considered binary mixtures of inelastic, smooth disks. They later

extended the theory to binary mixtures of inelastic, smooth spheres [58]. Their

results were recently updated by Arnarson and Willits [6] in three dimensions, and

Willits and Arnarson [133] and Alam et al [3] in two dimensions.

The impulsive nature of granular interactions makes it relatively straightfor-

ward to simulate flows of a large number of individual particles on the computer.

Such numerical simulations have played an important role in testing and informing

granular theories [16]. In “hard-sphere” simulations, see for example Campbell and

Brennen [18], collisions are assumed to be instantaneous. The occurrence of an

upcoming collision is determined by maintaining a list of future such events and

the simulation marches accordingly from one collision to the next. The discrete

element model (DEM) proposed by Cundall and Strack [27] inspired Walton and

Braun [127, 126] to develop a “soft-sphere” simulation, in which particles are al-

lowed to deform during collisions. The principal advantage of this technique is to

let the simulation capture long-lasting, as well as impulsive, granular interactions.

Here, detailed contact dynamics are resolved in small time steps typically much

smaller than the time separating two successive collisions. Hopkins and Louge [44]

used a “hard-sphere/overlap” simulation in which collisions are also assumed to
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be instantaneous, but particles can overlap slightly with each other before detect-

ing the occurrence of a contact. The simulation time increment is then adjusted

to keep the mean overlap below a certain tolerance. This technique makes it re-

dundant to maintain a collision list and facilitates simulations with complicated

boundary geometry. Other simulation techniques include the “contact dynamics”

simulation proposed by Moreau [95] and the Monte Carlo simulations of Hopkins

and Shen [45] and Montanero and Santos [93, 94].

Although numerical simulations can in principle interrogate any flow variable

of interest, they rely upon simplifying assumptions, such as the adoption of simple

impact models. Thus it is important to validate them in physical experiments.

Because multiple enduring contacts dominate all but the most agitated granular

flows on earth, the most promising way to create collisional flows is to operate in

microgravity. Louge et al [81] carried out such experiments with sheared flows of

grains with known impact properties.

In this paper, we compare numerical solutions of the kinetic theory with “hard-

sphere/overlap” simulations and with recent microgravity experiments. Details

of the computer simulation and the experiments appear in papers by Hopkins

and Louge [44] and Louge et al [81], respectively. Our results indicate that, at

least in fully-developed, collisional, steady flows with relatively small collisional

dissipation, the solutions of the kinetic theory, subject to the appropriate boundary

conditions, agree well with both simulations and experimental data.
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3.1 Flow of Identical Spheres

3.1.1 Conservation laws and constitutive relations

Jenkins and Richman [59] derived conservation laws of mass, momentum and fluc-

tuation energy for a collisional granular flow of identical spheres of diameter σ,

∂ρ

∂t
+∇ ·

(

ρu
)

= 0, (3.1)

ρ
∂u

∂t
+ ρu · ∇u = ∇ · T + ρf , (3.2)

3

2
ρ
∂T

∂t
+

3

2
ρu · ∇T = −∇ · q+ T : ∇u− γ, (3.3)

where ρ = ρsν is the density of granular fluid, ρs is the material density of the

spheres, ν = π
6
nσ3 is the particle volume fraction, n is the number density of

spheres, u is the mean velocity, T is the stress tensor, f is the body force per

unit mass, T ≡ 1
3
<C ·C> is the granular temperature, C is the particle velocity

relative to the mean flow, q is the flux of fluctuation energy, and γ is the volumetric

collisional dissipation rate of kinetic energy.

The stress tensor has the same form as in ordinary fluids:

T =

[

− P +

(

λ− 2

3
η

)

∇ · u
]

I + η
[

(

∇u
)

+
(

∇u
)T
]

, (3.4)

where P is the pressure, I is the identity tensor, λ and η are the bulk and the shear

viscosity, respectively.

The flux of fluctuation energy satisfies Fourier’s law:

q = −κ∇T, (3.5)

where κ is the conductivity of fluctuation energy.

For flows of smooth, slightly inelastic, identical spheres, Jenkins and Rich-

man [59] derived constitutive relations for pressure, transport coefficients, and
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energy dissipation rate. To the lowest order of 1 − e, where e is the coefficient of

restitution for collisions between two flow spheres, their results are

P = 4ρFGT, (3.6)

λ =
8

3
√
π
ρσGT 1/2, (3.7)

η =
8J

5
√
π
ρσGT 1/2, (3.8)

κ =
4M√
π
ρσGT 1/2, (3.9)

and

γ =
24√
π
(1− e)ρT

3/2

σ
G, (3.10)

where G = νg0(ν) and g0(ν) is the radial distribution function at contact for

identical spheres. A well known expression for g0(ν) was given by Carnahan and

Starling [22] as

g0,CS(ν) =
2− ν

2(1− ν)3 . (3.11)

It has been found that the Carnahan-Starling correlation is accurate up to ν ≈

0.5. More seriously, this correlation allows particle volume fraction to approach 1,

which is larger than the maximum possible volume fraction of identical spheres.

Toquato [121] proposed that the Carnahan-Starling correlation can be used up to

a “freezing” fraction νf = 0.49. For higher volume fraction, the radial distribution

is

g0(ν) = g0,CS(νf )
νc − νf
νc − ν

, (3.12)

which diverges at the “random close-packing” fraction νc ≈ 0.64. In our work,

we use the Carnahan-Starling correlation with Torquato correction for g0(ν). The
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functions F , J and M of ν are

F = 1 +
1

4G
, (3.13)

J = 1 +
π

12

(

1 +
5

8G

)2

, (3.14)

and

M = 1 +
9π

32

(

1 +
5

12G

)2

. (3.15)

Recently, Jenkins and Zhang [54] showed that these constitutive relations can

be extended to nearly elastic, slightly frictional spheres. The expressions for pres-

sure, viscosities and conductivity remain unchanged to the lowest order, while the

additional dissipation of kinetic energy due to friction is taken into account by

using an effective coefficient of restitution eeff that replaces e in Eq. (3.10). Fol-

lowing Walton’s simple impact model [125] and the experimental verification of

Foerster et al [33], Jenkins and Zhang [54] distinguished sticking (or rolling) colli-

sions characterized by a coefficient of tangential velocity restitution β0, and sliding

collisions featuring a Coulomb friction coefficient µ that represents the ratio of the

tangential and normal impulses in gross slip. For small 1 − e and small µ, they

derived the effective coefficient of restitution

eeff ≡ e− 1

2
a1 +

1

2
a2
b1
b2
, (3.16)

where

a1 =
µ

µ0

[

πµ0

(

1− 2

π
arctanµ0

)

+
2µ20

1 + µ20

(

1− 2
µ

µ0

)

]

,

a2 =
5

2

µ

µ0

[

π

2
µ0

(

1− 2

π
arctanµ0

)

+
µ20 − µ40
(1 + µ20)

2

]

,

b1 =

(

µ

µ0

)2
µ20

1 + µ20
,

b2 =
1

2

µ

µ0

[

π

2
µ0

(

1− 2

π
arctanµ0

)

+
µ20

1 + µ20

]

,
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and

µ0 ≡
7

2

(1 + e)

(1 + β0)
µ. (3.17)

3.1.2 Comparison with simulations and experiments

Two dimensional rectilinear flow

We first consider fully developed, steady flows in a rectilinear shear cell. As Fig-

ure 3.1 illustrates, spheres flow in a region bounded by two bumpy boundaries,

which can move relative to each other, and two flat side walls. Their centers are lo-

cated in the region 0 ≤ y ≤ H and−W/2 ≤ z ≤ W/2, whereH ≡ Y− 1
2
(d1+d0)−σ,

W ≡ Z − σ, d0 and d1 are the diameters of the stationary and moving boundary

bumps near y = 0 and y = Y , respectively, Y is the distance between the center of

opposite boundary bumps and Z is the distance between the flat side walls. The

relative velocity between the two bumpy boundaries is U ≡ Ut−Ub, where Ut and

Ub are the velocity of the top and bottom boundary, respectively. Unless partic-

ularly specified, the examples we show in this chapter have the bottom boundary

stationary, Ub = 0 and Ut = U . In this problem, we allow the existence of a small

body force in the flow direction, which can be used, for example, to represent a

uniform drag upon the solid spheres.

In a fully developed, steady, unidirectional flow, the mass conservation equation

is automatically satisfied. The momentum balance in the flow direction becomes

∂

∂y

(

η
∂u

∂y

)

+
∂

∂z

(

η
∂u

∂z

)

+ ρf = 0, (3.18)

where u and f are the x-components of mean velocity and body force, respectively.

The momentum balances in the y- and z-directions reduce to

P = const. (3.19)
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Figure 3.1: Fully developed, steady flows in a rectilinear cell.

The energy conservation requires

∂

∂y

(

κ
∂T

∂y

)

+
∂

∂z

(

κ
∂T

∂z

)

+ η

(

∂u

∂y

)2

+ η

(

∂u

∂z

)2

− γ = 0. (3.20)

For convenience, we define the fluctuation velocity w ≡ T 1/2 and transform the

energy conservation (3.20) to

∂

∂y

(

M

F

∂w

∂y

)

+
∂

∂z

(

M

F

∂w

∂z

)

+
J

5Fw

[(

∂u

∂y

)2

+

(

∂u

∂z

)2]

− 3

Fσ2
(

1− eeff
)

w = 0.

(3.21)

To obtain boundary conditions for u and w, we assume that the constitutive

relations in the bulk can be extended to the boundary. For example, at the bottom

wall, we write

τxy
P

=
2J

5
√
πF

σ

W

∂u

∂y

∣

∣

∣

∣

y=0

=
S

N
⇒ ∂u

∂y

∣

∣

∣

∣

y=0

=
5
√
πF

2J

W

σ

S

N
(3.22)
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and

qy
PT 1/2

= − 2M√
πF

σ

W

∂w

∂y

∣

∣

∣

∣

y=0

=
Q

NT 1/2
⇒ ∂w

∂y

∣

∣

∣

∣

y=0

= −
√
πF

2M

W

σ

Q

NT 1/2
, (3.23)

where S/N and Q/NT 1/2 are given by the superposition Eq. (2.86) and Eq. (2.87)

that we proposed in Chapter 2, respectively.

Equations (3.18)and (3.21) are solved subject to boundary conditions (3.22) and

(3.23). Because these equations are elliptic, we use the ADI method [103], which

has been widely tested in numerical heat conduction problems. Equation (3.19)

then determines the particle volume fraction. In that Eq., the constant is set by

imposing the number of particles in the system or, equivalently,

1

WH

∫ W/2

−W/2

∫ H

0

ν(y, z)dydz = ν̄,

where ν̄ is the average solid volume fraction. Details of the numerical scheme are

included in Appendix C.1.

Figure 3.2 compares the theoretical predictions for mean and fluctuation veloc-

ity through the channel cross-section with results from the numerical simulations.

The conditions are Y = 18.81, Z = 39.84, σ = d0 = 2, d1 = 3.175, s1 = s0 = 0,

ν̄ = 0.311. The impact parameters are those of acrylic spheres flowing in a mi-

crogravity shear cell [81]. For binary impacts, e = 0.93, µ = 0.12, β0 = 0.35;

for impacts between a sphere and a bumpy boundary: ew = 0.965, µw = 0.219,

β0w = 0.28; between a sphere and the front side wall at z = Z/2: esf = 0.94,

µsf = 0.14, β0,sf = 0.51; and between a sphere and the rear side wall at z = −Z/2:

esr = 0.83, µsr = 0.12, β0,sr = 0.34. In the computer simulation, we did not

observe any noticable changes in the mean and fluctuation velocities with time,

which indicates that the flow is stable. All other simulation results shown in this

chapter have also been verified to be stable.
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Figure 3.2: Mean and fluctuation velocities in the cross-section of a rectilinear

cell. Top: mean velocity in x-direction made dimensionless with the velocity U of

the top boundary. Bottom: fluctuation velocity made dimensionless with U . The

symbols and lines represent, respectively, the results of the simulations and the

predictions of the theory. Solid lines and squares are y/H = 0; dashed lines and

upward triangles, y/H = 1/3; dash-dotted lines and circles, y/H = 2/3; dotted

lines and downward triangles, y/H = 1.
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Friction reduces the mean velocity in the vicinity of the flat side walls. Because

the mean flow velocity varies in the y-direction, the resulting side wall drag influ-

ences the velocity gradient differently at different values of y. Near the moving

boundary, friction increases the velocity gradient in the y-direction, thus raising

the production rate of fluctuation energy. Therefore, in this case, the granular

temperature is higher near the flat side walls than in the interior. On the other

hand, near the stationary bumpy boundary, the velocity gradient in the y-direction

is reduced by the wall friction. Therefore, both the energy production rate and the

granular temperature are lower near the side walls. As Fig. 3.2 shows, the theory

captures these features well.

Integral equations

In physical experiments [81], high speed photography can only observe granular

flows through the flat side walls. Fortunately, because changes in the mean and

fluctuation velocities are relatively small in the z-direction (Fig. 3.2), it is possible

to infer the state of flow in the interior from such observations. In this context,

our interest resides chiefly in the variations of u and T in the y-direction. Thus, it

is convenient to integrate the momentum and energy balances (3.18), (3.19) and

(3.21) in the z-direction. To that end, we follow Jenkins and Arnarson [52] in

assuming that u = u(y), T = T (y) and ν = ν(y), and that the shear stress τxz

varies linearly in the z-direction. The results of the integration along z are

P = P (y) = const, (3.24)

d

dy

(

η
du

dy

)

+
1

W

(

τ+xz − τ−xz
)

+ ρf = 0, (3.25)
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Figure 3.3: Transverse profiles of depth-averaged mean and fluctuation velocities

made dimensionless with U for the conditions of Fig. 3.2. Symbols are simulation

data averaged from side wall to side wall. Solid lines are the two-dimensional

solutions of Fig. 3.2 averaged in the z-direction. Dashed lines are solutions from

the depth-averaged Eqs. (3.25) and (3.26).
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and

d

dy

(

M

F

dw

dy

)

+

√
π

2Wσ

(

q+z + q−z
Pw

)

w +
J

5Fw

(

du

dy

)2

+
5πFw

12Jσ2

[(

τ+xz − τ−xz
2P

)2

+ 3

(

τ+xz + τ−xz
2P

)2]

− 3

Fσ2

(

1− eeff
)

w = 0,

(3.26)

where τ+xz = τxz|z=W/2 and τ−xz = τxz|z=−W/2 are shear stresses on the front and

rear side walls, respectively. The quantities q+z and q−z are the corresponding

fluctuation energy fluxes into the flow. Wall stresses (τ+xz, τ
−
xz) and fluxes (q+xz, q

−
xz)

are evaluated using the boundary conditions (2.88) and (2.89). For example, on

the flat wall at z = −W/2,

τ−xz = sign(u)min

(
√
3

14

(

1 + β0,sr
) u

w
P, µsrP

)

(3.27)

and

q−xz = min







Pw
√

π
2

[

7µ2sr − π
2
µsr

(

1− u2

3w2

)

− 2
π
(1− esr)

]

Pw
√

2
π

[

7
3
µ2sr − (1− esr)

]






(3.28)

where esr, µsr, and β0,sr are the impact parameters for collisions between flow

particles and the flat wall. In these expressions, the granular pressure P , the mean

velocity u and the fluctuation w are evaluated at the relevant y. When writing

Eqs. (3.27) and (3.28), we use the boundary conditions (2.88) and (2.89) for flat

walls, but ignore the particle spin around the y-axis.

To determine the particle volume fraction ν(y) while enforcing the known mean

volume fraction ν̄, we define the “volume fraction integral”

I(y) ≡ 1

H

∫ y

0

ν(y)dy. (3.29)

We then differentiate the equation of state (3.6) to obtain the governing equation

for I,

d2I

dy2
=

1

H

dν

dy
= − ν

HFGT

d(FGT )

dy
+

1

4ρsFGTH

dP

dy
, (3.30)
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which is subject to the boundary conditions I(0) = 0 and I(H) = ν̄.

The averaged Eqs. (3.25), (3.26) and (3.30) are solved simultaneously by iter-

ation. The boundary conditions for u and w at the two bumpy boundaries are

derived from (2.86) and (2.87) in a manner similar to that leading to Eqs. (3.22)

and (3.23). At each iteration step, we use an efficient algorithm for tri-diagonal

matrix inversion [112]. Appendix C.1 contains details of the solution procedure.

As Fig. 3.3 shows, Eqs. (3.25) and (3.26) yield solutions that are nearly identical

to the depth-averaged two-dimensional solutions shown in Fig. 3.2. Thus, in the

rest of this paper, we will only compare solutions of the averaged Eqs. (3.25) and

(3.26) with simulations and experiments.

Effect of a streamwise body force

It is instructive to consider the effects of a streamwise body force on granular flows.

Like ordinary fluids, the presence of such a force creates a Poiseuille flow, which is

superimposed on the shearing created by the moving boundary (Fig. 3.4). Because

Poiseuille’s flow has a parabolic-like velocity profile, it affects the fluctuation energy

balance in two ways. First, by changing the local velocity gradient, it reduces

the shear production of granular agitation near the moving wall, while increasing

it near the stationary bumpy boundary. Second, the body force raises the slip

velocity at the stationary boundary to a value much larger than its counterpart

at the moving boundary. In turn, this induces a larger fluctuation energy flux

into the flow through the stationary boundary. These two effects contribute to a

much higher granular temperature near the stationary boundary and, because the

pressure must remain constant, the solid volume fraction becomes higher near the

moving boundary and lower near the stationary boundary.
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Figure 3.4: Effects of a streamwise body force on the mean and fluctuation ve-

locities made dimensionless with U . Symbols are simulation data. Lines are so-

lutions of Eqs. (3.25) and (3.26). Squares and solid lines denote Fr = 0, where

Fr ≡ gσ/U 2 is a Froude number representing the relative magnitude of the body

force g. Circles and dashed lines are Fr = 0.005. Conditions are otherwise those

of Fig. 3.2.
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Because a body force can induce large slip velocities, it is important to use

boundary conditions (2.20)- (2.21), which include non-linear terms derived for this

purpose. As Fig. 3.4 illustrates, the theory captures well the mean and fluctuation

velocity profiles in the absence of gravity. We note a modest discrepancy when

gravity is applied (Fr = 0.005). We attribute the discrepancy to the relatively

crude superposition leading to the boundary conditions (2.86) and (2.87). We

expect that the agreement will improve when a more comprehensive derivation of

these boundary conditions is produced.

Axisymmetric flow

Confined physical experiments in a shearing apparatus require the recirculation

of the granular material [80, 81], and thus they involve centripetal accelerations

in the bulk. To illustrate the corresponding analyses, we now focus on sheared

granular flows in an axisymmetric shear cell, whose rotating inner and outer bumpy

boundaries are composed of half-cylindrical bumps parallel to the axis of rotation,

and whose flat side walls remain at rest. Here, it is natural to adopt a cylindrical

coordinate system with origin at the center of the cell. At steady state, the averaged

one-dimensional Eqs.(3.25) and (3.26) become

dP

dr
= ρ

u2

r
, (3.31)

1

r2
d

dr

[

ηr3
d

dr

(

u

r

)]

+
1

W

(

τ+θz − τ−θz
)

= 0, (3.32)

and

1

r

d

dr

(

2rκw
dw

dr

)

+
1

W

(

q+z + q−z

)

+ η

[

r
d

dr

(

u

r

)]2

+
1

12η

(

τ+θz − τ−θz
)2

+
1

4η

(

τ+θz + τ−θz

)2

− γ = 0, (3.33)
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Figure 3.5: Granular flows in the round section of a shear cell shaped as a race

track. Actual dimensions of the shear cell are given in [80, 81]. Solid symbols

are experimental data, open symbols are numerical simulations and solid lines are

theoretical predictions. Top: dimensionless mean velocity profile u(r)/U . Bot-

tom: dimensionless fluctuation velocities w(r)/U . Squares represent the compo-

nent T
1/2
xx /U along the x-direction, and circles are T

1/2
yy /U . Here, y = 0 at the

stationary outer boundary and y = H at the moving inner boundary.
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where u = u(r) is the mean velocity in azimuthal direction; τ+θz = τθz|z=W/2 and

τ−θz = τθz|z=−W/2 are shear stresses at the front and rear side walls, respectively;

and q+z and q−z are fluxes of fluctuation energy into the flow through the front

and rear flat side walls. The shear stresses and energy fluxes at flat side walls are

determined by equations that resemble Eqs. (3.27) and (3.28).

Boundary conditions for u and w are the same as in Sec. 3.1.2. The solution

must also uphold the known average volume fraction

ν̄ ≡ 1

R̄H

∫ Ro

Ri

rν(r)dr, (3.34)

where Ri and Ro are the inner and outer radius, respectively; R̄ = (Ri + Ro)/2 is

the mean radius of the flow channel and H = Ro−Ri is the depth of the channel.

As in Sec 3.1.2, we define the volume fraction integral

I(r) ≡ 1

R̄H

∫ r

Ri

rν(r)dr,

and obtain the following differential equation

d2I

dr2
=

ν

R̄H
− rν

R̄HFGT

d(FGT )

dr
+

rν

4FGTR̄H

u2

r
, (3.35)

in which we have used Eq. (3.31) to simplify the expression. The boundary con-

ditions for I(r) are I(Ri) = 0 and I(Ro) = ν̄. We solve Eqs. (3.32), (3.33) and

(3.35) to find the mean and fluctuation velocities and the volume fraction.

The iterative procedure is the same as in Sec. 3.1.2.

Figure 3.5 compares the numerical solutions with simulation and experimental

measurements of the mean and fluctuation velocity profiles. Experiments were

conducted in the microgravity “race track” shear cell of Louge et al [80, 81]. The

axes of cylindrical bumps on the inner and outer boundaries are located at the

radial positions Ri = 61.97 and Ro = 80.78, respectively. The distance between
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Figure 3.6: A typical digital image of the curved region in the race-track Couette

cell of Louge et al [81]. The top boundary is fixed while the bottom boundary

moves from right to left. Persistent scratches on the window hide the moving

boundary. Circles and lines are superimposed to indicate the location and trajec-

tory of detected spheres.
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flat side walls is Z = 39.84. The outer boundary bumps have a diameter do =

σ = 2, and the inner bumps have di = 3.175. The bumps are closely spaced with

si = so = 0. Images of the flow were obtained with a Kodak Ektapro digital video

camera operating at 1000 Hz. A typical image taken by the camera is shown in

Figure 3.6. The camera was trained half-way between the entrance and exit of

the curved region of the cell, where our numerical simulations indicate that the

axisymmetric flow is fully-developed.

In general, we observed that high solid concentration caused particles to form

layers parallel to the stationary boundary. Because our experimental data were

obtained from images taken through the front side wall, we could only measure two

components of the granular temperature. However, for these spheres with relatively

modest collisional energy dissipation, the anisotropy was not significant. Thus,

in this case, the isotropic theory agreed well with simulations and experiments.

The deviation of experimental data from simulation and theory near the moving

inner boundary was likely due to an insufficient camera frequency, which produced

experimental errors that we discuss in detail in Chapter 6.

Flow at Knudsen number of O(1)

Our last example of bounded granular flows with a single constituent concerns

flows at a relatively large Knudsen number, Kn ≡ λ/L. In this expression, λ is

the mean free path of the flowing spheres and L is a characteristic length scale

of the flow, such as the distance between bumpy boundaries. At low volume

fractions, the mean free path is well represented by the classical expression λ =

d/6
√
πνH. In general, one would expect the kinetic theory to be valid only for

flows with Kn ¿ 1. Surprisingly, Fig. 3.7 shows that it remains valid even at
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Figure 3.7: Granular flows with O(1) Knudsen number. The top and bottom

graphs show dimensionless mean and fluctuation velocities, respectively. The sim-

ulations (symbols) are periodic in the z-direction and do not possess side walls.

The lines are theoretical solutions. For squares and solid lines, Kn = 0.75; for tri-

angles and dashed lines, Kn = 0.30; for circles and dash-dotted lines: Kn = 0.15.

Conditions are Y = 17.24, σ = d0 = 2, d1 = 3, s0 = s1 = 0, e = 0.95, µ = 0.1,

β0 = 0.4,ew = 0.85, µw = 0.1 and β0w = 0.4.
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low volume fractions, for which Knudsen numbers lie between 0.15 and 0.75. A

possible reason for the agreement is that our boundary conditions take proper

account of the geometry of the boundary and of its collisional interactions with

the flowing grains. Thus, they remain valid even when the collision frequency

between the spheres and the boundary becomes comparable to that in the flow.

In addition, the bumpy character of the boundary may keep the particle velocity

distribution nearly Maxwellian, an assumption which underlies the derivation of

both the kinetic theory and the boundary conditions.

3.2 Flow of Binary Mixtures

Jenkins and Mancini [58] derived balance laws and constitutive relations for un-

bounded flows of binary mixtures of smooth, inelastic spheres assuming an equipar-

tition of fluctuation energy between the two species. Arnarson and Willits [6]

recently published a correction to some of those calculations. Louge et al [81] re-

ported segregation experiments carried out in microgravity with binary mixtures

and compared experiment data, numerical simulation and theory. After summa-

rizing the prediction of Jenkins and Mancini [58], we develop numerical solutions

for such flows in bounded geometries that are suitable for experimental verification

of the theory.

3.2.1 Exact theory

We consider a granular flow between two moving bumpy boundaries that is similar

to that shown in Figure 3.1. The flowing spheres are a mixture of species A

and B with radii ri, masses mi, and number density ni, where i represents A

or B. The temperature of species i is defined as Ti ≡ 1
3
mi <Ci · Ci>, where
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Ci is the fluctuation velocity of species i spheres relative to their mean velocity.

The mixture temperature is T ≡ (nATA + nBTB)/n, where n ≡ nA + nB is the

number density of the mixture. In the limit of small dissipation of fluctuation

energy, the latter is equally distributed between two species, T = TA = TB, and

the fluctuation velocity of species i is wi = (T/mi)
1/2. In contrast, Garzó and

Dufty [35], Montanero and Garzó [91], and Alam and Luding [1] showed examples

in which equipartition of energy does not hold. For convenience, we also define

the parameters mij = mi +mj, rij = ri + rj and Mij = mi/mij, where i, j = A or

B. We first consider a geometry without flat side walls, which is simulated with

periodic boundary conditions in the z-direction, and on which the only possible

external force on the spheres is the downward gravity g. At fully-developed, steady

state, the only non-zero velocity component is parallel to the boundary velocity

and the mass conservation equation is satisfied automatically. The momentum

balances in the x- and y-directions thus become

dS

dy
= 0, (3.36)

dP

dy
= −ρg, (3.37)

and the conservation of fluctuation energy requires

−dq
dy

+ S
du

dy
− γ = 0, (3.38)

where S is the shear stress of the mixture, P is the mixture pressure, g is the

gravitational acceleration, q is the flux of fluctuation energy in the y-direction, γ

is the volumetric energy dissipation rate, ρ ≡ ρA + ρB and u ≡ (ρAuA + ρBuB)/ρ

are the mixture density and mean velocity, respectively, and ρi ≡ nimi and ui are

the density and mean velocity of species i with i = A or B.
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The mixture pressure P is given by

P =
(

n+KAA +KBB + 2KAB

)

T, (3.39)

where the factor

Kij =
2

3
πninjgijr

3
ij

accounts for the effects of finite particle size on pressure at high volume fraction.

The radial distribution function at contact is

gij =
1

1− ν +
3rirj
ri + rj

ξ2
(1− ν)2 + 2

(

rirj
ri + rj

)2
ξ22

(1− ν)3 , (3.40)

where ξα ≡ 4
3
π(nAr

α
A + nBr

α
B), α = 1, 2, or 3, and ν = ξ3 is the total volume

fraction.

The shear stress S is related to the strain rate through

S = η
du

dy
, (3.41)

where the mixture viscosity is

η =
1

2

∑

i=A,B

bi0T
1
2niK

′
i +

2

5

∑

i,j=A,B

(

2Tmimj

πmij

)1/2

Kijrij, (3.42)

with

K ′
i = 1 +

2

5

Kii

ni

+
4

5
Mki

Kik

ni

, (k 6= i)

bi0 =
15
√
2m

1/2
i

8
√
πgikninkr2ikM

1/2
ki

(

βiniK
′
i + 4nkK

′
kMki

βiβk − 16MikMki

)

, (k 6= i)

and

βi = 10Mki + 6Mik + 3
√
2
nk

ni

gkk
gik

r2kk
r2ik

M
−1/2
ik , (k 6= i).

The flux of fluctuation energy is given by Fourier’s law

q = −κdT
dy
, (3.43)
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where κ is the conductivity of the mixture

κ = −5

4

∑

i=A,B

niKi

(

2T

mi

)1/2

ai1 + 2
∑

i,j=A,B

Kijrij

(

2Tmimj

πm3
ij

)1/2

, (3.44)

with

Ki = 1 +
2

5
πnigiir

3
ii +

8

5
πMikMkinkgikr

3
ik, (k 6= i)

ai1 =
15

8
√
πninkgikr2ikM

1/2
ki

(

αiniKi + 13MikMkinkKk

169M2
ikM

2
ki − αiαk

)

, (k 6= i)

and

αi = 15M 2
ki + 8MikMki + 6M2

ik + 2
√
2
nk

ni

gkk
gik

r2kk
r2ik

1

M
1/2
ik

, (k 6= i).

The energy dissipation rate per unit volume of the mixture is

γ =
∑

i,j=A,B

4gijr
2
ijninjMji

(

1− eij
)

(

2πmijT
3

mimj

)1/2

, (3.45)

where eij is the coefficient of restitution for collisions between a sphere of species i

and a sphere of species j. For frictional spheres, we substitute effective coefficients

of restitution eij,eff wherever eij appears as we did in Section 3.1.

Jenkins and Mancini [58] showed that the diffusion velocity between the two

species vanishes at steady-state, which results in the following balance between the

gradient of species concentration and the gradient of mixture temperature,

− ρA
nρT

dP

dy
+

[

1

n

(

nA + 2MABKAB +KAA

)

+K
(A)
T

]

1

T

dT

dy

+
nA

nT

(

∂µA

∂nA

dnA

dy
+
∂µA

∂nB

dnB

dy

)

= 0, (3.46)

where K
(A)
T is the thermal diffusion coefficient,

K
(A)
T =

aA0

ntA0

, (3.47)
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with

aA0 =
1

2ρ

(

mABmB

)1/2

nB

(

M
3/2
BAaA1 −M3/2

ABaB1

)

,

tA0 =
3mB

8
√
πρnAgABr2ABM

1/2
BA

+
1

2ρ

(

mABmB

)1/2

nB

(

M
3/2
BA tA1 +M

3/2
AB tB1

)

,

ti1 =
3M

1/2
ki

8
√
πninkgikr2ik

(

αi − 13M 2
ik

αiαk − 169M 2
ikM

2
ki

)

, (k 6= i) (3.48)

and µA is the chemical potential of species A,

µA

T
= lnnA − ln(1− ν) + 4

3
πr3A

P

T
+

3ξ2rA
1− ν +

3ξ1r
2
A

1− ν +
9ξ22r

2
A

2(1− ν)2

+ 3

(

ξ2rA
ν

)2[

ln(1− ν) + ν

1− ν −
ν2

2(1− ν)2
]

−
(

ξ2rA
ν

)3[

2 ln(1− ν) + ν(2− ν)
1− ν

]

. (3.49)

Another balance equation for the concentration and temperature gradients is

obtained by substituting the pressure equation (3.39) into the momentum balance

Eq. (3.37),

∂P

∂nA

dnA

dy
+

∂P

∂nB

dnB

dy
+
∂P

∂T

dT

dy
= −ρg. (3.50)

This equation, together with Eq. (3.46), determines the concentration gradients

for each species

dnA

dy
= − n

DT

dT

dy

{

n

nA

(

1

T

∂P

∂nB

)[

ρAg

ndT
dy

+
1

n

(

nA +KAA + 2MABKAB

)

+K
(A)
T

]

−
(

n

T

∂µA

∂nB

)(

ρg

ndT
dy

+
P

nT

)

}

(3.51)

and

dnB

dy
=

n

DT

dT

dy

{

n

nA

(

1

T

∂P

∂nA

)[

ρAg

ndT
dy

+
1

n

(

nA +KAA + 2MABKAB

)

+K
(A)
T

]

−
(

n

T

∂µA

∂nA

)(

ρg

ndT
dy

+
P

nT

)

}

, (3.52)
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where

D ≡ det









n

T

∂µA

∂nA

n

T

∂µA

∂nB

1

T

∂P

∂nA

1

T

∂P

∂nB









.

The expressions of
1

T

∂P

∂nA

,
1

T

∂P

∂nB

,
n

T

∂µA

∂nA

, and
n

T

∂µA

∂nB

are listed in Appendix D.

Equations (3.36), (3.38), (3.51), and (3.52) can be solved for u(y), T (y), nA(y),

and nB(y), respectively. For simplicity, we adopt boundary conditions for the

mixture velocity and temperature that are derived from their counterparts for

single constituent flows by merely substituting (σA+σB)/2 for the sphere diameter

when defining the boundaries of the flow field with H ≡ Y − 1
2
(d1 + d0)− σ.

The ratio of mixture shear stress to the normal stress at a bumpy boundary is

S

P
=
SA + SB

P
=
PA

P

SA

PA

+
PB

P

SB

PB

, (3.53)

where Pi = (ni + Kii + Kik)T , (k 6= i), is the partial pressure of species i,

and the ratio Si/Pi of wall shear stress to normal stress of species i is calcu-

lated from Eq. (2.84) for a single constituent flow, in which we substitute θi ≡

arcsin((d+ s)/(d+ 2ri)) for θ and w2
i for T .

Similarly, the flux of fluctuation energy into the mixture is

Q = QA +QB, (3.54)

where the fluctuation energy flux Qi from the bumpy boundary into species i is

calculated from Eq. (2.85).

The known overall number density of species i imposes an integral constraint

on the solution,

1

H

∫ H

0

ni(y)dy = n̄i,

which we change into a boundary value problem by defining the new variable

Ii =
1

H

∫ y

0

ni(y)dy, i = A or B.
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We then write the governing equation for Ii as

d2Ii
dy2

=
1

H

dni

dy
, (3.55)

with the boundary conditions Ii(0) = 0 and Ii(H) = n̄i.

We solve the four coupled boundary value problems for u(y), T (y), IA(y), and

IB(y) by iterations using an efficient tri-diagonal matrix algorithm at each step

[112].

3.2.2 Simplified theory

Conscious that the complicated expressions summarized above could obscure the

physics of particle segregation and mixing, Arnarson and Jenkins [4] derived sim-

pler relations in the limit where the two species have nearly the same size and

mass. They did so by taking a perturbation of the exact theory of Jenkins and

Mancini [58], properly corrected by Arnarson and Willits [6].

They showed that, to first order in the size difference δr ≡ rA/rB− 1 and mass

difference δm ≡ (mA − mB)/mAB, a binary mixture can be treated as a single

constituent with size rAB and mass 1
2
mAB but with modified transport coefficients.

In this simpler formulation, the mixture pressure is approximately

P =
6ν

πr3AB

(1− 3x̄δr)T (1 + 4G), (3.56)

where

x ≡ 1

2
(
nA

n
− nB

n
)

is a parameter characterizing the segregation and the overbar denotes the average

over the entire flow field.
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The effective viscosity and conductivity of the equivalent single constituent flow

are

η =
4

5

√

2

π
GJ
[

1 + x̄(δr + δm)
]

nrABm
1/2
ABT

1/2, (3.57)

κ = 4

√

2

π
GM

[

1 + x̄(δr − δm)
]

nrAB

(

T

mAB

)1/2

. (3.58)

If eAA = eBB = eAB = e, the perturbed energy dissipation rate is

γ = 24

√

2

π
G(1− e)

[

1− x̄(δr + δm)
] nT 3/2

rABm
1/2
AB

. (3.59)

If the coefficients of restitution between two species are not the same, we use an

averaged e in Eq. (3.59) such that the simplified dissipation rate Eq. (3.59) gives

the same result as its exact counterpart Eq. (3.45). As before, we substitute an

effective coefficient of restitution if the spheres are frictional.

With these constitutive relations, we can solve the mixture flows as we did

in Section 3.1 for a single species to obtain the profiles of mean velocity and

fluctuation velocities. In the boundary conditions, we use rAB as the equivalent

single species diameter.

We then combine Eqs. (3.51) and (3.52) to write a governing equation for the

segregation parameter x,

dx

dy
= −

(

1− 4x2

2

)

{

1

w

dw

dy

[

R(ν)δr +
105

116
δm

]

+
179

29
G
g

w2
δm

}

, (3.60)

where

w ≡
√

2T

mAB

is the fluctuation velocity of the equivalent single constituent,

R(ν) =
5

58

[

2 +
ν(3− ν)
2− ν − 12

5
G

]

+ 2G

[

3 +
ν(3− ν)
2− ν

]

− 12νH(ν)(1 + 4G)

1 + 4G+ 4νH(ν)
,
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and

H(ν) ≡ dG

dν
=

2 + 2ν − ν2
2(1− ν)4 .

The solution of Eq. (3.60) requires one boundary condition. To that end, Arnarson

et al [5] specified the average value of x in the flow field, x̄ = 1
2
(nA − nB)/n, and

suggested that this quantity is approximately 1
2
(n̄A − n̄B)/n̄. Unfortunately, that

solution could yield a value of n̄i that is different from the assumed value. To

remedy this shortcoming, we introduce the new parameter

ζ ≡ 1

2

(

nA

n̄
− nB

n̄

)

, (3.61)

which is related to x using

x =
(ν̃A + ν̃B)ζ

2[ν − (ν̃A − ν̃B)ζ]
, (3.62)

where ν̃A ≡ ν̄n̄/n̄A and ν̃B ≡ ν̄n̄/n̄B are constants. The governing equation for ζ

derives from Eqs. (3.51) and (3.52),

dζ

dy
= − 1

w

dw

dy

[

2
1 + 4G+ βg + βmδm

1 + 4G+ 4νH
ζ

+
(ν − 2ν̃Aξ)(ν + 2ν̃Bζ)

[ν − (ν̃A − ν̃B)ζ](ν̃A + ν̃B)

(

Rδr +
105

116
δm+

358

29
Gβmδm

)

]

, (3.63)

where

βg ≡
g

2wdw/dy

and

βm ≡
(ν̃A + ν̃B)ζ

ν − (ν̃A − ν̃B)ζ
βg

are two parameters that vanish in the absence of a body force.

To solve Eq. (3.63), we transform it to a boundary value problem as in Sec-

tion 3.2.1. We define

Iζ(y) ≡
1

H

∫ y

0

ζ(y)dy,
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and obtain

d2Iζ
dy2

=
1

H

dζ

dy
,

with boundary conditions Iζ(0) = 0 and Iζ(H) = ζ̄ = 1
2
(n̄A − n̄B)/n̄.

The number fraction of each species can then be calculated from ζ(y),

nA

n
=

1

2
+ x =

ν + 2ν̃Bζ

2[ν − (ν̃A − ν̃B)ζ]
(3.64)

and

nB

n
= 1− nA

n
=

ν − 2ν̃Aζ

2[ν − (ν̃A − ν̃B)ζ]
. (3.65)

3.2.3 Comparison of theory, simulations and experiments

We first compare results of our numerical simulations with theoretical solutions

from both the exact and the simplified theories.

Segregation in a bounded flow

Because rigid boundaries tend to order spheres in their neighborhood, transverse

profiles of solid volume fraction near a wall exhibit spatial oscillations on the order

of a sphere diameter. Because the theory ignores these fluctuations, their presence

can complicate comparisons with experiments or simulations. In grain mixtures,

we alleviate this difficulty by defining a relative number fraction that quantifies

segregation,

φi ≡
ni/n

n̄i/n̄
, i = A,B.

As long as the radii of the two species are not greatly different, the relative number

fractions contain ratios of volume fractions that nearly oscillate in phase and,

consequently, their own spatial fluctuations are considerably reduced [81]. In this
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definition, a region where φi < 1 has a species i number fraction less than the

average and vice versa. Segregation is stronger the farther φi deviates from 1.

Figure 3.8 shows typical results for a mixture with same size but different

material densities sheared between two bumpy walls moving in opposite directions,

Ut = U/2 and Ub = −U/2. Parameters used in simulation are: ρA/ρB = 0.5842,

rA = rB = 1, Y = 17.24, d0 = d1 = 2, s0 = 0, s1 = 1, ν̄ = 0.338, n̄A/n̄ =

0.5, and impact parameters: eAA = eBB = 0.9, eAB = 0.85, µij = β0,ij = 0,

where i, j = A,B; between particles and bumpy boundaries: ew = 0.8, µw =

β0w = 0. Although the exact and the simplified theories both predict segregation

qualitatively, they overestimate the effect. Here, the exact theory is marginally

closer to the simulation profiles.

In Figure 3.9, the two species share the same material, but exhibit different

sizes, rA/rB = 1.25. Once again, predictions from both theories agree reason-

ably well with simulations. However, the simplified theory yields a slightly better

agreement than the exact theory.

The simplified theory also reveals interesting conditions whereby two different

species mix uniformly rather than segregate in a gradient of fluctuation energy. In

the absence of body forces, Eq. (3.60) reveals that if

R(ν)δr +
105

116
δm = 0 (3.66)

at a point, then dx/dy = 0 there. If we can maintain condition (3.66) everywhere

in the flow field, then, according to the simplified theory, the two species will

not segregate even if they differ in size or mass. Coincidentally, we find that the

quantity −116R(ν)/105 is approximately equal to 0.38 when ν > 0.2. Therefore,

if two species are such that δm = 0.38δr, then they should not segregate in a

temperature gradient alone. Figure 3.10 confirms the existence of this state of



87

0 0.2 0.4

0 0.1 0.2−0.2 0 0.2 0.4
(a)  u/U (b)  w/U

Bν
A

ν ,(c) φ
A Bφ,(d)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 1 2

y/
H

y/
H

y/
H

y/
H

Figure 3.8: Flow of a binary mixture of grains with the same size, but different ma-

terial densities in a Couette cell without flat side wall and with bumpy boundaries

moving in opposite directions. (a) Mixture velocity u/U , (b) mixture fluctuation

velocity w/U , (c) volume fraction of each species, (d) relative number fraction of

each species. Symbols are simulation results. Solid and dashed lines are solutions

of the exact and simplified theory, respectively. In (c) and (d), pluses and thick

lines are for species A, while crosses and thin lines are for species B.
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Figure 3.9: Flow of a binary granular mixture with the same material density, but

different sizes. See Figure 3.8 for cell geometry and impact properties. Parameters:

ρA = ρB, rA = 1, rB = 0.8, ν̄ = 0.308, n̄A/n̄ = 0.339.



89

“no-segregation” with theoretical predictions and numerical simulations.

In the three examples above, the simplified theory predicted well the mixture

mean and fluctuation velocities and the extent to which the two species segregate.

Surprisingly, although the simplified theory is a first order perturbation of the exact

theory, it performed better than its exact counterpart in some cases. This paradox

is probably due to the crude treatment of the mixture boundary conditions that we

introduced in the exact theory. In fact, the assumptions that permit us to evaluate

SA/PA, SB/PB, PA/P and PB/P in Eq. (3.53) might fail for two reasons. First,

the contribution of each species to Eq. (2.84) may be affected by the presence of

another species. Second, because spheres near a solid boundary arrange in layers

with a wavelength on the order of their individual diameter, their pair distribution

function at contact may not be captured by Eq. (3.40), and thus the differences in

the mixture pressure and the species partial pressures between the boundary and

the interior may be affected. Therefore, inaccuracies in the boundary conditions

of the exact theory may lead to errors in the predicted velocity and temperature

profiles, which in turn induce errors in species concentration. Conversely, our use

of boundary conditions for a single constituent in the simplified theory is consistent

with our approximation of an equivalent single species. This consistency may help

the simplified theory yield better predictions for velocity and temperature.

Segregation with distant boundaries

When a granular material consists of two different species, it is de facto impossible

to create a uniform simple shear flow in which particle segregation exists. Thus,

segregation is inextricably tied to the presence of solid boundaries. In this case, the

accuracy of theoretical predictions for the segregation depends upon the accuracy
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Figure 3.10: Flow of a binary granular mixture exhibiting no segregation. See

Figure 3.8 for cell geometry and impact properties. Parameters: ρA/ρB = 0.5842,

rA = 1.02, rB = 0.8, ν̄ = 0.344, n̄A/n̄ = 0.442.
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Figure 3.11: Flow of a granular mixture in a wide cell with Y/rAB = 25. See

Figure 3.8 for other dimensions and impact properties. The interior region in the

range 0.1 ≤ y/Y ≤ 0.55 has ν̄ = 0.28 and ν̄A = 0.11.
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of the boundary conditions. Thus, in the relatively narrow cell used in Figs. 3.8

and 3.9, it is difficult to distinguish the role of the boundary conditions and that

of the segregation theory in producing good agreement with the data.

To gauge the accuracy of the theory without undue influence from boundary

conditions, we then resorted to considering the granular flow in a wide cell of

Y/rAB = 25 and without side walls. We employed the same granular mixture as in

Figure 3.9. At steady state, we focused upon an interior region with 0.1 ≤ y/Y ≤

0.55, where we compared simulations and theory. Rather than enforcing boundary

conditions at the moving bumpy walls, we set the values of u and T measured

in the simulations at y/Y = 0.1 and 0.55. As Figure 3.11 shows, the mean and

fluctuation velocities from the exact and simplified theories agree almost perfectly

with simulation data, but the particle number fractions do not. Although the

simplified theory gives a slightly better solution than its exact counterpart, both

theories overestimate segregation effects, particularly in the dense region. There,

it is possible that the segregation is frustrated by a steric hindrance, in which

individual spheres are compelled to remain locked in a cage formed by their nearest

neighbors [24].

Segregation in an axisymmetric Couette cell

Our last example is a prelude to physical experiments. Here, we consider the flow

of a binary mixture in a Couette cell with flat side walls. We account for the shear

stress on the latter by integrating the governing equations. in the same way as

we did for flows of a single constituent in Section 3.1. Because the presence of a

centripetal acceleration ensures that the pressure is not a constant in the radial

direction, we replace the gravitational acceleration g in Eqs. (3.37) and (3.63) by
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Figure 3.12: Flow of a binary granular mixture in an axisymmetric Couette cell.

The inner and the outer bumpy boundaries are moving at 0.2U and −0.8U , respec-

tively, and the two flat side walls are stationary. Solid symbols are experimental

data. In (a) and (b), open symbols are simulation results; squares and circles rep-

resent species A and B, respectively. For pluses, crosses and lines, see Figure 3.8.
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the centripetal acceleration u2/r. Figure 3.12 compares theoretical solutions with

simulation and experimental data. Species A is ceramic spheres. Species B is

nitinol spheres. Parameters are: Ri = 209mm, Ro = 226.2mm, Z = 19.39mm,

ρA = 3.92g/cm3, ρB = 6.71g/cm3, ρA/ρB = 0.5842, rA = rB = 1mm, d0 = d1 =

2mm, s0 = 0, s1 = 1mm, ν̄ = 0.30, n̄A/n̄ = 0.5. Impact parameters of flowing

spheres: eAA = 0.98, eAB = 0.88, eBB = 0.92, µAA = 0.1, µAB = 0.16, µBB = 0.22,

β0,AA = 0.42, β0,AB = 0.25, β0,BB = 0.25; between spheres and bumpy boundaries

and between spheres and the rear side wall: ewA = 0.684, µwA = 0.175, β0w,A = 0.2,

ewB = 0.86, µwB = 0.15, β0w,B = 0.68; and between spheres and the front side wall:

esA = 0.96, µsA = 0.09, β0s,A = 0.15, esB = 0.995, µsB = 0.109, β0s,B = 0.85. The

reasonable agreement of theory and simulation suggests that collisional flows of

binary mixtures are captured by theory as long as the interactions among particles

are collisional.

3.3 Conclusion

In this chapter, we provided numerical solutions of the kinetic theory for collisional

flows of a single species or binary mixtures of spheres that exhibit relatively small

collisional energy dissipation. We summarized the form of the boundary condi-

tions, which others derived by considering the momentum and energy exchanged

in collisions between flowing particles and the boundary. We compared the nu-

merical solutions with molecular dynamic simulations and physical experiments in

microgravity.

For flows of a single species, we found that the kinetic theory agrees well with

both simulation and experiments. For flows of binary mixtures, solutions for the

mean and fluctuation velocities were also consistent with simulation results and
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experimental data, but the kinetic theory overestimated the segregation, especially

at high particle volume fraction. In dense flows, the theory should thus be improved

by accounting for velocity correlations in successive collisions and by considering

the role of particle “cages” in frustrating diffusive transport.

Our calculations emphasized the importance of boundary conditions in ensuring

the success of the kinetic theory for bounded collisional granular flows. Because

boundary conditions for a single species have contributed to the accuracy of the

theoretical predictions, we recommend that similar conditions be derived for binary

mixtures to avoid using expressions meant for a single species in flows of several

constituents.

Finally, we focused on flows of nearly elastic, nearly frictionless grains. Al-

though theories have been proposed for more dissipative particles, they have not

yet been tested in sheared, bounded geometries. With greater inelasticity or fric-

tion, the fluctuation energy becomes strongly anisotropic, and it is not distributed

equally among different granular species. In practical flows, collisional dissipa-

tion also creates regions where the grains condense into amorphous assemblies

or clusters. In these regions, the stresses develop a component that is not rate-

dependent [17]. A challenge for future research is to produce a theory that can

successfully reconcile the collisional flows considered in this paper and flows where

rate-dependent and rate-independent stresses coexist.



Chapter 4

Flow of Collisional Grains in a Viscous

Gas

In this chapter, we consider the effects of a viscous gas on flows of colliding grains.

The presence of an interstitial fluid is inevitable in most realistic situations. More-

over, the ability to transport particulate materials predictably and efficiently using

a flowing gas is playing an important role in a number of applications from the

chemical, mining, power and oil industries.

The role of collisional interactions in gas-solid flows has received wide atten-

tion, whether the suspensions are laminar [113] or turbulent [82, 28, 11, 116]. In

these flows, collisions can transfer a significant amount of momentum, which helps

maintain homogeneity and may prevent the formation of clusters.

To understand the interaction between collisional grains and an interstitial

viscous gas, we focus attention on flows in which the particle velocity distribution

is determined by granular collisions, so we can use the kinetic theory to describe

the momentum and energy transfer in the particle phase. In this case, the viscous

gas contributes a drag force to the mean granular flow and a viscous dissipation to

the particle fluctuation energy, but it hardly affects the character of the particle

velocity distribution function.

“Rapid granular flows” can be regarded as an extreme limit of this regime.

In rapid flows, particles only experience collisional interactions, their inertia over-

whelms the momentum transfer in the granular phase, and the presence of the

gas does not affect their motion. In this case, the approach described in previ-

ous chapters is suitable. However, as the particle inertia decreases, hydrodynamic

96
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interactions between particles and gas progressively cause the particle velocity

distribution to deviate from the expressions derived for colliding particles alone.

Therefore at some point, the kinetic theory itself must take into account gas-

particle interactions.

Several researchers have studied sheared gas-particle suspensions in which the

viscous dissipation plays a role in the balance of granular fluctuation energy [107,

67, 135]. They all considered homogeneous, unbounded flows. However, physical

experiments cannot be carried out in a boundless domain. Moreover, to remain

suitably agitated, solids must be relatively close to boundaries. Our experience

further indicates that boundary interactions are crucial to the balance of momen-

tum and particle fluctuation energy of rapid granular flows. Therefore, a successful

description of particulate flows must incorporate proper boundary conditions.

We begin this chapter with an outline of the governing equations for both the

gas and solid phases. We then consider shear flows of gas-particle suspensions

bounded by solid walls. Our theory reduces to the kinetic theory for collisional

granular flows in the limit of large particle inertia. We show that its predictions

agree with the recent Lattice-Boltzmann simulations of Verberg and Koch [123] in

an intermediate regime where the gas begins to affect granular motion. The simu-

lations also reveal at which point the forces exerted by the gas are too important

for the kinetic theory to succeed without taking proper account of the gas in the

velocity distribution of the grains.

4.1 Governing Equations

If the particle velocity distribution is determined by collisions alone, the constitu-

tive relations of the granular phase are given by the kinetic theory. In this case,
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the conservation laws for the mass, momentum and particle fluctuation energy of

the solid phase are similar to Eqs. (3.1)-(3.3),

∂ρ

∂t
+∇ ·

(

ρus

)

= 0, (4.1)

ρ
∂us

∂t
+ ρus · ∇us = ∇ · Ts + ρfs − ν∇Pg + β

(

ug − us

)

, (4.2)

3

2
ρ
∂T

∂t
+

3

2
ρus · ∇T = −∇ · q+ Ts : ∇us − γinelas − γvis + γrel, (4.3)

where ν is particle volume fraction, ρ = νρs is the bulk density of the solid phase,

us is the mean particle velocity, fs is the body force on the solid phase, and T

is the granular temperature defined in previous chapters. In Eqs. (4.2) and (4.3),

Ts is the solid phase stress tensor, Pg is the gas phase pressure, ug is the mean

gas velocity, β ≡ 18µgν(1 − ν)2Rdrag(ν)/σ
2 is the drag coefficient, Rdrag(ν) is a

function of ν that we will discuss later, σ is the grain diameter, q is the flux of

particle fluctuation energy, and γinelas is the collisional dissipation rate of particle

fluctuation energy; γvis is the additional dissipation of particle fluctuation energy

due to the viscous gas, and γrel is the production of particle fluctuation energy due

to the mean relative motion between the gas phase and particle phases.

In this work, we consider flows of colliding grains with large particle inertia

so that the particle velocity distribution is determined by collisions. In this case,

the flux of particle fluctuation energy q and the collisional dissipation rate γinelas

are those derived using the kinetic theory; the expressions are given in (3.5) and

(3.10), respectively.

Sangani et al [107] determined the viscous dissipation of particle fluctuation

energy in random flights of particles between collisions. They considered simple

shear flows in which the particle Reynolds number is vanishingly small but the

particle Stokes number is large enough to maintain a Maxwellian velocity distri-
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bution. They define the particle Reynolds number as ρgΓσ
2/4µg and the Stokes

number as Γτv, where ρg is the gas density, Γ is the shear rate, and τv = ρsσ
2/18µg

is the viscous relaxation time of the particle velocity. They showed that the viscous

dissipation can be expressed as

γvis = 54µgT
ν

σ2
Rdiss,

in which Rdiss is a dimensionless coefficient that depends on the particle volume

fraction ν and a dimensionless lubrication cut-off parameter εm, which takes into

account the non-continuum breakdown of the lubrication force in the Stokes equa-

tion when the gap between two particles is comparable to the mean free path of

gas molecules. Sundararajakumar and Koch [118] studied the non-continuum flow

of the gas in the gap between two spheres approaching one another. By com-

paring the total energy dissipated during the approaching, they showed that the

lubrication cut-off εm is related to the molecular mean free path of the gas as

εm = 9.76
λg

σ
, (4.4)

where λg is the mean free path of gas molecules. Hence εmσ = 9.76λg can be

regarded as a length scale to characterize the non-continuum effects on lubrication

flow.

The gas compressibility can also affect Rdiss when the gap separating two

spheres is less than

hc ≡
√

µgσ
√
T/Pg, (4.5)

where Pg is the absolute pressure of the gas and
√
T represents an estimate of the

relative velocity between spheres about to collide [39]. Because Rdiss is dominated

by contributions from gaps exceeding εmσ, this suggests that, as far as viscous

dissipation is concerned, compressibility is negligible when hc < εmσ. Because this
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condition is satisfied in our projected microgravity experiments, we neglect the

contributions of gas compressibility to Rdiss. In the simulations of Verberg and

Koch [123] that we discuss later in this chapter, gas compressibility is de facto

ignored by the Lattice-Boltzmann method.

Grain elasticity can also affect Rdiss when lubrication forces induce deforma-

tions in the solid. Davis, Serayssol & Hinch [30] and Davis [29] showed that the

effect is significant when the gap is less than

hd ∼
(
√
2µgσ

3/2
√
T

πE∗

)2/5

, (4.6)

where E∗ ≡ E/2(1−ν2p) combines Poisson’s ratio νp and Young’s modulus E. Once

again, this effect is negligible in our projected microgravity experiments. Because

the simulations of Verberg and Koch [123] involve rigid elastic spheres, we also

ignore solid elasticity in this chapter.

Sangani et al [107] used multipole simulation to determine Rdiss(ν;Re = 0).

They assumed that the force remains constant when the gap is less than εmσ.

Wylie, Koch & Ladd [135] showed that Rdiss also depends on fluid inertia and in-

creases with Reynolds number based on the particle fluctuation velocity. Recently,

using Lattice-Boltzmann simulations, Verberg & Koch [123] studied viscous dis-

sipation of particle fluctuation energy in simple shear flows with finite Reynolds

numbers. They found that the viscous dissipation increases linearly with Reynolds

number. Their results can be fitted as

Rdiss = Rdiss,0 +K(ν)ReT , (0 ≤ ReT ≤ 40, 0.1 ≤ ν ≤ 0.4) (4.7)

where the Reynolds number is defined as

ReT ≡
ρgσT

1/2

µg

,
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if ReT ≤ ReT,0,

Rdiss,0 = Rdiss,s = 1 +
3√
2
ν1/2 +

135

64
ν ln ν + 7.4221ν +G(ν) ln(1/εm),

K(ν) = Ks(ν) = ν
(

3.1490− 8.5426ν + 24.9271ν2
)

,

and if ReT > ReT,0,

Rdiss,0 = Rdiss,l = 1 +
3√
2
ν1/2 +

135

64
ν ln ν + 14.7569ν +G(ν) ln(1/εm),

K(ν) = Kl(ν) = ν
(

2.2423− 7.1515ν + 19.9250ν2
)

,

in which ReT,0 represents a transition from an initially rapid increase of Rdiss with

ReT to a slower increase. ReT,0 depends on volume fraction ν and is given by

ReT,0 =
Rdiss,l −Rdiss,s

Ks −Kl

,

and the function G(ν) is defined in Chapter 3. In the expressions above, the term

G(ν) ln(1/εm) comes from the dissipation due to lubrication forces in particle-

particle collisions. G(ν) is proportional to the collision frequency and ln(1/εm)

characterizes the dissipation of particle kinetic energy due to the non-continuum

lubrication force during each collision. The dependence ofRdiss onReT is analogous

to the increase of drag with Reynolds number in a fixed bed, as captured in the

Ergun equation [32]. As Figure 4.1 shows, Eq. (4.7) lies within ±6% of the Lattice-

Boltzmann simulation data by Verberg & Koch [123] over the range of 0 ≤ ReT ≤

40 and the error is less than 5% for most of the data.

Koch & Sangani [67] also considered flows where there is a relative mean ve-

locity between the gas and solids. In this case, the relative velocity produces

additional particle agitation. The production rate can be expressed as

γrel =
162µ2gν(1− ν)2

ρsσ3
√
T

S∗(ν)(ug − us) · (ug − us), (4.8)
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by Verberg & Koch [123]. Squares: ν = 0.1, circles: ν = 0.2, crosses: ν = 0.3,

pluses: ν = 0.4. Lines are curve fits of Eq. (4.7).
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where

S∗(ν) =
ν

2
√
πG(ν)(1 + 3.5ν1/2 + 5.9ν)

R2
drag, (4.9)

and Rdrag is a function of ν measured in the numerical simulations. According to

Koch & Sangani [67], the following expression agrees well with numerical simula-

tions for 0 < ν < 0.4,

Rdrag =
1 + 3(ν/2)1/2 + 135

64
ν ln ν + 17.14ν

1 + 0.681ν − 8.48ν2 + 8.16ν3
. (4.10)

For ν ≥ 0.4, they suggest the empirical correlation of Carman [21]

Rdrag =
10ν

(1− ν)3 + 0.7, (4.11)

where the constant 0.7 is added to match the two equations (4.10) and (4.11) for

Rdrag at ν = 0.4.

Conservation of mass and momentum for the gas phase requires

∂(1− ν)ρg
∂t

+∇ ·
(

(1− ν)ρgug

)

=0, (4.12)

(1− ν)ρg
(

∂ug

∂t
+ ug · ∇ug

)

=∇ · Tg − (1− ν)∇Pg

+ (1− ν)ρgfg − β
(

ug − us

)

, (4.13)

where fg represents the body force on gas phase, and Tg is the gas phase shear

stress tensor.

To close the set of governing equations, we must determine the particle phase

stress tensor Ts and its counterpart Tg in the gas phase. The particle phase stress

includes contributions from particle streaming, particle collisions, and interactions

among grains that are exerted through the gas. The first two arise in collisional

granular flows without an interstitial fluid. They constitute the usual granular

stress T in Eq. (3.4). For simplicity, we add the contribution of the gas as

Ts = T + Tgs. (4.14)
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In principle, the stress tensors Tgs and Tg should be derived from detailed con-

siderations of gas-particle interactions. Unfortunately, despite the publication of

several theories and experiments on the mixture viscosity of particle-fluid systems,

the exact form of the stress on each phase is not well understood. Because, in

the case of large particle inertia, these stresses will be dominated by the particle

phase stress, we merely postulate their form, while ensuring that the latter agrees

with existing mixture theories and in the two limits where no gas or no solids are

present.

In particular, we assume that the stress on each phase is proportional to its

volume fraction,

Tgs/ν = Tg/(1− ν), (4.15)

and we adopt the mixture theory of Happel and Brenner [42], even though it was

derived for flows at low Reynolds and Stokes numbers,

Tgs + Tg = Rµ(ν)µg

[

(

∇ug

)

+
(

∇ug

)T − 2

3

(

∇ · ug

)

I

]

, (4.16)

where µg is the molecular viscosity of the gas, ug is the mean gas velocity, andRµ(ν)

is the ratio of the suspension viscosity to µg. According to Happel & Brenner [42],

the expression

Rµ(ν) = exp(4.58ν) (4.17)

fits experimental data well in the moderate range of particle volume fraction ν .

0.4 that is of interest here.

Our choices of Tg and Tgs are arbitrary. However, their role is small in the

gas-particle systems under consideration. In fact, as Verberg’s simulations will

reveal [123], the particle phase stress is always much larger than either Tg or Tgs.

In order to test the expressions of Tgs and Tg that we have proposed, one should
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attempt to create different shear rates in the gas and particle phase over a distance

larger than a particle diameter.

As Hwang & Shen [48] showed, there remains a disagreement as to the form

of the constitutive equations for two-phase flows, particularly whether the volume

fraction should lie inside the differentiation of the stress term for the gas phase,

and how the volume fraction should appear in the pressure gradient term. For

our part, we adopt Eqs. (4.1) – eqrefeq:granphaseEnergy and Eqs. (4.12) – (4.13).

In these equations, we neglect the added mass effect, the history force, and other

forces that are proportional to the gas inertia.

In Eq. (4.2), note that, unlike their counterpart in the solid phase, the stress

tensors Tg and Tgs in the gas are written in deviatoric form. This is consistent

with the common practice that the thermodynamic pressure gradient appears as

a separate term in the Navier-Stokes equations. However, in the granular phase,

such convention is not always adopted (see, for example, our chapter 3), so the

gradient of the particle normal stress does not appear alone in the momentum

equation.

Finally, note that, as ν → 0, the momentum of the solid phase, Eq. (4.2) appro-

priately tends to zero, while its gas counterpart Eq. (4.13) reduces to the Navier-

Stokes equations. Similarly, if the flow is fully-developed, or the flow Reynolds

number is low, or the gas and solid velocities are equal, the sum of the two mo-

mentum balances in the gas and solid phases produces a mixture equation in which

the stress tensors feature a bulk viscosity consistent with the mixture expression

of Happel & Brenner [42].
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4.2 Bounded Shear Flows

4.2.1 One-Dimensional Rectilinear Flow

We first consider fully developed flows of collisional grains in a viscous gas sheared

between two parallel bumpy boundaries. The flow is unbounded in the vorticity

direction and its variables only change along the direction perpendicular to the

boundaries.

In this case, the mass conservation of both phases is satisfied automatically,

and the solid momentum balance in the flow direction reduces to

d

dy

(

η
dus

dy
+ νRµµg

dug

dy

)

+ β
(

ug − us

)

− ν dPg

dx
= 0, (4.18)

where η is the shear viscosity of the solid phase and us and ug are, respectively, the

mean solid and gas velocity in the x-direction along the flow. The solid momentum

balance in the z-direction vanishes and the y-direction momentum balance requires

Ps = const.

For the gas phase, we have

d

dy

(

(1− ν)Rµµg
dug

dy

)

− β
(

ug − us

)

− (1− ν)dPg

dx
= 0. (4.19)

The particle fluctuation energy balance simplifies to

d

dy

(

κ
dT

dy

)

+ η

(

dus

dy

)2

+ νRµµg
dug

dy

dus

dy
− γinelas − γvis + γrel = 0, (4.20)

where κ is the thermal conductivity of the granular phase.

Boundary conditions for the mean velocity and for the fluctuation energy of

the grains were derived in Chapter 2. In the kinetic theory, the particle phase

boundary conditions are applied at a particle radius away from the crests of wall

spheres. For simplicity, we solve the gas phase in the same domain as the particle
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phase, and thus apply the usual “no-slip” boundary condition for the gas at a

particle radius away from the wall spheres. Because our flows have relatively large

volume fraction and Stokes number, the actual location where the gas boundary

condition is imposed barely affects our flows.

To evaluate the relative importance of each term in the governing equations,

we write the latter in dimensionless form. We adopt the following dimensionless

variables: y∗ ≡ y/H, u∗s ≡ us/U , u
∗
g ≡ ug/U , and T

∗ ≡ T/U 2, where U ≡ Ut − Ub

is the relative velocity between the top and bottom bumpy boundaries separated

by a distance H. We then define the particle fluctuation velocity as w∗ ≡
√
T ∗.

The dimensionless particle phase momentum equation in the flow direction is

d2u∗s
dy∗2

+

(

1

P ∗s

dP ∗s
dy∗

+
1

J

dJ

dy∗
− 1

F

dF

dy∗
− 1

w∗
dw∗

dy∗

)

du∗s
dy∗

+
5
√
π

8

1

JGw∗

[

1

18(H/σ)St

d

dy∗

(

νRµ

du∗g
dy∗

)

+ (1− ν)2H
σ

Rdrag

St

(

u∗g − u∗s
)

+Rτ

]

= 0, (4.21)

where the Stokes number based on the nominal shear rate U/H

St ≡ ρsσ
2

18µg

U

H

is a measure of particle inertia relative to visous forces in the fluid and

Rτ ≡
−dPg

dx

ρsσ(
U
H
)2
,

is the dimensionless gas pressure gradient.

The gas momentum equation is

d2u∗g
dy∗2

+
1

(1− ν)Rµ

d(1− ν)Rµ

dy∗
du∗g
dy∗

+ 18
H

σ

1

Rµ

[

H

σ
ν(1− ν)Rdrag

(

u∗s − u∗g
)

+RτSt

]

= 0. (4.22)
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Finally, the solid fluctuation energy balance is

d2w∗

dy∗2
+

(

1

P ∗s

dP ∗s
dy∗

+
1

M

dM

dy∗
− 1

F

dF

dy∗

)

dw∗

dy∗

+

√
π

16

1

MG

[

1

9(H/σ)St

Rµ

w∗2
du∗g
dy∗

du∗s
dy∗
− 6

H

σ

Rdiss

St
− (1− ν)2

S∗
(

u∗g − u∗s
)2

St2w∗3

]

+
1

M

[

J

5

(

1

w∗
du∗s
dy∗

)2

− 3
(

1− eeff
)

(

H

σ

)2]

w∗ = 0. (4.23)

In the limit where the particle inertia overwhelms viscous forces in the gas

(either by increasing the shear rate or by using more massive particles), the di-

mensionless numbers tend to values, St → ∞, Rdrag/St → 0, Rdiss/St → 0, and

Rτ → 0, which reduce the governing equations for the granular phase to the form

derived in the absence of a gas in chapter 3.

4.2.2 Comparison with Lattice-Boltzmann Simulation

Verberg & Koch [123] recently simulated sheared gas-particle flows between two

parallel bumpy boundaries using the Lattice-Boltzmann method [69, 70]. They

made the boundaries bumpy by attaching spheres of the same size as in the sus-

pension, as shown in Figure 4.2. They used periodic boundary conditions in both

the x- and the z-directions, so that flow variables only change in the y-direction

perpendicular to the bumpy boundaries.

In Chapter 2, we derived boundary condition for bumpy boundaries with ran-

domly attached spheres. For the arrangement of spheres shown in Figure 4.2,

we can in principle derive the boundary condition by considering the transfer of

momentum and energy at the boundary by collisional interactions between wall

spheres and flow spheres. However, variations of the maximum penetration an-

gle θ in the azimuthal direction prevent us from finding analytical expressions for

the momentum and energy transfer rates at the boundary. In this geometry, the
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Figure 4.2: Bumpy boundary used in the Lattice-Boltzmann simulation of Verberg

& Koch [123]. Boundaries normal to the x- and the z- directions are periodic. In

the Lattice-Boltzmann simulations, the boundary spheres have a diameter d = 5.84

and the gap separating them is s = 0.16, so as to obtain a periodic array with

d + s = 6 “lattice units”. The flow spheres are of the same size as the boundary

particles.
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maximum and minimum values of bumpiness are sin θmax = 5(d + s)/[4(d + σ)]

and sin θmin = (d + s)/(d + σ), respectively. Thus, for simplicity, we adopt the

arithmetic average sin θ ≡ (sin θmax + sin θmin)/2 to capture the bumpiness of the

boundary shown in Figure 4.2. Jenkins [51] instead calculated the average pen-

etration θ̄ by integrating in the circumferential direction. For a tight hexagonal

packing of equal sized spheres, which is similar to the boundary that Verberg &

Koch [123] implemented in their simulation, Jenkins found sin θ̄ = 0.5216, while

the arithmetic average yields 0.5387. To establish whether such uncertainty in

the bumpiness might affect the profiles of mean velocities and granular tempera-

ture, we solved the governing equations with the two extreme values sin θmin and

sin θmax. We found negligible sensitivity of the profiles to sin θ.

In their recent Lattice-Boltzmann simulations, Verberg & Koch [123] defined

the Reynolds number as

Re′ ≡ ρgσ
2U

4µgY ′
, (4.24)

where Y ′ is the distance between the crest of boundary spheres, and the Stokes

number as

St′ ≡ ρsσ
2U

18µgY ′
. (4.25)

Therefore, for the same system, the Stokes number defined in Eq. (4.25) is slightly

smaller than what we defined in the dimensionless equations.

To isolate the effects of the viscous gas on the suspension flow, Verberg &

Koch [123] set the coefficient of restitution of spheres to one. Thus, the particle

fluctuation energy is only dissipated by viscous forces.
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4.2.3 Effects of Stokes number

Figure 4.3 shows profiles of the dimensionless fluctuation velocity 2T 1/2/Γσ, where

Γ ≡ U/Y ′ is the overall simulation shear rate, for flows at different Stokes numbers

St′. Consistent with the predictions of Sangani et al [107] for simple shear flows, the

granular temperature decreases with St′. However, as the temperature decreases,

the solid boundary plays an increasingly important role in providing fluctuation

energy to the flow. As a result, the temperature profile gradually exhibits a concave

shape that betrays a transfer of fluctuation energy from the boundary to the flow.

This effect, which is not present in simple shear flow, is captured by our two-phase

flow theory.

The mean velocity profile and the slip velocity at the bumpy boundary are also

affected by variations in the Stokes number. The slip velocity is defined as the

difference between the velocity of the solid boundary and the mean velocity of flow

spheres touching the crest of wall spheres. As Fig. 4.4 shows, the theory predicts a

slip velocity greater than that observed in the simulations at high Stokes numbers.

At first sight, this failure may be surprising. Because the LB simulations as-

sumed elastic spheres, e = 1, the only dissipation mechanism in the solid phase

derives from interactions with the gas. One would expect that as the Stokes number

increases, the effects of the gas should become negligible, and thus the gas-particle

system would begin to resemble dry collisional granular flows, for which the par-

ticle phase boundary conditions were derived. Because the boundary conditions

were otherwise successful in dry granular flows, their failure to lead to the proper

slip is unexpected.

However, there are two reasons why the slip velocity measured in the LB sim-

ulations may not agree with the current theory or with our intuition.
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Figure 4.3: Variations of the granular temperature with Stokes number. Solid lines

are results from Lattice-Boltzmann simulation [123]. Dashed lines are solutions of

the continuum theory. Simulation parameters: Y ′/σ = 12, Re′ = 0.1, and overall

particle volume fraction ν̄ = 0.3. From top to bottom: St′ = 100, 50, 40, 30, 20,

15, 10, and 5.
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First, because the LB simulations increase the Stokes number while maintaining

Re′ = 0.1, they possess a peculiar mechanism for fluctuation energy dissipation,

which is not equivalent to that in a granular flows without a gas. In this case, the

granular temperature in a simple shear flow is given by

T 1/2

Γσ
=
−Rdiss,0 +

√

R2
diss,0 +

128
15
√
π
GJStKRe

8KRe
, (4.26)

where Rdiss,0 and K are functions of particle volume fraction defined in Eq. (4.7).

Eq. (4.26) indicates that T 1/2/Γσ increases with St1/2 at large St. If this was a dry

granular flow, this dissipation mechanism would be associated with a coefficient

of restitution such that 1− e decreases with Γ−1/2. Such dry granular flow might

behave differently from one with constant e. We intend to run molecular dynamic

simulations to check whether dry granular flows with small dissipation maintain a

constant slip as e→ 1.

Note that if, on the other hand, the LB simulations had increased St while keep-

ing the gas-solid density ratio ρg/ρs constant, then because Re/St = (9/2)ρg/ρs,

the granular temperature of the corresponding simple shear flow would scale as

T 1/2

Γσ
=
−Rdiss,0/St+

√

(Rdiss,0/St)2 +
192
5
√
π
GJK(ρg/ρs)

36K(ρg/ρs)
. (4.27)

Then, in this case, the granular temperature would approach a constant as St →

∞,

T 1/2

Γσ
=

√

16

135
√
π

GJ

K

ρs
ρg
. (4.28)

The dissipation mechanism from the gas would then scale as its counterpart in

an inelastic granular system, thus producing an asymptotic slip at high St that

resembles the behavior of such system. One could then define an effective coefficient
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Figure 4.4: Changes in the slip velocity at the solid boundary with Stokes num-

ber. Symbols are data from Lattice-Boltzmann simulations [123]. The line is the

prediction of the theory.

of restitution eeff,vis to account for the viscous dissipation,

eeff,vis = 1− 9
√
π

4

K

G

ρg
ρs
. (4.29)

The second reason why the measured slip at high St may not agree with the

theory is that the latter, by adopting e = 1, ignores the energy dissipation due to

the gas at the boundary. To verify whether the failure of the theory at large St is

related to its improper description of energy dissipation at the boundary, we will

attempt to capture the gas dissipation with an effective inelastic restitution at the

boundary and examine the corresponding variations of the slip with St.
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By analyzing simple shear flows of a particle-gas suspension, Sangani et al [107]

showed that anisotropies in the particle phase pressure become significant when

St/Rdiss . 5, so that an isotropic theory could no longer be used. However,

Figure 4.3 indicates that the theory starts to deviate from the simulations at

St′ ≈ 15, which corresponds to St/Rdiss ≈ 2. As Figure 4.5 shows, the theory

gives good predictions of the transverse profiles of mean particle velocity u∗s, the

fluctuation velocity w∗, and the particle volume fraction for St′ as low as 20.

Figure 4.6 compares the xy shear stress due to particles, i.e., ηdus/dy and the

shear stress due to the viscous gas, Rµ(ν)µgdug/dy for St′ = 20 and St′ = 100.

In the LB simulation, the stress tensors are calculated using the expressions given

by Strating [115]. In particular, the particle phase stress is obtained by adding

the contributions of particle streaming and particle- particle collisions, which we

compare with ηdus/dy predicted by the theory. The gas phase stress is found

by adding the “viscous” stress arising from momentum transfer due to random

molecular motion, and the “particle-fluid” stress acting on particle surfaces that is

due to interactions of the particles and the gas. We compare the total gas phase

stress thus measured with Rµ(ν)µgdug/dy. As expected, the particle phase stress

dominates the suspension stress at high Stokes number, and the effect of gas on

momentum transfer is negligible. At lower Stokes number, the contribution of the

viscous gas to the total shear stress increases, especially in the region near the

solid boundary, but it is still small compared to the particle phase shear stress.

This relative diminution of the role of the solids might explain why the isotropic

Maxwellian theory for the grains still yields a satisfactory prediction despite the

low magnitude of the Stokes number.

In Fig. 4.6, the discrepancy near the solid boundary is due to the approximate
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Figure 4.5: Transverse profiles at St′ = 20 and Re′ = 0.1. Solid lines are simulation

results [123] and dashed lines are predictions of the theory. Top plot: mean particle

velocity u∗s; middle plot: granular fluctuation velocity, made dimensionless with

Γσ/2; bottom plot: particle volume fraction. For other simulation parameters, see

Figure 4.3.
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treatment of the “no-slip” boundary condition in gas phase equation. In our current

numerical implementation of the theory, we set the “no-slip” boundary condition

for the gas at a particle radius away from the crest of the wall spheres, which is

where we also enforce boundary conditions for the granular phase. We may obtain

better agreement if we implemented a more realistic model for the gas flow in the

excluded volume near the solid wall. However, because our flows exhibit relatively

high solid volume fraction and Stokes number, the exact location of the boundary

for the gas has relatively little effect on the flow profiles.

Effects of Reynolds number

Sangani et al [107] considered a simple shear flow in which the fluid inertia is

so small that viscous forces and granular elasticity alone determine the granular

temperature. In that case, the temperature is a function of the Stokes number and

the normal restitution coefficient. However, the Lattice-Boltzmann simulations of

Verberg and Koch [123] clearly show that viscous dissipation increases with fluid

inertia, and therefore the Reynolds number must also play a role in determining

the granular temperature.

Figure 4.7 shows the effects of Reynolds number on granular temperature when

the Stokes number is fixed at St′ = 100 and the spheres are elastic. As Re′ increases

from 0.1 to 10, the granular temperature decreases to about 1/16 of its original

value. The corresponding increase in the wall flux of fluctuation energy causes the

suspension to become inhomogeneous.

A comparison of Figures 4.7 and 4.3 indicates that an increase in Re′ is nearly

equivalent to a decrease in St′. In fact, as Sangani et al [107] showed for a simple

shear flow of elastic particles in a viscous gas, T 1/2 is proportional to St/Rdiss. In
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Figure 4.6: Shear stresses at St′ = 20 and St′ = 100. Symbols are results of

the Lattice-Boltzmann simulations [123] and lines are predictions of the theory.

Circles and solid lines: St′ = 100; crosses and dashed lines: St′ = 20. Top plot:

shear stress in the particle phase, ηdus/dy; bottom plot: shear stress due to the

viscous gas, Rµµgdug/dy. All stresses are made dimensionless with ρsU
2. For other

simulation parameters, see Figure 4.3.
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Figure 4.7: Effects of Reynolds number on the granular temperature at a fixed

St′ = 100. Solid lines are simulation results [123], and dashed lines are prediction

of the theory. From top to bottom: Re′ = 0.1, 0.5, 1, 2, and 10. The simulation

parameters are: Y ′/σ = 12 and σ = 5.84 lattice units for Re′ = 0.1, 0.5, 1 and 2;

Y ′/σ = 12 and σ = 11.68 lattice units for Re′ = 10. In general, the simulation

accuracy increases with the resolution, i.e., the sphere size in lattice units. The

discrepancy between theory and simulation at Re′ = 1 and Re′ = 2 may be due to

a low resolution in the simulation.
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bounded shear flows, the energy balance (4.23) indicates that the dimensionless

viscous dissipation term is proportional to Rdiss/St. Because Rdiss increases lin-

early with ReT ∝ Re′, a decrease in St′ ∝ St or an increase in Re′ both result in

lower values of St/Rdiss. In turn, this produces an increase of viscous dissipation

and a reduction in the granular temperature.

If we assume a simple shear flow, we find that conditions of St = 20 and Re =

0.1 yield the same granular temperature as St = 100 and Re = 6.3. This simple

equivalence is slightly different in the case of a bounded flow. The principal reason

is that there is no longer a simple balance between production and dissipation of

granular fluctuation energy. In particular, the boundaries promote inhomogeneities

in the flow, and they create a relative velocity between gas and solids in their

vicinity. For example, in Figure 4.8, the transverse profiles with St′ = 100 and

Re′ = 10 are nearly identical to those with St′ = 20 and Re′ = 0.1. However,

they differ slightly in their overall value of St/Rdiss, which we calculate using the

average particle fluctuation velocity across the flow domain in the LB simulations.

They respectively have St/Rdiss ≈ 3.23 and 2.72.

Figure 4.9 compares measured shear stresses for Re′ = 0.1 and Re′ = 10 at

St′ = 100 with predictions of the theory for elastic spheres. As Re′ increases,

the granular temperature decreases and the particle phase shear stress decreases.

In the range of Re′ under consideration, the particle stress dominates its viscous

counterpart. Although the simulation shows that the gas shear stress increases with

Reynolds number, the model predicts that it is almost independent of Reynolds

number. This discrepancy may reflect our choice of a correlation for Rµ(ν) that

was derived for low Reynolds numbers.
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Figure 4.8: Comparison of transverse profiles with St′ = 100 and Re′ = 10, and

with St′ = 20 and Re′ = 0.1. Symbols are LB simulation result [123] and lines

are predictions of the theory. Pluses and solid lines: results for St′ = 100 and

Re′ = 10, crosses and dashed lines: results for St′ = 20 and Re′ = 0.1. Top plot:

mean particle velocity u∗s; middle plot: granular fluctuation velocity w∗; bottom

plot: particle volume fraction. Other simulation parameters: Y ′/σ = 12 and

ν̄ = 0.3.
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Figure 4.9: Shear stresses at Re′ = 0.1 and Re′ = 10 for a fixed St′ = 100. Symbols

are results from the Lattice-Boltzmann simulations [123] and lines are predictions

of the theory. Circles and solid lines: Re′ = 0.1; crosses and dashed lines: Re′ = 10.

Top plot: particle phase shear stress ηdus/dy; bottom plot: viscous gas shear stress

Rµµgdug/dy. All stresses are made dimensionless with ρsU
2. For other simulation

parameters, see Figure 4.7.
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Effects of particle volume fraction

Figure 4.10 shows the effects of the overall particle volume fraction on granular

temperature. Because Rdiss increases with ν, the granular temperature decreases

as the particle volume fraction increases at fixed St′ and Re′. However, because

the granular shear viscosity increases with ν, the collisional transfer of momentum

is more effective as the particle volume fraction increases, and thus the granular

temperature remains high. These two mechanisms seem to balance each other

when ν & 0.3 and further increases of ν have only a minor effect on the granular

temperature. The larger discrepancy in granular temperature at ν = 0.1 is proba-

bly due to the error in Eq. (4.7), the curve-fit of Rdiss. Note that in Figure 4.10,

the channel widths are not exactly the same for all cases. The small differences in

Y ′/σ are for the convenience of simulation and have only minor effects on either

granular temperature or particle volume fraction profiles.

Effects of channel width

One important feature of the current theory is that it captures the role of solid

boundaries on the gas-particle flow. As Figure 4.11 shows at a mean volume frac-

tion ν̄ = 0.3, the cross-sectional average granular temperature made dimensionless

with Γ2σ2 remains roughly constant as the channel narrows. However, through the

agitation provided by the bumpy boundary, a narrower channel also helps maintain

a more homogeneous flow, so the particle volume fraction becomes more uniform.

In Figure 4.11, the data are obtained by boxcar-averaging the raw simulation re-

sults of center-average solid volume fraction, which, by exhibiting wide natural

oscillations with wavelength on the order of a sphere diameter, make it difficult to

compare with the corresponding theoretical profiles Louge [76].
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Figure 4.10: Effects of overall particle volume fraction on granular temperature

(top) and volume fraction profiles (bottom) at fixed St′ = 30 and Re′ = 0.1,

Symbols are simulation results [123] and lines are prediction of the theory. Dotted

line and squares: ν = 0.1, Y ′/σ = 12.7; dash-dotted line and pluses: ν = 0.2,

Y ′/σ = 10; solid line and circles: ν = 0.3, Y ′/σ = 12; dashed line and crosses:

ν = 0.4, Y ′/σ = 12. All simulations are with σ = 5.84 lattice units.
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Figure 4.11: Effects of channel width Y on granular temperature (top) and particle

volume fraction (bottom) at fixed St′ = 20, Re′ = 0.1, and ν̄ = 0.3. Symbols are

simulation results [123], thick lines are prediction of the theory. Solid line and

circles: Y ′/σ = 12; dashed line and crosses: Y ′/σ = 8; dash-dotted line and

triangles: Y ′/σ = 6. Parameters in simulation: σ = 5.84 lattice units.
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In this section, we assumed that the solid spheres are perfectly elastic so that

there is no collisional dissipation of granular fluctuation energy. In real gas-particle

flows, the inelastic dissipation may dominate the viscous dissipation, especially at

high Stokes numbers. Since the inelastic dissipation is proportional to T 3/2, but

the viscous dissipation is proportional to T , the relative importance of inelastic

dissipation decreases as the Stokes number decreases. On the other hand, the

presence of inelastic dissipation may cause the viscous theory to fail at higher

Stokes number. Simulations with inelastic particles in a gas should be carried out

to resolve these questions.

4.2.4 Two-Dimensional Rectilinear Flow

We now consider fully developed flows between two bumpy boundaries and two

flat side walls, with possible body forces acting on the solid phase along the flow

direction, as shown in Figure 3.1. In this case, like the one-dimensional flow

considered in Chapter 3, the conservations of mass in the solid and gas phases are

satisfied automatically. The solid momentum balance in the flow direction becomes

∂

∂y

(

η
∂us

∂y
+ νRµµg

∂ug

∂y

)

+
∂

∂z

(

η
∂us

∂z
+ νRµµg

∂ug

∂z

)

+β(ug − us)− ν
dPg

dx
+ ρfx = 0, (4.30)

where ug and us are, respectively, the mean gas and solid velocities in the flow

direction along x.

The solid momentum balances in the y- and z-directions reduce to

∂Ps

∂y
=
∂Ps

∂z
= 0, (4.31)

which, taken together with the fully-developed flow assumption, indicate that the

solid phase pressure Ps is constant.
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Similarly, for the gas phase, we have

∂

∂y

(

(1−ν)Rµµg
∂ug

∂y

)

+
∂

∂z

(

(1−ν)Rµµg
∂ug

∂z

)

−β(ug−us)−(1−ν)
dPg

dx
= 0, (4.32)

where the pressure gradient dPg/dx is a constant.

The particle fluctuation energy balance becomes

∂

∂y

(

κ
∂T

∂y

)

+
∂

∂z

(

κ
∂T

∂z

)

+ η

[(

∂us

∂y

)2

+

(

∂us

∂z

)2]

+ νRµµg

(

∂ug

∂y

∂us

∂y
+
∂ug

∂z

∂us

∂z

)

− γinelas − γvis + γrel = 0. (4.33)

We assume that the boundary conditions for the solid phase in Chapter 3 are

unaffected by the gas. For simplicity, we apply the “no-slip” boundary condition

for the gas phase at a flow sphere radius away from the crest of the boundary

spheres or away from the flat side walls. This permits us to solve the differential

equations of the solid and gas phase in the same flow domain.

We calculate the mean solid and gas velocities, the solid volume fraction and

the solid fluctuation velocity in the cross section 0 ≤ y ≤ H and −W/2 ≤ z ≤

W/2, where the height H and the width W of the flow channel are defined in

Chapter 3. We first write the governing equations in dimensionless form using

the same dimensionless variables as in the one dimensional flow problem, and we

define a new variable z∗ ≡ Z/H.

Then, the dimensionless solid phase momentum equation in the flow direction
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is

∂2u∗s
∂y∗2

+
∂2u∗s
∂z∗2

+

(

1

P ∗s

∂P ∗s
∂y∗

+
1

J

∂J

∂y∗
− 1

F

∂F

∂y∗
− 1

w∗
∂w∗

∂y∗

)

∂u∗s
∂y∗

+

(

1

P ∗s

∂P ∗s
∂z∗

+
1

J

∂J

∂z∗
− 1

F

∂F

∂z∗
− 1

w∗
∂w∗

∂z∗

)

∂u∗s
∂z∗

+
5
√
π

8

1

18(H/σ)St

1

JGw∗

[

∂

∂y∗

(

νRµ

∂u∗g
∂y∗

)

+
∂

∂z∗

(

νRµ

∂u∗g
∂z∗

)]

+
5
√
π

8

1

JGw∗

[

(1− ν)2H
σ

Rdrag

St

(

u∗g − u∗s
)

+Rτ

]

= 0, (4.34)

where St and Rτ are defined in the same way as before.

The dimensionless solid phase momentum equation in other directions is

P ∗s = constant, (4.35)

where P ∗s ≡ Ps/ρsU
2 is the dimensionless granular pressure.

The gas momentum balance in the flow direction is

∂2u∗g
∂y∗2

+
∂2u∗g
∂z∗2

+
1

(1− ν)Rµ

∂(1− ν)Rµ

∂y∗
∂u∗g
∂y∗

+
1

(1− ν)Rµ

∂(1− ν)Rµ

∂z∗
∂u∗g
∂z∗

+ 18
H

σ

1

Rµ

[

ν(1− ν)H
σ
Rdrag

(

u∗s − u∗g
)

+RτSt

]

= 0. (4.36)

Finally, we write the dimensionless particle fluctuation energy equation in terms

of w∗ as

∂2w∗

∂y∗2
+
∂2w∗

∂z∗2
+

(

1

M

∂M

∂y∗
− 1

F

∂F

∂y∗
+

1

P ∗s

∂P ∗s
∂y∗

)

∂w∗

∂y∗

+

(

1

M

∂M

∂z∗
− 1

F

∂F

∂z∗
+

1

P ∗s

∂P ∗s
∂z∗

)

∂w∗

∂z∗

+
1

M

{

J

5

[(

1

w∗
∂u∗s
∂y∗

)2

+

(

1

w∗
∂u∗s
∂z∗

)2]

− 3
(

1− eeff
)

(

H

σ

)2}

w∗

+

√
π

8

1

18(H/σ)St

Rµ

MGw∗2

(

∂u∗g
∂y∗
· ∂u

∗
s

∂y∗
+
∂u∗g
∂z∗
· ∂u

∗
s

∂z∗

)

+

√
π

16

1

MG

[

6

(

H

σ

)

Rdiss

St
+ (1− ν)2

S∗
(

u∗g − u∗s
)2

St2w∗3

]

= 0. (4.37)
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We solve Eqs. (4.34) - (4.37) for u∗s, u
∗
g and w∗s subject to boundary conditions

in the rectangular flow domain using the method described in Chapter 3. The solid

phase pressure is determined by iteration for the imposed overall particle volume

fraction.

Figure 4.12 shows the solution of Eqs. (4.34) - (4.37) in the cross section of

a rectilinear flow. In this example, there is no gas pressure imposed and the gas

is entrained by the particles. The solid velocity profiles from side walls to side

walls are not flat. The particles are dragged near the flat side walls by both the

frictional collisions with the wall and the slower gas near the wall, which obeys

the no-slip boundary condition at the side walls. The gas and solid velocities are

nearly the same everywhere in the flow field except in the near vicinity of the solid

boundaries. The granular temperature from side wall to side wall is not uniform

either, mainly due to the variation of local shear rate.

Integral equations

Figure 4.12 shows that in general the gradients of mean particle velocity, fluctu-

ation velocity and gas velocity in the z-direction perpendicular to the flat side

walls are smaller than the corresponding gradients in the y-direction normal to the

bumpy boundaries. Thus, we integrate the governing equations in the z-direction

to find transverse profiles of the averaged us, ug and T , as we did for granular flows

in Chapter 3. The results closely resemble the governing equations for one dimen-

sional flow, except for terms that involve stresses and flux of particle fluctuation

energy at the flat walls.
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Figure 4.12: Theoretical solutions of mean solid velocity, gas velocity, and granular

temperature in the cross-section. Parameters: H/σ = W/σ = 11, St′ = 30,

Re′ = 0.1, lubrication cut-off εm = 0.01, and overall particle volume fraction is

0.3. Top and bottom boundary velocities are Ut = 0.5U and Ub = −0.5U . The

flat side walls are stationary. Impact parameters are e = 1, µ = 0, and β0 = 0

except for the flat side walls which have µ = 0.1 and β0 = 0.4. Top plot: profiles

of mean solid velocity u∗s and gas velocity u∗g from side wall to side wall at different

y/H. Thick lines: u∗s, thin lines: u∗g. Bottom plot: profiles of granular fluctuation

velocity w∗ at different y/H. Only granular temperature in y/H ≤ 1/2 is shown

because it is symmetrical about y/H = 1/2.
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The governing equation for the averaged mean particle velocity is

d2u∗s
dy∗2

+

(

1

P ∗s

dP ∗s
dy∗

+
1

J

dJ

dy∗
− 1

F

dF

dy∗
− 1

w∗
dw∗

dy∗

)

du∗s
dy∗

+
H

W

H

σ

5
√
πF

2J
w∗
(

τ sxz+
Ps

− τ sxz−
Ps

+
τ gsxz+

Ps

− τ gsxz−
Ps

)

+
5
√
π

8

1

JGw∗

[

1

18(H/σ)St

d

dy∗

(

νRµ

du∗g
dy∗

)

+ (1− ν)2H
σ

Rdrag

St

(

u∗g − u∗s
)

+Rτ

]

= 0, (4.38)

where τ sxz+ and τ sxz− are granular shear stresses at z = +W/2 and z = −W/2,

respectively; and τ gsxz+ and τ gsxz− are shear stresses at z = +W/2 and z = −W/2

on the grains due to the viscous gas. The granular shear stresses τ s
xz+ and τ sxz−

are evaluated using boundary conditions for a granular flow at a flat frictional

wall in terms of the granular mean velocity and temperature in the flow, assuming

negligible spin of the grains around the y-axis [50, 56]. The shear stress due to the

viscous gas is

τ gsxz+ = νRµµg
∂ug

∂z

∣

∣

∣

∣

z=W/2

, (4.39)

in which the gas velocity gradient at the wall will be determined later.

The integral equation for the granular fluctuation velocity is

d2w∗

dy∗2
+

(

1

P ∗s

dP ∗s
dy∗

+
1

M

dM

dy∗
− 1

F

dF

dy∗

)

dw∗

dy∗

+
1

M

[

J

5

(

1

w∗
du∗s
dy∗

)2

− 3
(

1− eeff
)

(

H

σ

)2]

w∗ +

√
π

2

H2

Wσ

F

M

(

qz+
Psw

+
qz−
Psw

)

w∗

+

√
π

16

1

MG

[

1

9(H/σ)St

Rµ

w∗2
du∗g
dy∗

du∗s
dy∗
− 6

H

σ

Rdiss

St
− (1− ν)2

S∗
(

u∗g − u∗s
)2

St2w∗3

]

+
5π

48

H2

σ2
F 2

MJ

[(

τ sxz+
Ps

− τ sxz−
Ps

+
τ gsxz+

Ps

− τ gsxz−
Ps

)2

+ 3

(

τ sxz+
Ps

+
τ sxz−
Ps

+
τ gsxz+

Ps

+
τ gsxz−
Ps

)2]

w∗ = 0, (4.40)

where qz+ and qz− are fluxes of particle fluctuation energy through the flat walls

at z = W/2 and z = −W/2, respectively. Once again, they are evaluated using
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boundary conditions for a granular flow at a flat frictional wall in terms of the

granular mean velocity and temperature in the flow, assuming negligible spin of

the grains around the y-axis [50, 56].

The averaged equation for mean gas velocity is

d2u∗g
dy∗2

+
1

(1− ν)Rµ

d(1− ν)Rµ

dy∗
du∗g
dy∗

+
H

W

τ gxz+ − τ gxz−
(1− ν)RµµgU/H

+ 18
H

σ

1

Rµ

[

H

σ
ν(1− ν)Rdrag

(

u∗s − u∗g
)

+RτSt

]

= 0, (4.41)

where τ gxz+ and τ gxz− are gas phase shear stresses at z = +W/2 and at z = −W/2,

respectively; for example,

τ gxz+ = (1− ν)Rµµg
∂ug

∂z

∣

∣

∣

∣

z=W/2

. (4.42)

To model the gas velocity gradient at the wall, we consider the idealized case

of a simple shear flow of gas and particles confined between two flat plates. The

flat plates are parallel to the flow and are perpendicular to the vorticity axis. We

ignore the effect of the flat plates on particles and assume that the particle phase

is homogeneous with a mean velocity profile us = Γy, where Γ is the constant

shear rate of a simple shear flow. However, the gas must satisfy the “no-slip”

boundary condition at the flat plates. The analytical solution to the gas momentum

balance (4.36) is

ug =

(

Γy − (1− ν)
β

dPg

dx

)[

1− cosh(2kz/W )

cosh(k/2)

]

, (4.43)

where

k ≡ W

σ

√

18ν(1− ν)Rdrag

Rµ

(4.44)

is a dimensionless variable. The velocity gradient at the wall is

∂ug

∂z

∣

∣

∣

∣

z=W/2

= −
(

Γy − (1− ν)
β

dPg

dx

)

k

W
tanh(k/2). (4.45)
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In cases of our interest, W/σ À 1 and k À 1. For example, when W/σ = 10,

tanh(k/2) is nearly unity except for very dilute flow with ν . 0.02. Another

consequence of k À 1 is that the average gas velocity is nearly identical to its

maximum, i.e.,

1

W

∫ W/2

−W/2

ugdz ≈
(

Γy − (1− ν)
β

dPg

dx

)(

1− 1

cosh(k/2)

)

≈ Γy − (1− ν)
β

dPg

dx
. (4.46)

Therefore, the gas velocity gradient normal to the wall is, approximately,

∂ug

∂z

∣

∣

∣

∣

z=W/2

≈ − k

W
ug, (4.47)

where ug indicates the gas velocity averaged from side wall to side wall.

We extend this simplified analysis to the bounded inhomogeneous gas-particle

flow and obtain, for example,

τ gxz+ = (1− ν)Rµµg
∂ug

∂z

∣

∣

∣

∣

z=W/2

≈ −(1− ν)Rµµg
k

W
ug. (4.48)

Therefore, the terms in Eqs. (4.38) - (4.41) involving gas velocity gradient normal

to the wall can be approximated as

τ gsxz+

Ps

≈ − kRµ

4FG

σ2

HW

u∗g
18Stw∗2

, (4.49)

and

H

W

τ gxz+ − τ gxz−
(1− ν)RµµgU/H

≈ −2H
2

W 2
ku∗g. (4.50)

With this approximate gas velocity gradient normal to the flat side walls, we

then solve Eqs (4.38) - (4.41) for the average mean gas and particle velocities and

for the particle fluctuation velocity. Figure 4.13 compares the transverse profiles of

cross-sectional average mean and fluctuation velocities from the two-dimensional
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solution of Eqs. (4.34) – (4.37) and from the one-dimensional integral Eqs. (4.38),

(4.40), and (4.41). The results for solid mean and fluctuation velocities and the

solid volume fraction from the two approaches are almost identical. The results

for gas velocity are only slightly different at this relatively large pressure gradient.

Therefore, we can use the simpler integral Eqs. (4.38), (4.40) and (4.41) to obtain

the profiles of averaged flow variables and to significantly save computation time.
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Figure 4.13: Comparison of two-dimensional solution with one-dimensional integral

solution. Parameters: St′ = 100 and Rτ = 0.2. All others are the same as in

Figure 4.12. Impact parameters: for collisions between flow spheres and between

a flow sphere and the boundary spheres: e = 0.9, µ = 0, and β0 = 0, for collisions

between a flow sphere and the side walls: e = 1, µ = 0.1, and β0 = 0.4. Symbols

are results from 2-D solution averaged from side wall to side wall, lines are results

of the 1-D integral theory. Top plot: u∗s (solid line and circles) and u∗g (dashed line

and squares). Middle plot: w∗. Bottom plot: ν.



Chapter 5

Flow Development of Bounded

Collisional Granular Flows

In previous chapters, we studied steady collisional granular flows with or with-

out gas in which all flow parameters, expect the longitudinal pressure gradient,

are independent of position along the flow. It is straightforward to achieve such

“fully developed” conditions in computer simulations by making virtual bound-

aries perpendicular to the flow periodic. However, in most physical experiments

and practical applications, granular flows require a significant length before de-

veloping fully. An attempt to reach such a state is the experiments of Louge et

al [80, 81], who studied the segregation of granular material by transverse gradients

of granular temperature in a shear cell shaped as a race track. In that apparatus,

collisional granular flows accelerated at the entrance of the straight sections and

decelerated at their exit. Understanding flow development is crucial for the design

of an experiment and for locating video cameras to observe the flow. In the indus-

trial pneumatic transport of particles, flows also experience change at entrances,

exits, bends, or near pumping stations. In these locations, the flow takes some

distance to adjust to a new fully developed state.

In this chapter, we study the development of collisional granular flows in two

kinds of shear cells. The first is the race track apparatus of Louge et al [80, 81], in

which the flow develops around a change in the geometry of its channel. The second

is an axisymmetric shear cell in which the flow develops because of a streamwise

body force or a gradient of gas pressure. Our main purpose is to locate fully

developed regions in these experiments.

136
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To that end, we focus on the variations of cross-sectional averages of particle

volume fraction, mean particle velocity, granular temperature, and if applicable,

mean gas velocity. Using a method similar to the integral treatment of a laminar

boundary layer, we derive a theory to describe flow development and we compare

its predictions with event-driven molecular dynamic simulations. We then look at

the effects of specific design parameters, such as the impact properties of the side

walls, the distance between these, the length of the straight section, etc., on flow

development.

We begin this chapter by considering the granular flow in the straight sec-

tion of the race track shear cell. We derive equations for the evolution of the

cross-sectional average particle volume fraction and granular temperature along

the channel. Comparisons with computer simulations show that the theory cap-

tures the effects of side walls and channel length. We then consider the axisym-

metric shear cell, in which centripetal accelerations play a role. In the case where

a streamwise body force is acting on the grains, we check the theory against com-

puter simulations. By combining the theory for straight sections and that for

axisymmetric cells, we predict the flow development in the entire channel of the

race track shear cell. Finally, in anticipation of an upcoming microgravity exper-

iment, we derive the evolution of gas-particle flows in an axisymmetric cell and

show examples of our theoretical predictions.

5.1 Granular Flow in a Rectilinear Channel

In an experimental study of particle segregation driven by transverse gradients of

granular temperature, Louge et al [80, 81] used the race track shear cell sketched in

Figure 5.1. These authors used binary mixtures consisting of two kinds of spheres.
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Figure 5.1: A sketch of the microgravity “race track” shear cell used by Louge et

al [80].

In this chapter, for simplicity, we ignore the binary character of their granular

material and consider instead identical spheres of diameter σ that are driven by

the inner boundary moving at a velocity U . To agitate the flow spheres, the inner

and outer boundaries are made bumpy by attaching half cylinders of respective

diameters di and do orientated in the direction perpendicular to the flow. The

gaps separating the half cylinders on the inner and outer boundaries are si and

so, respectively (Fig. 2.1). The distance between the centers of the inner and

outer boundary cylinders is Y , and the distance between the two flat side walls

is Z. The centers of flow particles are confined to a flow channel with height

H ≡ Y − σ − (di + do)/2 and width W ≡ Z − σ.

In the race track design, curved regions are meant to recirculate particles.

However, they disturb the flow, so that it takes a finite distance to reach a fully

developed state in the straight sections of the cell. To understand the effects of

various design parameters on flow development, we first analyze the flow in the
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straight sections. We adopt a Cartesian coordinate system with x pointing from the

entrance of the straight region toward its exit. The origin of the coordinate system

is on the entrance plane at a distance σ/2 above the crests of the half cylinders on

the outer boundary and is located midway between the flat side walls (Fig. 3.1).

In short, the flow domain is 0 ≤ x ≤ L, 0 ≤ y ≤ H, and −W/2 ≤ z ≤ W/2.

The conservation equations (3.1) – (3.3) are given in chapter 3. In the straight

sections, we assume that the mean particle velocity in the z direction vanishes,

and we call its components in the x- and the y-directions u and v, respectively. At

steady state, the conservation equations reduce to

∂ρu

∂x
+
∂ρv

∂y
= 0, (5.1)

∂

∂x

(

ρuu
)

+
∂

∂y

(

ρuv
)

=− ∂P

∂x
+
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

+ ρfx, (5.2)

3

2

[

∂

∂x

(

ρuT
)

+
∂

∂y

(

ρvT
)

]

=− ∂qx
∂x
− ∂qy
∂y
− ∂qz
∂z
− P

(

∂u

∂x
+
∂v

∂y

)

+ Pprod − γinelas, (5.3)

in which ρ = νρs is the density of the flow, ν is the particle volume fraction,

fx is the body force in the x direction, P is the granular pressure, τij and qi

(i, j = x, y, z) are viscous stress and flux of fluctuation energy, respectively, γinelas

is the volumetric dissipation rate of fluctuation energy due to inelastic collisions,

and

Pprod =
∑

i,j=x,y,z

τij
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

is the production of fluctuation energy due to the working of viscous granular

stresses.

Because LÀ H in the straight section, we generally have uÀ v and ∂
∂y
À ∂

∂x
,
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which simplifies the expressions for stresses and the production term. For example,

τxy = η

(

∂u

∂y
+
∂v

∂x

)

≈ η
∂u

∂y
, (5.4)

τyz = η
∂v

∂z
≈ 0, (5.5)

and

Pprod ≈ η

(

∂u

∂y

)2

+
τ 2xz
η

+

(

λ+
4

3
η

)[(

∂u

∂x

)2

+

(

∂v

∂y

)2]

+2

(

λ− 2

3
η

)

∂u

∂x

∂v

∂y
, (5.6)

where λ and η are the bulk and shear viscosities, respectively. Equation (5.5)

indicates that τyz ¿ τxy and τyz ¿ τxz.

To focus our analysis on streamwise variations of particle volume fraction, mean

velocity and granular temperature, we average these in the channel cross-section.

To that end, we integrate the conservation equations (5.1)-(5.3) in the y- and

z-directions and find the evolution equations for average volume fraction, mean

velocity and granular temperature along x.

The average of any flow quantity ψ is defined as

ψ̄(x) ≡ 1

HW

∫ H

0

∫ W/2

−W/2

ψ(x, y, z)dzdy. (5.7)

To make the integration tractable, we invoke the following assumptions:

1. The particle volume fraction and granular temperature are uniform in any

cross section, i.e., ν = ν(x) and T = T (x).

2. The shear stress τxz varies linearly with depth as in Chapter 3, i.e.,

τxz =
2z

W
τxz

∣

∣

∣

∣

z=W/2

. (5.8)

In writing Eq. (5.8), we assume implicitly that τxz is anti-symmetric about

z = 0. This might not be the case if the flat walls had different impact
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properties. If the event, we still use Eq. (5.8) but we evaluate the wall shear

stress using the impact properties averaged between the two side walls.

3. The streamwise mean particle velocity is given by

u = u(x, y) = ū(x)− ūFD + uFD(y), (5.9)

in which uFD(y) is the fully developed profile of mean velocity averaged

from side wall to side wall (Eq. (3.25)), and ūFD is the average of uFD(y) in

0 ≤ y ≤ H.

This assumption means that the transverse profile of u at an arbitrary cross-

section is parallel to its fully developed counterpart. The slip velocities at

the inner and outer bumpy boundaries thus change with the mean velocity

ū(x).

Although we assume ∂u/∂z = 0, we capture the role of the flat side walls

by keeping their shear stresses in the integral momentum equation. Similarly, we

retain the fluxes of fluctuation energy qz through these walls despite T = T (x).

Because the grains acquire a relatively large velocity in the channel, we invoke the

boundary conditions on the flat stationary walls that Jenkins [50] and Jenkins &

Louge [56] calculated in the limit of large slip. In particular, the stress on these

walls is, for example

τxz

∣

∣

∣

∣

z=W/2

= µswP, (5.10)

where µsw is the friction coefficient of grains sliding on the flat walls. Note that

this formulation is strictly valid only when one bumpy boundary is moving. This

ensures that the frictional shear stress on the flat side walls is everywhere pointing

in the same direction. Later, in section 5.2, we will show how to update the
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boundary condition in Eq. (5.10) to account for the reversal of the sliding shear

stress in different regions of the side walls.

In a fully developed flow with constant ν and T , the mean velocity profile is

governed by

d2uFD

dy2
=

1

η

(

2

W
µswP − ρfx

)

, (5.11)

which yields a parabolic velocity profile

uFD(y) = ūFD−
1

2

(

ui,FD−uo,FD

)

+
A

12
+

(

ui,FD−uo,FD−
A

2

)

y

H
+
A

2

(

y

H

)2

, (5.12)

where

ūFD =
1

H

∫ H

0

uFD(y)dy =
1

2

(

ui,FD + uo,FD

)

− A

12

is the average fully developed velocity, ui,FD and uo,FD are the mean velocity at

the inner and outer boundary, respectively,

A = U
5
√
πF

2J

H

σ
T ∗

1/2
FD

(

2H

W
µsw −

Frx
H
σ

4FGT ∗
1/2
FD

)

, (5.13)

Frx ≡
fxσ

U2

is a Froude number representing the relative magnitude of the body force, and

T ∗FD ≡
TFD

U2

is the average dimensionless fully developed granular temperature. For conve-

nience, we define the constant difference ush ≡ ui,FD − uo,FD.

We integrate the conservation equations with the velocity profile given by

Eqs. (5.9) and (5.12). In dimensionless form, the mass conservation becomes

νū∗ = Q∗ = const, (5.14)
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where ū∗ ≡ ū/U is the dimensionless average velocity. The momentum conserva-

tion can then be written as an equation in ν,

d2ν

dx∗2
+

1

K∗

{

dK∗

dx∗
− L

H

[(

Q∗

ν

)2

−
(

u∗sh
2

12
+
A∗2

720

)]}

dν

dx∗

− νFrx
K∗

L2

Hσ
+
L

H

1

K∗
dP ∗

dx∗
− L2

H2

P ∗

K∗

[(

S

N

)

i

−
(

S

N

)

o

− 2H

W
µsw

]

= 0,

(5.15)

where x∗ ≡ x/L, u∗sh ≡ ush/U , A
∗ ≡ A/U ,

P ∗ ≡ P

ρsU2
= ν(1 + 4G)T ∗,

K∗ ≡
(

λ+ 4
3
η

ρsUH

)

Q∗

ν2
=

8

3
√
π

σ

H

(

1 +
4J

5

)

G
Q∗

ν

√
T ∗

and T ∗ ≡ T/U 2 is the dimensionless granular temperature. The ratios of shear to

normal stress at the inner and outer boundaries, (S/N)i and (S/N)o, are evaluated

using the boundary conditions derived in Chapter 2.

The integrated energy conservation equation is

d2T ∗

dx∗2
+

1

κ∗

(

dκ∗

dx∗
− 3L

2H
Q∗
)

dT ∗

dx∗
+
L2

σ2
1

M

[

5πF 2

6J
µ2sw − 6

(

1− eeff
)

]

T ∗

+
L2

H2

(

u∗sh
2 +

A∗

12

)

η∗

κ∗
+
L2

H2

P ∗
√
T ∗

κ∗

(

2H

W
q∗z + q∗y,i + q∗y,o

)

− L

H

P ∗

κ∗
dū∗

dx∗
+

2

3M

(

1 +
4J

5

)(

1 +
u∗sh

2

12ū∗2
+

A∗2

720ū∗2

)(

dū∗

dx∗

)2

= 0, (5.16)

where

η∗ ≡ η

ρsUH
=

8J

5
√
π

σ

H
νG
√
T ∗,

κ∗ ≡ κ

ρsUH
=

4M√
π

σ

H
νG
√
T ∗,

and κ is the heat conductivity. The dimensionless quantities q∗z , q
∗
y,i, and q

∗
y,o are

the fluxes of fluctuation energy through the flat side wall, and through the inner
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and outer bumpy boundaries, respectively. They are evaluated using the boundary

conditions derived in Chapter 2 and they are made dimensionless with P
√
T .

To obtain Eqs. (5.14)-(5.16), we used the fact that v = 0 at both y = 0 and

y = H. Thus, the following integral vanishes:

∫ H

0

∂v

∂y
dy = v(y = H)− v(y = 0) = 0.

However, (∂v/∂y)2 or ∂v/∂y do not. They can be evaluated using the continuity

equation,

∂v

∂y
= −1

ν

∂νu

∂x

= −1

ν

dν

dx

[

A

12
− ush

2
+

(

ush −
A

2

)

y

H
+
A

2

(

y

H

)2]

,

and therefore,

(

∂v

∂y

)2

=
1

H

∫ H

0

(

∂v

∂y

)2

dy =

(

u2sh
12

+
A2

720

)

1

ν2

(

dν

dx

)2

.

In this section, our objective is merely to analyze the flow in the straight

region of the race track shear cell. Thus to evaluate our theory, we assume that

conditions at the entrance and exit of the straight region are known from numerical

simulations. Later, we will derive another theory for the curved regions, and thus

be in a position to predict the flow in the entire race track apparatus without

resorting to entrance and exit data from the simulations.

In particular, to solve Eqs. (5.14)-(5.16), we set the values of particle volume

fraction and granular temperature at the entrance and exit of the straight channel,

i.e., ν(x∗ = 0), ν(x∗ = 1), T ∗(x∗ = 0), and T ∗(x∗ = 1). We also borrow from

simulations the dimensionless flow rate Q∗. An alternative approach would be to

specify the average volume fraction ¯̄ν in the entire straight channel, and to iterate

for the value of Q∗ that yields correct ¯̄ν.
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Figure 5.2 compares our theoretical predictions for ν, ū∗ and
√
T ∗ with simu-

lation data. Also shown in the figure are two simpler theories. The first assumes

that the shear production balances the inelastic dissipation at any cross section,

so the granular temperature can be determined by an algebraic equation that does

not involve the working of the normal stresses or fluxes through the walls. The

second simplifies the energy conservation in Eq. 5.16 by ignoring the working of

the normal stress (P + τxx) in the energy balance. Predictions of the two simpler

theories deviate from computer simulations. In particular, because they ignore the

working of normal stresses, they do not capture the temperature rise near the exit

that is due to a rapid compression in the flow.

For additional insight into the balance of fluctuation energy, Figure 5.3 shows

calculations of the relative magnitude of its terms for shear production, inelastic

dissipation, working of the normal stress and total heat flux through bumpy bound-

aries. It is clear that the working of the normal stress plays an important role in

the energy balance, especially in the regions with rapid expansion or compression.

This explains why the two simpler theories mentioned earlier are not predicting

correctly the evolution of the granular temperature.

5.1.1 Effects of flat side walls

Figure 5.4 compares the flow development in three different channels with identical

spheres, the same length L and height H, but different channel width W , or

different friction coefficients µsw.

With smooth side walls, the mean particle velocity is large, so that diffusion

terms in the momentum and energy equations are relatively small except near the

exit. Thus, the presence of the exit is not felt far upstream. In particular, the
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Figure 5.2: Flow development in the straight section; comparison of theory and

simulations. Top plot: ν(x∗), middle plot: ū∗(x∗), bottom plot:
√
T ∗(x∗). Circles

are simulation results. Solid lines are theoretical predictions; dash-dotted lines are

predictions of a simplified theory that assumes a balance between shear produc-

tion and inelastic dissipation at each cross section; dashed lines are predictions

that ignore the working of the normal stress in the energy balance. Geometric

parameters: L = 420, H = 11.74, W = 8.85, σ = di = 3, do = 2, and si = so = 0.

Impact properties of flow spheres: e = 0.95, µ = 0.1, β0 = 0.4; bumpy boundaries:

ew = 0.85, µw = 0.1, β0,w = 0.4; flat side walls: esw = 0.95, µsw = 0, β0,sw = 0.
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Figure 5.3: Relative magnitude of the terms in the energy balance along the

straight section. Thin solid line: shear production; dash-dotted line: total heat

flux through both bumpy boundaries; dashed line: working of the normal stress;

thick solid line: inelastic dissipation. All terms are made dimensionless by the

inelastic dissipation in the fully developed region. Other terms in energy balance,

i.e., conduction, convection, and total heat flux through the flat side walls, are very

small and are not shown. For parameters and impact properties, see Figure 5.2.
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Figure 5.4: Effects of flat side walls on flow development. Top plot: ν(x∗), middle

plot: ū∗(x∗), bottom plot:
√
T ∗(x∗). Symbols are simulation results and lines

are theoretical predictions. Circles and solid lines: smooth side walls, µsw = 0

and W = 8.85. Triangles and dashed lines: frictional side walls, µsw = 0.1 and

W = 8.85. Crosses and dash-dotted lines: a wider cell with frictional side walls,

µsw = 0.1 and W = 36.86. All other parameters are found in Figure 5.2.
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volume fraction, which gradually decreases from the entrance as the flow accel-

erates, rises sharply near the exit while the mean velocity drops abruptly. As a

consequence of this rapid compression, the granular temperature rises from the

working of the normal stress in a thin region ahead of the exit. The rapid increase

of both the particle volume fraction and granular temperature near x/L ≈ 0.83

resembles a normal shock in supersonic gas flows.

When the flat side walls are frictional, the mean velocity is smaller and diffusion

is more significant. The higher exit volume fraction is felt farther upstream, thus

producing a gradual increase of ν toward the exit. Under these conditions, there

is no region of rapid compression, and thus the situation is analog to the subsonic

flow of a molecular gas. From an experimental viewpoint, a fully developed region

with dν/dx ≈ 0 now migrates upstream to x∗ ≈ 0.3 ∼ 0.4.

Because frictional side walls appear through the term (2H/W )µsw in the mo-

mentum balance Eq. (5.15), their role is diminished in wider cells or with flat walls

of lesser friction. Thus as the cell widens, the flow resembles the smooth wall

case just discussed, even if the wider cell has frictional walls. However, because

frictional side walls provide greater shear production of fluctuation energy through

τxz, the granular temperature is slightly higher compared to the smooth side wall

case.

5.1.2 Effects of section length

Figure 5.5 illustrates the role of section length on flow development. As expected,

longer straight sections produce longer fully developed regions. Surprisingly, in

the conditions under study, it takes a fixed length for the flow to become fully

developed. The theory captures these effects well.
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Figure 5.5: Effects of straight section length on flow development. Top plot: ν(x∗),

middle plot: ū∗(x∗), bottom plot:
√
T ∗(x∗). Symbols are simulation results and

lines are theoretical predictions. Circles and solid lines, L/σ = 140; triangles

and dashed lines, L/σ = 280; crosses and dash-dotted lines, L/σ = 560. Other

parameters, see Figure 5.2.
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5.2 Granular Flow in an Axisymmetric Shear Cell

Louge et al [83] recently proposed to study gas-particle interactions in an ax-

isymmetric shear cell operating in microgravity. The cell features an inner and

an outer bumpy boundary that can rotate independently, and two stationary flat

side walls (Fig. 5.6). The cell is designed to allow gas injection and withdrawal

through narrow distributors located on one of the flat side walls. When such gas

circulation takes place, the inherent axisymmetry of the cell is lost. This causes

cross-sectional average quantities such as the particle volume fraction, the mean

gas and solid velocities, and the granular temperature, to vary along the cell. Two

such cell arrangements are shown in Fig. 5.6. The first involves two gas distributors

that form a “co-flow” and a “counter-flow” region, in which the gas travels, respec-

tively, along with, and against, the solids. The second arrangement used a third

gas distributor to create an “iso-kinetic” region, where the overall gas pressure

gradient is kept as close to zero as possible.

Our objective is to evaluate flow development in the axisymmetric shear cell of

Louge et al [83]. We achieve this with two analyses. First, we design a granular

development theory similar to that presented earlier, and we compare its results

with numerical simulations. For this comparison, instead of creating a gas-solid

simulation as sophisticated as that of Verberg and Koch [123], we exploit our

molecular dynamic simulations of the granular phase to replace the gas pressure

gradients by equivalent streamwise body forces. This permits us to capture the

principal force that the gas exerts on the granular medium, without the complexity

of treating the gas phase explicitly. In turn, this artifice gives us confidence in the

simulation data, and it allows us to test the essence of the development theory. In

the second analysis, we design another development theory with a more realistic
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Figure 5.6: A sketch of the axisymmetric shear cell. Left: shear cell with two gas

distributors separating the cell into a “co-flow” and a “counter-flow” region. Right:

shear cell with three gas distributors. The third distributor creates an “iso-kinetic

region” by maintaining PD1 = PD3.

interaction between gas and solids. We begin with the formulation and results of

the first, purely granular development analysis.

In the first analysis, the governing equations are similar to Eqs. (5.1)-(5.3),

except that they are written in a cylindrical coordinate system. We choose the

origin of the latter at the center of the cell, with the z axis perpendicular to the

flat side walls. As in our analysis of the straight channel, we assume that the

mean particle velocity in the z direction vanishes, and we denote the components

of mean velocity in the streamwise θ-direction and the transverse r-direction as u
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and v, respectively. Then, the conservation equations are

∂ρu

r∂θ
+

1

r

∂rρv

∂r
= 0, (5.17)

∂

r∂θ

(

ρuu
)

+
1

r2
∂

∂r

(

r2ρuv
)

=− ∂P

r∂θ
+
∂τθθ
r∂θ

+
1

r2
∂

∂r

(

r2τrθ

)

+
∂τθz
∂z

+ ρfθ,

(5.18)

3

2

[

∂

r∂θ

(

ρuT
)

+
1

r

∂

∂r

(

rρvT
)

]

=− ∂qθ
r∂θ
− 1

r

∂rqr
∂r
− ∂qz
∂z
− P

(

∂u

r∂θ
+

1

r

∂rv

∂r

)

+ Pprod − γinelas, (5.19)

where fθ is the streamwise body force and Pprod is the production of fluctuation

energy due to viscous stresses.

We invoke the same assumptions as in our earlier treatment of straight channels,

namely,

1. v ¿ u and ∂/r∂θ ¿ ∂/∂r ;

2. ν = ν(θ) and T = T (θ);

3. τθz =
2z

W
τθz

∣

∣

∣

∣

z=W/2

;

4. u = u(r, θ) = ū(θ)− ūFD + uFD(r) .

The fully developed velocity profile then derives from the momentum equation

1

r2
d

dr

[

r3
d

dr

(

uFD

r

)]

=
1

η

(

2

W

τθz|z=W/2

P
− ρfx

)

. (5.20)

The boundary conditions are uFD(r = Ri) = ui,FD and uFD(r = Ro) = uo,FD,

where the inner and outer radii Ri and Ro are respectively defined as the distance

from the cell center to the flow sphere center touching the crest of the half cylinders

on the inner and outer boundaries (Fig. 5.6).

To characterize the axisymmetric geometry in a simple way, we define the

parameter δ ≡ H/R, where H ≡ Ro−Ri is the channel height and R ≡ (Ri+Ro)/2
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is the average channel radius. We then express the velocity profile in terms of δ,

but ignore terms of order δ2 or higher. Therefore, the velocity profile in the fully

developed state is

uFD(r) =ūFD −
1

24
A+ ushr

∗ +
1

2
Ar∗2 (5.21)

+ δ

[

ush

(

1

24
− 1

2
r∗2
)

+
1

6
A

(

1

4
r∗ − r∗3

)]

, (5.22)

where r∗ ≡ (r −R)/H,

A = U
5
√
πF

2J

H

σ
T ∗

1/2
FD

(

2H

W

ui,FD + uo,FD

|ui,FD|+ |uo,FD|
µsw −

Frx
H
σ

4FGT ∗
1/2
FD

)

, (5.23)

and the constant ush has the same meaning as in Section 5.1. To obtain Eq. (5.23),

we extend Eq. (5.13) by allowing the two boundaries to move in opposite directions.

In that case, to account for the effect of side walls on the mean velocity profiles,

we integrate the shear stresses on these walls using the “all-sliding” boundary

condition of Jenkins [50], and we enforce a sign on the frictional stresses that is

opposite to the direction of the local mean velocity at the wall.

We then integrate the conservation equations in the z- and r-directions to find

the evolution of any cross-sectional averaged flow variables along θ defined as

ψ̄(θ) ≡ 1

HW

∫ Ro

Ri

∫ W/2

−W/2

ψ(r, θ, z)dzdr,

where ψ represents any flow variable of interest. We express the result in terms

of R, H and keep only terms of order δ. We also use the fact that v = 0 at both

r = Ri and r = Ro, and we evaluate ∂v/∂r using the continuity equation.

The resulting mass conservation in dimensionless form is the same as for straight

channels,

νū∗ = Q∗ = constant. (5.24)
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The momentum conservation is slightly different,

d2ν

dx∗2
+

1

K∗

{

dK∗

dx∗
− L

H

[(
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ν

)2

−
(
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2
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o
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= 0, (5.25)

where x∗ ≡ θ/2π, L ≡ 2πR, the velocity scale U is the relative velocity between

the inner and outer boundary, U ≡ Ui − Uo, and

Frθ ≡
fθσ

U2
,

is the Froude number defined earlier. Other variables are defined in Section 5.1.

The dimensionless energy conservation equation is

d2T ∗
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+

1
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= 0. (5.26)

We use Eqs. (5.24)-(5.26) to determine the evolution of ν, ū∗ and T ∗ in the

axisymmetric cell. To that end, we specify the total number of particles in the cell

or, equivalently, the average volume fraction ¯̄ν in the entire channel. The solution

then fixes the dimensionless flow rate Q∗. At the gas injection and withdrawal,

we prescribe that both the particle volume fraction and the granular temperature
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vary smoothly around the gas distributors, i.e.,

ν
(

θDi +
)

= ν
(

θDi −
)

, (5.27a)

dν

dθ

(

θDi +
)

=
dν

dθ

(

θDi −
)

, (5.27b)

T
(

θDi +
)

= T
(

θDi −
)

, (5.27c)

dT

dθ

(

θDi +
)

=
dT

dθ

(

θDi −
)

, (5.27d)

where θDi is the angular position of gas distributor Di, i = 1, 2, 3.

Figure 5.7 compares the predictions of the theory with computer simulations

in which a streamwise body force is imposed on flowing spheres. To simulate the

continuously varying gas pressure with two gas distributors, the body force in the

“counter-flow” region is chosen to match the body force in the “co-flow” region

such that

fθ,co

∫ θD2

0

νdθ + fθ,cf

∫ 2π

θD2

νdθ = 0, (5.28)

where fθ,co and fθ,cf are the body forces in the co-flow and the counter-flow regions,

respectively, θD1 = 0, and θD2 is the angular position of the gas distributorD2. The

restriction on the body force in Eq (5.28) mimics a drag force that is proportional

to the solid volume fraction, and a corresponding gas pressure gradient that is

continuous across the distributors.

As expected, a larger body force produces stronger variations of particle volume

fraction along the channel and, on average, a larger mean velocity and granular

temperature. For this cell, the flow becomes fully developed in both the co-flow

and the counter-flow regions for body forces that are representative of the drag

forces expected in the experiments of Louge et al [83].

As Fig. 5.7 shows, the theoretical predictions agree reasonably well with nu-

merical simulations. However, there are two possible reasons why quantitative
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Figure 5.7: Theoretical predictions and simulation data for the flow development in

an axisymmetric cell with two gas distributors. Top plot: ν(θ), middle plot: ū∗(θ),

bottom plot:
√
T ∗(θ). The abscissa represents the angle θ defined in Fig. 5.6 in

multiples of π. The “co-flow” region lies in the range 0 6 π. Symbols and lines

represent simulations and theory. Circles and solid lines: Frθ,co = 0.00083; crosses

and dashed lines: Frθ,co = 0.00017. Eq. (5.28) provides the corresponding values

for Frθ,cf in the counter-flow region. Simulation parameters: Ri = 211, Ro = 224,

W = 17.4, σ = do = 2, di = 3, si = so = 0, Ui = U , Uo = 0, and θD2 = π. The

overall loading is ¯̄ν = 0.33, Impact properties of flow spheres: e = 0.95, µ = 0.1,

β0 = 0.4; bumpy boundaries and flat side walls: ew = esw = 0.85, µw = µsw = 0.1,

and β0,w = β0,sw = 0.4.
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agreement is not as good as in the case of straight channels. First, the effects of

centripetal accelerations are only treated to first order in δ. Second, while our

analysis of straight channels borrows inlet and exit flow data from simulations, its

counterpart for the axisymmetric cell only requires the average volume fraction in

the entire cell and the speed of the inner boundary before predicting all other flow

variables.

Figure 5.8 shows how the separation between the inlet and outlet distributors

affects flow development. As the co-flow region narrows, the flow does not develop

fully in this region, a feature that the theory captures well.

A practical design advantage of the axisymmetric cell over the race track is that

both its inner and outer boundaries can move independently. However, because

it is bounded by stationary side walls, flows in the axisymmetric cell are not only

set by the relative velocity between the two moving boundaries, but they depend

instead on the individual speed of each.

Figure 5.9 illustrates this point with one cell moving at Ui = U and Uo = 0,

and the other with Ui = 0.75U and Uo = −0.25U . In the latter, the opposite

motion of the two boundaries results in a smaller net average particle velocity. In

this case, the diffusion becomes more important and the co-flow region experiences

high volume fractions farther upstream, thus displacing the fully developed region

in the same direction.

5.3 Granular Flow in a Shear Cell Shaped as a Race Track

In the previous two sections, we analyzed the development of collisional granular

flows in straight, rectilinear channels and in axisymmetric cells. By combining the

theory in Section 5.1 for straight regions and that in Section 5.2 for curved regions,
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Figure 5.8: Effect of gas distributor separation on flow development in the ax-

isymmetric cell for Frθ,co = 0.00083. Circles and solid lines: gas distributor D2 at

θD2 = π; crosses and dashed lines: θD2 = π/2. For other symbols and parameters,

see Fig. 5.7.
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Figure 5.9: Effect of boundary velocities on flow development in an axisymmetric

cell for Frθ,co = 0.00083 and θD2 = π. Circles and solid lines: Ui = U and Uo = 0;

crosses and dashed lines: Ui = 0.75U and Uo = −0.25U . For other symbols and

parameters, see Fig. 5.7.
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we can now predict the flow development in the entire race track shear cell.

Unlike the analysis for straight sections, we no longer require any input from

the simulations. Instead, we assume continuity and smoothness of the particle

volume fraction and granular temperature at junctions between straight and curved

regions, Eq. (5.27). We only specify the overall loading ¯̄ν in the cell. In the absence

of external forces, symmetry permits us to solve in only a half cell.

Figure 5.10 compares theoretical prediction and computer simulations for two

different race tracks. In the first, the side walls are smooth. In the second, they are

frictional. As discussed in Section 5.1, friction slows down the flow and increases

the relative importance of diffusion. The theory captures the phenomena qualita-

tively. We attribute discrepancies to the relatively small radius δ ≡ H/R = 1/5.4

of the curved regions, which exacerbates centripetal accelerations that the theory

only treats to first order in δ.

5.4 Gas-particle Flow in an Axisymmetric Shear Cell

In previous sections, we analyzed the development of collisional granular flows in

various geometries, with and without body forces. In Chapter 4, we also gained

confidence in a theory for semi-infinite shear flows of solids in a viscous gas, al-

beit without a significant relative velocity between the two phases. The agreement

between theory and simulations encourages us to extend our analysis of flow de-

velopment to gas-solid suspensions. Our objective is to prescribe conditions for

the microgravity experiments that Louge et al [83] proposed for an axisymmetric

shear cell. Because numerical simulations involving gas and solids in the entire cell

are not yet available to test the theory, our predictions are only meant to provide

guidance for the design of experiments.
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Figure 5.10: Flow development in a race track over half the cell. Circles and

solid lines: smooth side walls; crosses and dashed lines: frictional side walls with

µsw = 0.1. The dash-dotted line indicates the junction of the straight and curved

sections. The latter is located to the right of this vertical line. For other symbols

and parameters, see Fig. 5.7.
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We analyze the development of the gas-particle flow in axisymmetric shear

cells sketched in Fig. 5.6. The imposed gas pressure gradient produces variation

of particle volume fraction, mean velocity, and granular temperature along the

cell. As in Chapter 4, we consider cases where the particle inertia is too large for

the viscous forces to alter the granular velocity distribution significantly, so that

all constitutive relations for the particle phase remain unchanged. Moreover, we

assume that the gas pressure gradient is large enough for the drag force to dominate

the viscous stresses due to velocity gradients in the gas phase. Therefore, the

conservation equations for the granular phase are nearly identical to Eqs. (5.24)-

(5.26). The only differences are that the Froude number Frθ in Eq. (5.25) is

replaced by (σ/H)2Rτ/ν and that the viscous dissipation γvis is added to Eq. (5.26)

for the conservation of fluctuation energy.

The dimensionless pressure gradient is defined as

Rτ ≡
−(dPg/Rdθ)

ρsσ(U/H)2
. (5.29)

Note that this definition of Rτ is based on the local gas pressure gradient, which

is not necessarily constant along the cell. In physcial experiments, it is more

convenient to define a dimensionless pressure gradient based on the overall pressure

drop as

Rτ,exp ≡
(PD2 − PD1)/R(θD2 − θD1)

ρsσ(U/H)2
. (5.30)

Although Rτ differs numerically from Rτ,exp, the two measures of the gas pressure

gradient generally vary in tandem.

The mass conservation for the gas phase is

(1− ν)ū∗g = Q∗g, (5.31)

where ū∗g ≡ ūg/U , and ūg is the cross sectional average gas velocity. However,
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in practical experiments, it is not straightforward to prevent gas from leaking

through the four corners of the channel, where the rotating boundaries hover near

the stationary walls of the cell. Such leaks can occur in thin channels of length Ll

and thickness equal to the clearance gap δl between stator and rotor. A common

situation is that the gas leaks from the flow channel to large voids of nearly constant

pressure Pext. In the presence of such leaks, the volume flow rate Q∗g is not a

constant. Because a typical leak occurs over a path Ll ¿ R, the leak rate can be

approximated by a simple one dimensional viscous flow in a thin channel, i.e.,

dQ∗g
dx∗

=
δ3l

12LlAc

Pg − Pext

µgU/2πR
, (5.32)

where x∗ ≡ θ/2π and Ac is the cross-sectional area of the channel that is used

to make the gas flow rate dimensionless, Q∗g ≡ Qg/UAc. In our calculations, we

assume that the void pressure equilibrates to the average pressure between inlet

and outlet, Pext = (PD1 + PD2)/2, unless specified otherwise.

Because in the relatively dense situations of interest the viscous stresses and

inertia of the gas are smaller than the drag force or the gas pressure gradient, the

gas momentum equation reduces to a balance between the latter two terms. In

dimensionless form,

dP ∗g
dx∗

=
(2πR)2β

(1− ν)µg

(

ū∗s − ū∗g
)

, (5.33)

where P ∗g ≡ Pg/
µU
2πR

is the dimensionless gas pressure and ū∗s is the dimensionless

average solid velocity.

Following our treatment of granular flow in the axisymmetric cell, we assume

that the particle volume fraction and the granular temperature are continuous and

smooth at the gas distributors, see Eq. (5.27). In the gas phase, pressure is known

at these locations.
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Note that because the inertia and viscous stresses in the gas are ignored, the

gas velocity changes abruptly as gas is added or withdrawn at the distributors. In

our approach, this implies that the drag force is artificially discontinuous there. A

more rigorous treatment would require to evaluate the three-dimensional gas and

solid flow in the vicinity of the distributors. Because our interest resides where the

flow is fully developed, and because these regions are far from the distributors, the

discontinuities are not serious.

For given gas pressures at the inlet and outlet, for known velocities of the inner

and outer boundaries, and for a specified overall solid volume fraction, Eqs. (5.24)-

(5.26) are solved together with Eqs. (5.32) and (5.33) using initial guesses for the

volume flow rate of solids in the entire cell and the corresponding quantity for

the gas right after each distributor. The guesses are then adjusted until the total

volume fraction of solids in the cell and the pressure difference across each region

converge to the values imposed. Because of the nonlinearity of the problem, we use

a modified Newton-chord method [99] to carry out the corresponding iterations.

For given pressure differences across the distributors, the solution yields the solid

mass flow rate and the gas flow rates in the co-flow, counter-flow and, if used, the

iso-kinetic regions. As mentioned earlier, while the solid volume flow rate is unique

along the cell, its counterpart in the gas changes abruptly at the distributors.

Figure 5.11 shows predictions of gas pressure, solid and gas velocities, solid

volume fraction and granular temperature for two different Stokes number but the

same dimensionless gas pressure gradient Rτ,exp. Because Rτ,exp measures the gas

pressure gradient relative to the solid phase shear stress, the same Rτ,exp implies

that the particle motion remains unchanged, as illustrated in Fig. 5.11. However,

because a larger Stokes number is associated with a larger solid phase stress, the
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drag force exerted by the gas must be larger to maintain the same solid velocity,

which in turn implies larger relative velocities between particles and gas.

As Fig. 5.12 illustrates, gas leaks along the channel modify the gas flow rate

between distributors, and the gas velocity changes accordingly. In their presence,

it is more difficult for the flow to become fully developed.

A significant experimental challenge is to measure the gas velocity in the pres-

ence of a concentrated suspension of large spheres. A method is to inject enough

gas through a third distributor to equalize the mean gas and solid velocity over

most of the channel cross-section in a short “isokinetic” region of the cell. Typi-

cally, the third gas distributor may be located near the injector D1. A sensitive

control system then maintains the difference between the pressures at D3 and D1

as small as possible by injecting gas that is delivered by a servo-controlled valve.

To evaluate the effectiveness of the isokinetic region and its effect on flow de-

velopment, Figure 5.13 compares two cells with two or three distributors. As this

Fig. shows, the mean gas and particle velocities are nearly indistinguishable in

the iso-kinetic region. Thus, if the volume fraction can be independently mea-

sured in the isokinetic region, it is possible to infer the gas volume flow rate there,

and from the knowledge of the inlet and outlet volume flow rates, to calculate the

corresponding quantities in all regions of the cell.
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Figure 5.11: Predictions of gas-particle flows with different Stokes numbers in an

axisymmetric cell with two distributors separated by π. Top plot: gas pressure

Pg−PD2

PD1−PD2
, where PD1 and PD2 are the gas pressures at distributors D1 and D2,

respectively. Middle plot: average solid velocity ū∗s and gas velocity ū∗g. Bottom

plot: ν and
√
T ∗. Solid lines: predictions for St = 400. Dashed lines: St = 1000.

Simulation parameters: Ri = 212, Ro = 226, W = 18, d = di = do = 2, si = 1,

so = 0, ¯̄ν = 0.3, Rτ,exp = 0.008. There are no leaks along the channel. Impact

parameters for spheres: eeff = 0.85; for all other impacts: e = 0.85, µ = 0.1 and

β0 = 0.4.
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Figure 5.12: Predicted effects of gas leak on gas-particle flows in an axisymmetric

cell with two distributors separated by π for a Stokes number St = 400. Top left:

gas pressure Pg−PD2

PD1−PD2
, top right: dimensionless gas flow rate Q∗g, middle left: ū∗s,

middle right: ū∗g, bottom left: ν, bottom right:
√
T ∗. Solid lines: predictions for

a cell without leaks. Dashed lines: leak path length Ll/R = 0.0688 and clearance

δl/Ll = 0.0133. For all other parameters, see Fig. 5.11.
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Figure 5.13: Predicted effects of the isokinetic region on the flow development

in an axisymmetric cell with St = 1000. Top plot: gas pressure ratio Pg−PD2

PD1−PD2
,

where PD1 and PD2 are pressures at the distributors for injection and withdrawal,

respectively. Middle plot: average solid velocity ū∗s and gas velocity ū∗g. Bottom

plot: particle volume fraction ν and fluctuation velocity
√
T ∗. Solid lines: with

three gas distributors, D1 at θ = 0, D2 at π and D3 at 7
4
π. Dashed lines: with

two distributors separated by π. For all other parameters, see Fig. 5.11.



Chapter 6

Measurement Errors in the Mean

Velocity and Granular Temperature

Flowing granular assemblies consist of a large number of discrete solid particles.

Experimental measurements of particle velocity, density, and velocity fluctuation

are crucial to the understanding of these flows and to the development of successful

theories.

Several techniques are available to achieve such measurements. For example,

positron emission particle tracking [100] and nuclear magnetic resonance [34] do

not invade the flow and provide unique information in the interior of the granular

material. However, these techniques are expensive and complex [71, 114, 96, 97,

136].

An alternative is to observe the flow through side walls with high-speed dig-

ital photography. This method is suitable for flows of spherical grains in which

interior particles have similar velocity statistics than those near the observation

windows [81, 10, 41]. It was also used in flows of a particle monolayer [132, 122] and

in colloids [26]. In this technique, the camera captures successive digital images

of the grains, thus yielding a series of instantaneous positions from which velocity

statistics can be inferred.

Here, we focus on “rapid” granular flows, in which particles interact with one

another through impulsive collisions rather than long-lasting contacts. Two param-

eters are of particular interest to the theoretical interpretation of such flows [81].

They are the average velocity uk and the “granular temperature” Tkk ≡<u′k2> in

the direction k, where <> means averaged quantities, uk ≡<up
k>, u

′
k ≡ up

k − uk,

170
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and up
k is the instantaneous particle velocity in direction k. Generally, observations

through windows only permit the determination of the two components of uk and

Tkk in the plane of the window.

Because meaningful velocity statistics requires many images, the determination

of particle positions and their tracking rely on automatic image processing. This

paper describes an algorithm developed for this purpose. The accuracy of the

software is predicated upon its ability to detect individual particles on a digital

image, to track the detected spheres in two or more consecutive frames, and to

measure the distance traveled.

This technique has four principal limitations. The first is associated with the

size of image pixels. The second reflects the software’s inability to track fast-

moving spheres. The third has to do with the possible occurrence of collisions

between two consecutive images. The last is associated with the finite size of the

strips that partition images of the flow domain to evaluate profiles of the mean flow

variables. We provide a statistical theory to calculate the corresponding errors in

the time-average particle velocity and the granular temperature. We validate the

theory against numerical simulations of typical granular flows, and we use it to

prescribe ways to minimize such errors.

6.1 Vision Algorithm

We conducted microgravity experiments with solid spheres interacting in a series

of short binary collisions [81]. The flow was sheared between a moving and a

stationary boundary on which cylindrical bumps were attached. The rectangular

channel was further bounded in its depth by two flat walls, one of which served as

an observation window.



172

A Kodak EktaPro R0 camera recorded the motion of the spheres by collecting

1000 digital images per second consisting of 512× 384 square pixels on a 0− 255

greyscale. The scene was illuminated by two light sources that created small spec-

ular reflections on otherwise diffusively reflective monochrome, single-size spheres

of acrylic devoid of identifying marks. Figure 6.1(a) shows a 400 × 296 region of

interest containing spheres having a diameter of 34 pixels (2.0 mm).

The objective of the computer vision algorithm is to track as many unoccluded

(fully visible) spheres as possible. As the image sequence progresses, some spheres

become occluded, while others emerge to be completely visible. Consequently,

certain trajectories terminate before reaching the edge of the imaging region while

others spontaneously arise at any location.

Our sphere tracking algorithm executes the following steps:

1. Compute a binary edge image containing all significant intensity transitions

and consisting of lines of one-pixel width.

2. Partition the image into a set of non-overlapping circles by matching a

binary sphere edge template to the result of step 1.

3. Record the locations of centers of spheres identified in step 2 as starting

points for a set of trajectories.

4. Repeat steps 1 and 2 for the next image.

5. Reconcile the current set of trajectories with the sphere locations produced

in step 4.

(a) If a match is found between a sphere and a trajectory then the latter

is extended by one step to the sphere center. If not, the trajectory is
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(a) Original image

(b) Edge image

(c) Sphere trajectories

Figure 6.1: A typical image acquired in microgravity experiments with 2 mm

acrylic spheres. The top stationary boundary and bottom moving boundary are

barely distinguishable. Lighting on both sides produces specular spots on most

spheres.
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terminated.

(c) If a sphere cannot be matched to an existing trajectory then its center

becomes the starting point for a new trajectory.

6. Repeat steps 4-5 for all remaining images in the sequence.

The edge algorithm in step 1 is computed using gradient estimation followed

by thresholding with hysteresis and non-maximum suppression [49]. The resulting

edge image is shown in Figure 6.1(b). The image partitioning in step 2 involves the

scanning of a binary template of a prototype circle over all possible pixel locations.

A match requires that a given number of template pixels coincides with the edge

image. If a conflict arises between two overlapping matches above the threshold,

the match with the highest number of coincident pixels is selected. The result of

step 1 are shown in Fig. 6.1(c). Because our spheres are indistinguishable, they

are matched to a trajectory by proximity to their last known location. Thus,

the algorithm of step 5 requires that the distance traveled from one image to the

next be less than a maximum distance Ltr, which is generally smaller than, and

proportional to, the radius of the sphere. This requirement places an upper bound

on uF/d, where u is the projection of sphere velocity in the image plane, F is the

camera frame rate and d is the sphere diameter. Equivalently, the algorithm loses

track of spheres with speed larger than Utr = LtrF . Successful trajectories are

shown by thin lines in Fig. 6.1(c).

If computation time is an issue, it is possible to achieve faster detection by

limiting the processing to the immediate neighborhood of spheres having already

been tracked in previous images. In this case, by ignoring the emergence of new

spheres, the algorithm lets the population of detected objects shrink by gradual
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occlusion. To avoid excessive corruption of the corresponding velocity statistics,

the entire image is periodically reexamined for new spheres. Our experience is

that a tradeoff can be found between the need for algorithmic speed and that of

statistical accuracy.

6.2 Measurement Errors

In this section, we analyze errors that are intrinsic to the vision technique outlined

earlier. We pay particular attention to errors in the granular temperature, which

plays a crucial role in the dynamics of granular flows. Because granular temper-

ature is a second moment of velocity fluctuations, its uncertainties can arise, for

example, from correlated random velocity errors that would otherwise average to

zero.

6.2.1 Imperfect Tracking

Because individual spheres are indistinguishable, the vision algorithm ignores large

velocities in step 5, and thus it effectively truncates the velocity distribution func-

tion of the grains. Because the granular temperature is the second order central

moment of the velocity distribution, the truncation modifies the granular temper-

ature directly, as well as indirectly through errors in the mean velocity.

To predict the corresponding errors, we begin with general considerations of

biased sampling. If the exact probability density function of a random variable x

is f(x) with
∫ ∞

−∞
f(x)dx = 1,

and if a measuring technique can only sample x within the interval [a, b], the
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probability density function of the sampled x̃ is

f̃(x̃) =











1
A
f x ∈ [a, b]

0 otherwise
(6.1)

where

A ≡
∫ b

a

f(x)dx

is a normalization constant for f̃(x̃), and the tilde represents the measured value

of a variable. Then, the measured mean of x is

˜̄x =<x̃>=

∫ ∞

−∞
x̃f̃(x̃)dx̃ =

1

A

∫ b

a

xf(x)dx = x̄+
1

A

∫ b−x̄

a−x̄

x′fdx′ (6.2)

where x̄ ≡
∫∞
−∞ xfdx is the actual mean of x and x′ ≡ x − x̄ is the fluctuation.

Similarly, the measured variance of x is

σ̃2x =<(x̃− <x̃>)2>=<(x̃− x̄)2> −(x̄− ˜̄x)
2
. (6.3)

Substituting Eq. (6.2) into Eq. (6.3), we obtain

σ̃2x =
1

A

∫ b−x̄

a−x̄

(

x′
)2
fdx′ −

(

1

A

∫ b−x̄

a−x̄

x′fdx′

)2

. (6.4)

We illustrate our analysis with steady, fully-developed granular flows in the

rectangular channel mentioned earlier. For such flows, the mean velocity com-

ponent normal to the moving boundary vanishes, and the observation technique

only detects two components of particle velocity in the plane of the window. The

limitations of particle tracking constrain detectable particle fluctuation velocities

to lie within the circle in velocity space satisfying

C2
y +

(

ux + Cx

)2 ≤ U 2
tr, (6.5)

where ux is the mean granular velocity in the x-direction, and Cx and Cy are,

respectively, particle fluctuation velocities in the x-direction of the mean flow and

the y-direction perpendicular to the moving boundary.
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Jenkins and Richman [59] derived the distribution of (Cx, Cy) for slightly in-

elastic spheres,

f(Cx, Cy) =
1

2πT

(

1−
√

2

π

dB

T 3/2
Cx
∂ux

∂y
Cy

)

exp

(

−
C2

x + C2
y

2T

)

, (6.6)

where T = (<C2
x> + <C2

y>)/2 is the granular temperature, d is the diameter of the

spheres, B = π(1 + 5/8G(ν))/12
√
2 is a correction to the Maxwellian distribution

for dense flows, and G(ν) = ν(2− ν)/2(1− ν)3 [22]. For simplicity, we assume

that the granular temperature is isotropic, i.e.

T =

∫∫ ∞

−∞
C2

xf(Cx, Cy)dCxdCy =

∫∫ ∞

−∞
C2

yf(Cx, Cy)dCxdCy.

In principle, to calculate the measured mean velocity and granular temper-

ature, we should substitute the velocity distribution into Eqs. (6.2) and (6.4).

However, because the circular domain in Eq. (6.5) prohibits analytical integration,

we approximate it by a square domain D,

−(Utr + ux) ≤ Cx ≤ Utr − ux and − Utr ≤ Cy ≤ Utr. (6.7)

to obtain analytical expressions for ũ and T̃ . Because the square is larger than the

circle, our analytical integrations underpredict the errors slightly. However, under

typical conditions, we find negligible differences between the analytical results that

follow and numerical integrations over the actual circular domain.

Using the square domain D, the measured mean velocity in the x-direction is

ũx = ux +
1

A

∫∫

D

CxfdCxdCy (6.8)

where

A ≡
∫∫

D

fdCxdCy =
1

2
erf

(

Utr√
2T

)

[

erf

(

U−√
2T

)

+ erf

(

U+√
2T

)

]
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with U+ ≡ Utr + ux and U− ≡ Utr − ux. Upon evaluating the integral, we obtain

ũx = ux −
√

2T

π

exp
(

− U 2
−/2T

)

− exp
(

− U 2
+/2T

)

erf
(

U−/
√
2T
)

+ erf
(

U+/
√
2T
) . (6.9)

Note that, because the correction term proportional to B in Eq. (6.6) is odd in

Cy, it vanishes upon integrating over the domain D that is symmetric in Cy.

Consequently, it does not affect ũx or, as we will later establish, the measured

temperature in the x-direction. However, it does contribute to ũy, which only

deviates from uy if the velocity distribution is non-Maxwellian. With uy = 0, we

find

ũy =
2B

π
d
∂ux

∂y

[

1− 2√
π

Utr√
2T

exp
(

U2
tr/2T

)

erf
(

U2
tr/2T

)

][

exp
(

− U 2
−/2T

)

− exp
(

− U 2
+/2T

)

erf
(

U−/
√
2T
)

+ erf
(

U+/
√
2T
)

]

.

(6.10)

Upon carrying out the integrations in Eq. (6.4), we find

T̃xx

T
= 1− 2√

π

(

U−/
√
2T
)

exp
(

− U 2
−/2T

)

+
(

U+/
√
2T
)

exp
(

− U 2
+/2T

)

erf
(

U−/
√
2T
)

+ erf
(

U+/
√
2T
)

− 2

π

[

exp
(

− U 2
−/2T

)

− exp
(

− U 2
+/2T

)

erf
(

U−/
√
2T
)

+ erf
(

U+/
√
2T
)

]2

, (6.11)

and

T̃yy

T
= 1− 2√

π

(

Utr/
√
2T
)

exp
(

− U 2
tr/2T

)

erf
(

Utr/
√
2T
) − 1

T

(

ũy

)2
. (6.12)

Molecular dynamic simulations provide a framework in which to isolate the

contribution of imperfect tracking from other kinds of errors, and thus to test the

predictions of Eqs. (6.9) to (6.12) with realistic velocity distributions. In these

simulations [76], we shear spheres between two parallel bumpy boundaries moving

at velocities Ut and Ub (as shown in Fig. 3.1), and apply a periodic boundary con-

dition in the x-direction. We define the relative velocity between two boundaries

as the characteristic velocity U ≡ Ut − Ub. The characteristic length H is the
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distance in y-direction between two sphere centers touching the crest of bumps on

top and bottom boundaries, respectively. The origin of the coordinates is chosen

to be in the center plane between the two flat side walls and at a sphere radius

above the crest of a bump on the bottom boundary.

We focus on “visible” spheres within a diameter from the observation window

and compute their velocity statistics. After reaching a steady state, we simulate

imperfect tracking by computing another velocity statistics on only those spheres

whose speed in the xy plane is smaller than a pre-selected value.

Figure 6.2 compare the theretical prediction of the error on the mean velocity

and granular agitation in x-direction due to imperfect tracking to the molecular

dynamical simulation results. In simulations, the two boundaries move at the same

speed but opposite directions, Ut = U/2 while Ub = −U/2. The ordinate is the

distance in the y-direction made dimensionless by H (Fig. 3.1). The symbols are

data from simulations in which granular speeds exceeding Utr are ignored. The

lines are predictions of the theory in Eqs. (6.9) and (6.11). Squares and solid lines:

Utr/U = 1; circles and dash-dotted lines: Utr/U = 0.2. The distances between

the line of centers of bumps on the two opposite bumpy boundaries and between

the observation window and the far flat wall are 9d. The cylindrical bumps have a

diameter d. The overall volume fraction is 45%. The flow spheres have a coefficient

of normal restitution e = 0.93, a coefficient of tangential restitution β0 = 0.4, and

a friction coefficient µ = 0.1. The cylindrical bumps have eb = 0.85, β0,b = 0.4,

and µb = 0.1. The flat wall and observation window have ew = 0.8, β0,w = 0.4,

and µw = 0.1.

As Fig. 6.2 indicates, our predictions of ũx and T̃xx agree well with simulations.

However, while our theory also captures ũy and T̃yy, it only does so qualitatively
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Figure 6.2: Effects of tracking failure on measured mean velocity (a) and granular

temperature profiles (b), all in the x-direction, made dimensionless with the relative

speed U .
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when Utr/U . 0.2. We attribute this to the nature of the velocity distribution

in the y-direction. In that direction, the boundaries produce a distribution that

exhibits two distinct lobes resembling a “Weibull” distribution [130], rather than

the Gaussian postulated by Jenkins and Richman [59] in Eq. (6.6). However,

because the Weibull distribution remains symmetrical in Cy, this subtlety does

not affect ũx or T̃xx.

6.2.2 Finite Pixel Size

In our experiments, granular motion is recorded in a series of digital images con-

sisting of an array of square pixels of size p. Because the vision algorithm detects

several pixels on the circular outline of a sphere, it can generally fix the (x, y)

position of the latter with sub-pixel accuracy. The corresponding uncertainties in

sphere location produce random errors in the recorded velocity, which are inter-

preted as an artificial augmentation of the granular temperature.

The accuracy depends on practical factors that include illumination, contrast

and completeness of the outline. Because it is generally no worse than a half pixel,

we calculate the corresponding augmentation in T by considering that a sphere

center lying with equal probability anywhere within a pixel is artificially relocated

at the center of the pixel. Equivalently, the measured x-coordinate is

x̃0 = x0 + (1/2)pξ0, (6.13)

where x0 is the exact center coordinate and ξ0 is a random variable that is uniformly

distributed in the interval [−1, 1]. Similarly, the measured coordinate in the next

image is

x̃1 = x1 + (1/2)pξ1, (6.14)
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where x1 is the exact x-coordinate in that image and ξ1 is a random variable

distributed like ξ0.

At the camera frequency F = 1/∆t, the x-component of the measured sphere

velocity measured from the two consecutive images is

ũ =
x̃1 − x̃0

∆t
=
x1 − x0
∆t

+
(ξ1 − ξ0)p

2∆t
= u+ η

1

2
pF (6.15)

where u is the actual velocity component, and η ≡ ξ1−ξ0 is a new random variable.

Because ξ1 and ξ0 are independent random variables, η is distributed as

fη(η) =

∫ ∞

−∞
f(t)f(t− η)dt =























(1/2) + (1/4)η η ∈ [−2, 0]

(1/2)− (1/4)η η ∈ [0, 2]

0 otherwise

(6.16)

Using this distribution, we find the errors in velocity and temperature,

ũx =<ũ>=<u+ η(1/2)pF >=<u> + <η> (1/2)pF, (6.17)

and

T̃xx = <(ũ− <ũ>)2>

= <(u− <ũ>)2> + <η2> (1/4)(pF )2+ <η(u− <ũ>)> (1/2)pF, (6.18)

where <> denotes the ensemble average, so that the mean particle velocity and

temperature in the x-direction are ux =< u > and Txx =< (u− ux)
2 >. From

Eq. (6.16) we calculate < η >= 0 and < η2 >= 2/3. Assuming η and u to be

independent so that < η(u− < ũ >) >=< η >< (u− < ũ >) >= 0, we find the

contributions of the finite pixel size to the errors in mean velocity and granular

temperature,

∆ux = ũx − ux = 0, (6.19)
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and

∆Txx = T̃xx − Txx = (1/6)(pF )2. (6.20)

By inspection, errors in the y-components of mean velocity and granular temper-

ature can be obtained by substituting y for x in these expressions.

In our microgravity shear cell, experimental parameters combine to yield a

characteristic frequency

F0 ≡ U/(d/2), (6.21)

in terms of which it is convenient to express the error in T that is attributed to

the finite pixel size,

∆Txx/U
2 =

2

3

(

p

d

F

F0

)2

. (6.22)

We test our predictions by superimposing a pixel grid on the numerical simu-

lations outlined earlier. The best resolution corresponds to p = 0. To simulate a

finite pixel size, the simulations relocate the sphere center coordinates (x, y) to the

center of the pixel that includes (x, y). To evaluate the role of resolution alone,

the simulations track all spheres regardless of speed, and the virtual camera frame

rate is set much higher than the collision frequency. First, the simulations confirm

that finite pixel size leads to no error in mean velocity. Then, as Fig. 6.3 shows,

the simulations agree well with our analysis, except in the center of the flow, where

the mean particle velocity vanishes. In this case, more samples are needed for the

velocity statistics to converge.

Our analysis also reveals that errors due to finite pixel size are large if the

camera frequency is high or the local speed is low i.e., if the distance traveled

between two consecutive images is only on the order of a few pixels. This problem

can be remedied if the spheres do not experience gravitational accelerations. In this

case, their velocity can be inferred from more than two consecutive images, as long
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Figure 6.3: Effects of finite pixel size on measured profiles of granular temperature

in the x-direction. The abscissa is the corresponding relative error in Txx. For

the ordinate, see Fig. 6.2. The symbols are data from simulations in which grain

centers are artificially repositioned to the center of a pixel before calculating grain

velocities between two consecutive frames. The lines are predictions of the theory

in Eq. (6.20). Circles and dashed lines: F/F0 = 1.85; squares and solid lines:

F/F0 = 3.70. There are 384 pixels between the lines of bump centers on the two

moving boundaries, which corresponds a ratio d/p ≈ 43. See Fig. 6.2 for other

simulation parameters.
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as they do not collide with other spheres. To implement this method, the vision

algorithm inspects trajectories and, if the latter are straight, finds spheres that

have not experienced any collision. The algorithm then infers their velocity from

as many successive frames as possible using a linear regression of the trajectory,

thus reducing p to a lower effective resolution p′ and behaving as if the camera

frequency F was smaller. Because the pixel error in Eq. (6.20) is proportional to

(pF )2, it can be substantially reduced. However, because the effective frame rate

can be no lower than the collision frequency fcoll, a lower bound of the error in

granular temperature is

∆T > (1/6)(p′fcoll)
2
, (6.23)

where the collision frequency derives from the kinetic theory

fcoll = (24/
√
π)G(ν)

√
T/d. (6.24)

6.2.3 Collisions

In agitated flows, some spheres can experience undetected collisions between two

consecutive frames. In this section, we examine the resulting errors for an algorithm

that infers velocity from the distance traveled between the two images, and that

ignores whether collisions may have occurred. In the absence of gravity, and with

sufficient frame rate, more elaborate algorithms could in principle interpolate prior

and subsequent trajectories, infer the likelihood that a sphere has collided between

the two frames, and reject the corrupted velocity sample. Our analysis of the

simpler algorithm will therefore yield a worst case benchmark to justify whether

more sophisticated methods are necessary.

The role of particle collisions in generating errors was also examined by Wild-

man and Huntley [132], who inferred granular temperature from the observed mean
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displacement, rather than from the direct calculation of second moments that we

use. In their method, assuming that a particle stops if it collides between two

images, Wildman and Huntley showed that collisions contribute a second order

correction to the mean displacement.

We begin our analysis by assuming that the velocity distribution is Maxwellian.

Then, the most probable number of collisions a sphere may experience between two

successive images is

α = fcoll∆t, (6.25)

where ∆t = 1/F is the time elapsed between the two images. For frame rates

exceeding the collision frequency, we ignore the likelihood that one sphere collides

more than once between two successive images. Then, on average, if N is the total

number of particles sampled, αN spheres experience one collision during ∆t and

the other (1− α)N spheres proceed with intact trajectories.

If a sphere i collides between two frames, the event occurs with uniform prob-

ability during ∆t. Therefore, in the absence of gravity, the algorithm reports a

velocity

ũc
i = ξuai + (1− ξ)ubi , (6.26)

where ξ is a random variable uniformly distributed between 0 and 1, uai and ubi are

the pre- and post-collision velocities of sphere i, respectively, and the superscript

c denotes a velocity measurement corrupted by a collision. The measured mean

velocity is then

<ũ>=
1

N

N
∑

i=1

ũi =
1

N

αN
∑

i=1

ũc
i +

1

N

(1−α)N
∑

i=1

ũp
i = α <ũc> +(1− α) <ũp>,

where the superscript p on the measured velocity denotes intact particles. The
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average measured velocities of collided and intact spheres are

<ũc>=
1

αN

αN
∑

i=1

ũc
i and <ũp>=

1

(1− α)N

(1−α)N
∑

i=1

ũp
i

Similarly, the measured granular temperature can be expressed as

T̃ = αT̃ c + (1− α)T̃ p (6.27)

with

T̃ c =
1

αN

αN
∑

i=1

(

ũc
i − ũ

)2
and T̃ p =

1

(1− α)N

(1−α)N
∑

i=1

(

ũp
i − ũ

)2
.

Assuming that the number of sampled particles is large, we replace the summation

by an integral over the velocity distribution. For example,

1

αN

αN
∑

i=1

ψ(ui) =⇒
1

n

∫

ψ(c)fM(c)dc,

where ψ is any function of particle velocity, n is the particle number density, and

fM is the Maxwellian velocity distribution. For simplicity, we ignore correlations

between the pre- and post-collision velocities, so that uai and ubi behave as two

independent random variables distributed as a Gaussian.

We find that collisions do not alter measurements of the mean velocity u,

<ũ>=<ũc>=<ũp>= u. (6.28)

However, they affect measurements of the granular temperature since

T̃ p =

∫

(

ũp − u
)2
f(c)dc = T,

T̃ c =

∫

(

ũc − u
)2
f(c)dc =

∫

ξ

∫

c1

∫

c2

[

ξc1 + (1− ξ)c2 − u
]2

f(c1)f(c2)dc1dc2dξ

= 2

∫ 1

0

ξ2dξ

∫ ∞

−∞
c2f(c)dc+ 2

∫ 1

0

ξ(1− ξ)dξ
[ ∫ ∞

−∞
cf(c)dc

]2

− u2

=
2

3

(

<u2> −u2
)

=
2

3
T. (6.29)
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Finally, combining Eqs. (6.27) and (6.29), the measured granular temperature is

T̃ = (1− α/3)T. (6.30)

Because α > 0, collisions tend to reduce the measured granular temperature. Be-

cause our analysis assumes that spheres collide no more frequently than once on

average during ∆t, it is only valid when α < 1. As Fig. 6.4 shows, the analy-

sis agrees best with simulations at small α. Here, the simulations mimic actual

measurements by inferring velocity from Eq. (6.15). To isolate errors attributed

to collisions alone, they assume that the pixel size vanishes and that the tracking

distance is infinite.

When α ' 1, because it is more likely for spheres to collide more than once

during ∆t, our theoretical predictions begin to deviate from the simulations. How-

ever, because one sphere colliding twice during ∆t has a smaller effect on the

measured temperature than two spheres colliding once, our theory yields a higher,

more conservative estimate of the actual error (Fig. 6.4).

6.2.4 Strip Statistics

In the previous sections, we assumed implicitly that an experiment could generate

an infinite number of samples anywhere in the two-dimensional imaging region, so

that errors in ux and Txx, for example, were independent of sample size or, equiva-

lently, that spatial variations of these variables could be measured on a resolution

of a pixel. In practice, because experiments last a finite time, the flow must be

partitioned in coarser subregions, in which estimates of ux and Txx are derived from

statistics of spheres having their mean position between two consecutive images in

the subregion. If flow variables only change along one direction, then the subre-
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Figure 6.4: Effects of undetected collisions on the measured granular temperature

in the x-direction. The abscissa is α ≡ fcoll∆t . The ordinate is the measured

granular temperature at the frame rate F = 1/∆t relative to its actual value

when ∆t → 0. The symbols are data derived from consecutive image realizations

separated by ∆t in simulations with p = 0 and Utr = ∞. The solid line is the

prediction of the theory in Eq. (6.30). Squares and circles: T̃xx/Txx; triangles:

T̃yy/Tyy. Squares and up-triangles: at y/H = 0.5; circles and down-triangles: at

y/H = 0.8. See Fig. 6.2 for other simulation parameters.
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gion can be a narrow strip spanning the observation region in the perpendicular

direction.

Even if the three errors considered earlier were absent (p = 0, Ltr = ∞, F À

fcoll), the statistics of ux and Txx in a strip would be subject to uncertainties

associated with the finite sample size. If we assume that sphere velocities are

distributed as a Gaussian, then their actual mean ux and standard deviation Txx are

derived from the corresponding sample mean us,x and sample standard deviation

σs,xx using Student’s t-distribution [13],

ux = us,x ± a(C,N)σs,xx/
√
N (6.31)

and

b(C,N)
σs,xx

N − 1
≤ Txx ≤ c(C,N)

σs,xx

N − 1
(6.32)

where a(C,N), b(C,N) and c(C,N) are numbers that vary with the degree of

confidence C at which ux and Txx are sought. For example, in the limit where N

is large, a(80%, N) = 1.282, b(80%, N) ≈ (
√
2N − 3− 1.282)2/2, and c(80%, N) ≈

(
√
2N − 3 + 1.282)2/2. The uncertainty in Tyy can be obtained by replacing x in

the equation above with y.

The width of a strip is chosen so that enough samples can be collected in the

finite time of an experiment. Effectively, one trades off the ability to resolve profiles

of ux and Txx with the certainty that one requires in knowing these variables.

There is yet another, more subtle source of error in granular temperature that

arises from strip statistics when a gradient of mean velocity is present. To illustrate

this, we consider a simple shear flow, in which the mean velocity ux varies linearly

with y, but the mean velocity uy vanishes. For simplicity, we assume that the solid

volume fraction and granular temperature are uniform within a strip. Then, the
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measured mean velocity and the granular temperature are

ũx = ux +

∫ δ
2

− δ
2

γydy = ux, (6.33)

T̃yy = Tyy, (6.34)

and

T̃xx = Txx +

∫ δ
2

− δ
2

γ2y2dy = Txx +
1

12
γ2δ2, (6.35)

where γ ≡ ∂ux/∂y is the local shear rate and δ is the strip width. Note that this

error is always positive, and only affects the streamwise component of granular

temperature, thus exaggerating the temperature anisotropy.

6.3 Tradeoffs

In the previous section, we found that strip statistics could be made arbitrarily

precise by reducing the strip width and increasing the number of image sam-

ples. However, the three errors associated with imperfect tracking (Eqs. (6.9),

(6.10), (6.11), (6.12)), undetected collisions (Eqs. (6.19), (6.20)) and finite pixel

size (Eqs. (6.28), (6.30)) cannot be minimized so easily. There are two reasons

for this. First, while the measured granular temperature is reduced by imperfect

tracking and undetected collisions, it is artificially increased by a finite pixel size.

Thus, errors can compensate in subtle ways. Second, as Fig. 6.5 shows, there are

conditions for which it is not possible, given a certain pixel resolution, to find a

camera frequency that will simultaneously limit the relative errors in Txx associated

with each of the three errors. In the event, the only way to produce an acceptable

error is to reduce the pixel size. To generate Fig. 6.5, we express relative errors in

terms of F/F0, e.g., we substitute U+/
√
2T in Eq. (6.11) by

U+√
2T

=
Utr + ux√

2T
=

(F/F0)(2Ltr/d) + u∗x√
2T ∗

, (6.36)
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where u∗x = ux/U and T ∗ = T/U 2 are the dimensionless mean velocity and granular

temperature, respectively.

In practical situations, errors due to imperfect tracking can be insidious. They

are, however, captured by the theory that we have outlined. Consider microgravity

experiments with 2 mm acrylic spheres similar to those in Fig. 6.1(a). Here, the

top boundary moves at U = 0.8 m/s, the mean volume fraction is 30%, and

images are acquired at 1000 frames per second on a resolution of 41 pixels per

sphere diameter. In such situation, our experience is that numerical simulations

faithfully reproduce actual profiles of mean velocity and granular temperature [80,

81] (see also Chapter 3). Thus, a comparison of measured and simulated profiles

can highlight flow regions where the measurements fail. As Fig. 6.6 shows, our

error theory captures the magnitude of the corresponding failure. Without such

theoretical insight, the collapse of the velocity and temperature profiles near the

moving boundary may have appeared to be real. In fact, our error theory clearly

reveals that it is artificial.
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Figure 6.5: Theoretical prediction of the effects of camera frequency on the relative

errors of granular temperature with ux/U = 0.5, T 1/2/U = 0.08, and ν = 0.3. The

abscissa is the frame rate relative to F0 in Eq. (6.21). The ordinate is the relative

error in Txx. The solid, dashed and dotted line represent the respective contribu-

tions of imperfect tracking, finite pixel resolution and collisions upon measurement

errors. The horizontal dotted lines indicate ±10%. Thus, if such an error level

can be tolerated, one may adopt a frame rate in the range shown. In contrast, no

camera frequency yields a relative error smaller than, for example, ±5%.
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Figure 6.6: Profiles of mean velocity ux (a) and granular temperature Txx (b)

in the shear flow of Fig. 6.1(a) made dimensionless with U . In this experiment,

the top boundary is moving at speed U and the bottom boundary is stationary.

The solid lines are predictions of the numerical simulations. The symbols are

experimental measurements. The dashed lines are simulation results corrupted

by errors predicted by the theory, in which we assume that tracking is lost for

displacements beyond Ltr = d/4.



Chapter 7

Design of Experiments to Study

Gas-particle Interaction in Microgravity

The role of collisional interactions in gas-solid flows has received wide attention.

In these flows, collisions can transfer a significant amount of momentum, which

helps maintain homogeneity and may prevent the formation of clusters.

The crucial parameter to characterize particle agitation is the granular temper-

ature T , which determines the effective viscosity and the “thermal” conductivity

of the solid phase, i.e., the ability for the solid phase to transfer momentum and

fluctuation energy. Particle agitation may be generated by shearing and is entirely

dissipated by inelastic collisions when there is no interstitial gas between particles.

In gas-particle flows, the interaction between gas and particles may contribute

additional mechanisms to produce or to dissipate particle fluctuation energy.

Sangani, Mo, Tsao and Koch [107] have determined the dissipation of particle

fluctuation energy due to the viscous gas when particle inertia is large and gas

inertia is negligible. Koch and Sangani [67] showed that the relative mean ve-

locity between the gas and solid phases can produce additional particle agitation.

Recently, Verberg and Koch [123] extended the study of Sangani et al [107] to

consider the effect of gas inertia on the dissipation of particle fluctuation energy.

Through their work, the understanding of the detailed physics of particle-

particle interaction and particle-gas interaction have advanced to a point at which

it is possible to design experiments that address fundamental questions of practical

importance and to interpret them in the context of an appropriate theory.

In this light, we are designing a microgravity flow cell in which to study the

195
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interaction of a flowing gas with relatively massive particles that collide with each

other and with the boundaries of the cell. This axisymmetric Couette cell will

permit suspensions to be studied over a range of laminar, steady, fully developed

conditions where viscous forces dominate the gas flow. Unlike terrestrial flows,

where the gas velocity must be set to a value large enough to support the weight

of particles, the duration and quality of microgravity on the International Space

Station will permit us to achieve suspensions in which the agitation of the particles

and the gas flow can be controlled independently by adjusting the pressure gradient

along the flow and the relative motion of the boundaries.

7.1 Experiment Objectives

We plan two series of experiments on a long-term microgravity platform. The goal

of the first is to characterize the viscous dissipation of the energy of the particle

fluctuations when there is no relative mean velocity between gas and solids. We

call these tests “Viscous Dissipation Experiments”.

In the second series, we will impose a pressure gradient in the gas and record the

corresponding drag on the agitated granular medium. We call these tests “Viscous

Drag Experiments”. In this section, we briefly outline the principle of these two

series.

7.1.1 Viscous dissipation experiments

In the case of steady, simple shear flow, the flux term vanishes and the shear

production of particle fluctuation energy is balanced by the inelastic collisional
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dissipation and the viscous dissipation,

8

5
√
π
ρsσT

1/2νGJΓ2 =
54

σ2
µgTνRdiss +

24√
πσ

(

1− eeff
)

ρsνGT
3/2, (7.1)

where Γ is the shear rate.

Verberg and Koch [123] suggested that the viscous dissipation of particle fluc-

tuation energy increases linearly with gas inertia,

Rdiss = Rdiss,0(ν, εm) +K(ν)ReT (7.2)

where Rdiss,0 is the viscous dissipation coefficient at negligible gas inertia (Sangani

et al [107]), K(ν) is a function of particle volume fraction ν, and

ReT ≡
ρgσT

1/2

µg

(7.3)

is the Reynolds number based on particle diameter and gas density.

With Eq. (7.2), Eq. (7.1) can be solved for the dimensionless particle fluctuation

velocity T 1/2/Γσ as

T 1/2

Γσ
=
−3

2

Rdiss,0

St
+
√

(

3
2

Rdiss,0

St

)2
+ 8

5
√
π
GJ
[

24√
π

(

1− eeff
)

G+ 54K ρg
ρs

]

24√
π

(

1− eeff
)

G+ 54K ρg
ρs

(7.4)

where

St ≡ Γτv = Γ
ρsσ

2

18µg

is the Stokes number and τv is the viscous relaxation time.

In gas-particle flows, the density ratio ρg/ρs is of order 10−3 or smaller. The

terms proportional to ρg/ρs in Eq. (7.4) can usually be neglected unless eeff ≈ 1,

i.e., particles are nearly perfectly smooth and elastic. Because the spheres selected

for our experiments have eeff ≈ 0.8, the viscous dissipation is negligible compared

to the inelastic dissipation in the limit of large particle inertia (large St), and
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the granular temperature is approximately determined by a balance between shear

production and inelastic dissipation alone,

T 1/2

Γσ
=

[ 8
5
√
π
GJ

24√
π

(

1− eeff
)

G+ 54K ρg
ρs

]1/2

≈
√

J

15
(

1− eeff
) , (7.5)

In this case, the dimensionless particle fluctuation velocity T 1/2/Γσ is independent

of St when Stokes number is large.

The chief objective of our experiments is to create small enough particle Stokes

number to let the gas affect the fluctuation energy balance appreciably. In the

limit of large viscous dissipation and small inelastic dissipation, the granular tem-

perature is

T 1/2

Γσ
=

8

15
√
π
GJ

St

Rdiss

≈ 8

15
√
π
GJ

St

Rdiss,0

, (7.6)

i.e., T 1/2/Γσ is proportional to St when St is small.

Figure 7.1 plots the variations of T 1/2/Γσ with St given by Eq. (7.4) and the

two limiting cases in Eq. (7.5) and Eq. (7.6). If the elasticity and friction of the

spheres remain constant with relative impact velocity and, consequently, with Γ,

then measurements of the granular temperature T at different Stokes numbers and

particle volume fractions ν, make it possible to infer the viscous dissipation rate

of particle fluctuation energy.

According to Sangani et al [107], the viscous dissipation coefficient Rdiss de-

pends on the lubrication cut-off εm, which, as Sundararajakumar and Koch [118]

showed, is related to the mean free path of gas molecules. To check this theoreti-

cal prediction, we will reduce the gas pressure in the apparatus and thus vary the

mean free path. The resulting variations in granular temperature will betray the

corresponding variations in Rdiss. We will also reduce the pressure to control the

particle Reynolds number, which will make it possible to record the dependence of

Rdiss on ReT .
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Figure 7.1: Variations of the dimensionless fluctuation velocity T 1/2/Γσ with

Stokes number in the simple shear flow of a gas-particle suspension. Solid line: so-

lution given by the energy balance Eq. (7.4). Dashed line: limit of St→∞. Dash-

dotted line: limit of small St. Parameters: ν = 0.3, eeff = 0.8, ρg = 1.29 × 10−3,

ρs = 6.71, and lubrication cutoff εm = 0.01.
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The presence of solid boundaries complicates the simple energy balance of

Eq. (7.1) by adding the flux of fluctuation energy and by changing the local shear

rate. Consequently, the granular temperature in the cell is not uniform between

bumpy boundaries. Although our experimental strategy remains that suggested

by Figure 7.1, we will in fact measure transverse profiles of granular temperature

and then compare these with theoretical predictions.

7.1.2 Viscous drag experiments

In the second series of experiments, we will impose a gas pressure gradient on

the shear cell. The gradient will induce a relative velocity between the two phases,

while the shearing will set independently the agitation of the solids. These “Viscous

Drag Experiments” will be unique in exploring a regime where particle velocity

fluctuations are determined by a mechanism other than interactions with the gas.

In this regime, we will measure the dependence of Rdiss and the drag coefficient

Rdrag on the volume fraction. In a steady, fully developed uniform flow, the drag

is balanced by the gradient in gas pressure,

dP

dx
= 18

µg

σ2
ν(1− ν)Rdrag(ν)

(

us − ug

)

. (7.7)

Therefore, we can infer Rdrag by measuring the mean solid velocity us, the mean

gas velocity ug and the gas pressure gradient. As in the first series of experiments,

the solid boundaries add shear stresses to the force balance. Thus we will record

transverse proflies of mean gas velocity, mean solid velocity, granular temperature

and solid volume fraction and compare these with theoretical predictions. By

reducing gas pressure in the cell, we will also record the effects of particle Reynolds

number on Rdrag.
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7.2 Constraints on the design of experiments

Our desire is to explore as wide a range of Stokes and Reynolds numbers as possible

in the experiments. However, the latter are constrained by instrument limitations

or economical concerns, and the theories that they aim to check are only valid

within a limited range of parameters. Therefore, we will design experiments that

are relevant to the verification or extension of current theories, and that are feasible

given the experimental apparatus and instruments available.

7.2.1 Particle inertia

The theories of Sangani et al [107], Koch and Sangani [67], and our work in Chap-

ter 4 all assume that the particle inertia is large, so that viscous forces do not

affect the particle motion significantly between collisions, that the particle velocity

distribution is determined by inelastic collisions, and that is nearly Maxwellian.

In this context, we define a Stokes number as

Stlocal = fcollτv, (7.8)

where

fcoll =
24√
π
G(ν)

T 1/2

σ
(7.9)

is the collision frequency and τv is the viscous relaxation time. Note that, because

the granular temperature is not uniform in our shear cell, Stlocal is based on the

local granular temperature.

Recently, Wylie et al [135] showed that, for a sheared suspension without mean

relative motion between the two phases, the isotropic Maxwellian theory [107]

captures well the viscous dissipation of particle fluctuation energy in the computer
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simulation of Wylie and Koch [134] if

Stlocal > 2Rdiss. (7.10)

By calculating the velocity distribution, Sangani et al [107] showed that for

the normal stress to remain nearly isotropic, Stlocal must be larger than a critical

Stokes number

Stcr =
5

2

(

3

εp

1 + 8
5
G(ν)

1 + 4G(ν)
− 1

)

Rdiss, (7.11)

where εp is the relative normal stress difference that one tolerates as a measure

of the anisotropy. Thus, a criterion for observing a nearly isotropic Maxwellian

velocity distribution is

Stlocal > Stcr. (7.12)

The criterion given by Eq. (7.12) is much more stringent than Eq. (7.10) for

any tolerance εp ≤ 20%. Thus, in our experiments we adopt εp = 10% and use

Eq. (7.12) as the only criterion for Stlocal. We also adopt this criterion for viscous

drag experiments. Because we plan tests with Stlocal both greater and less than

Stcr, the interpretation of the latter should be done with caution when Eq. (7.12)

is not satisfied.

7.2.2 Gas inertia

In the viscous dissipation experiments, the gas inertia is characterized by the

Reynolds number in Eq. (7.3) that is based on the particle fluctuation velocity.

The computer simulations of Verberg and Koch [123] show that Rdiss increases

with ReT . In the experiments, if other conditions remain the same, ReT increases

with St. However, by partially evacuating the cell, we can maintain ReT ¿ 1, and
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thus measure Rdiss,0. By changing gas pressure in the cell, we can then infer the

dependence of Rdiss on ReT .

In the viscous drag experiment, another Reynolds number can be defined using

the relative velocity between gas and solids,

Rerel ≡
ρg(ug − us)σ

µg

. (7.13)

In general, Rdrag depends on both Rerel and ReT . By adjusting the boundary speed

and the pressure gradient independently, we can control Rerel and ReT separately.

Once again, we can also reduced the gas pressure to adjust the magnitudes of both

Rerel and ReT .

7.2.3 Duration of microgravity

For each test, the required duration of microgravity is determined by the time for

the flow to reach a steady state and the time to acquire enough number of images

for the statistics of both particle and gas velocities. As described in Chapter 6,

we measure the velocities of solid particles using a vision algorithm that tracks

particles in successive images. However, the gas velocity is measured indirectly

by adding small tracer particles that follow the local motion of the gas. These

gas tracers produce streaks on the image from which we can infer their velocity.

Different considerations apply to the tracking of flow spheres and gas tracers.

We employ computer simulation to determine the minimum number of images

necessary for tracking the flow spheres. To evaluate the evolution of the velocity

statistics with the number of images gathered, the simulation does not employ

its knowledge of sphere velocities. Instead, it generates successive realizations of

the observation region by collecting the longitudinal and transverse coordinates of
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sphere centers at a frequency of 2U/σ, where U is the relative velocity between

the inner and the outer boundaries. As discussed in Chapter 6, the vision algo-

rithm tracks the center of spheres with completely visible outline, but generally

ignores spheres with partial circular outlines. Then, for all spheres with fully vis-

ible outline in two successive frames, the simulation infers the two components of

the center velocity from the distance traveled and the time interval separating the

two frames. The data is then used to build up a statistic of mean velocity and

velocity fluctuations.

Our simulations show that the evolution of granular temperature statistics

depends strongly on the mean solid volume fraction. For a transverse resolution

of 20 strips, we find that the minimum number of images producing an error less

than 2.5% in the measured granular fluctuation velocity is, approximately,

Nmin ≈
700

ν̄
, (7.14)

where ν̄ is the mean solid volume fraction in simulation.

On the other hand, our experiments are guided by the analysis of measurement

errors in the mean and fluctuation velocities from the vision algorithm, which

usually requires a camera frequency F ≥ 2U/σ. To ensure coverage of the same

overall test duration, the actual number of images to be acquired is

Nimages ≥ Nmin
Fσ

2U
. (7.15)

We use statistical considerations to estimate the minimum number of images

required for tracking the motion of the gas in the viscous drag experiments. For

simplicity, we assume that estimates of the mean gas velocity are corrupted by

Gaussian fluctuations of the tracer velocity with variance on the order of the gran-

ular temperature. We prescribe that the resulting uncertainties in the mean gas
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velocity be less than 5% of the mean gas velocity ug at 95% degree of confidence.

In an experiment, the number of velocity samples is the product of Nimages and

ntracer, where Nimage is the number of images acquired and ntracer is the number

of tracers in the measurement volume. Then using Student’s t-distribution, we

obtain the criterion

Nimages ≥
(at/0.05)

2

ntracer

T

u2g
, (7.16)

where at ≈ 2 is the 2.5 percentage point of Student’s t-distribution for large sam-

ples. We plan to adjust the tracer number density to have approximately 5 tracers

per visible strip. This calculation indicates that the requisite number of images

does not exceed 70 for any of the experiments we propose. Therefore, the criterion

given by Eq. (7.14) is far more stringent and thus is used to determine the number

of images to be acquired in each experiment.

We estimate the time necessary to establish a steady flow tss by assuming that

the shear cell is started from rest. As computer simulation results in Figure 7.2

show, tss is largely governed by the establishment and relaxation of granular tem-

perature. In the early stages of the process, the production of fluctuation energy

from the incipient shearing of the grains promotes a rapid increase in T , which in

turn gives rise to collisional dissipation. Production and dissipation then quickly

reach a balance. However, the corresponding temperature is higher than that in

a steady balance that involves collisional fluxes of fluctuation energy. As these

fluxes diffuse the excess energy through the boundaries, the grains slowly relax to

a steady temperature according to

3

2
νρs

∂T

∂t
≈ −∂qy

∂y
(7.17)

where qy is the flux of granular fluctuation energy in the y-direction. When writing

Eq. (7.17), we assumed that, locally, the shear production balances the collisional
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Figure 7.2: Simulated evolution of the granular temperature in a shear flow between

parallel, bumpy boundaries. The granular temperature is averaged across the cell

and made dimensionless with U 2. Simulation parameters: H/σ = 6.4, di = 3,

do = σ = 2, si = so = 0, ν̄ = 0.33, µ = 0.1, β0 = 0.4, and the coefficients of normal

restitution shown in the figure.

dissipation and we ignored the effects of flat side walls and the curvature of the

cell.

Eq. (7.17) can be integrated from the inner bumpy boundary to the outer

bumpy boundary to yield,

3

2
νρs

∂T̄

∂t
≈ 1

H

(

qy,i + qy,o
)

, (7.18)

where T̄ is the average granular temperature in the cell, qy,i and qy,o are the fluxes

of fluctuation energy into the flow from the inner and outer bumpy boundaries,
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respectively. As shown in Chapter 2, the boundary fluxes qb are, in dimensionless

form,

qb

N
√
T

=
Sv −D
N
√
T

=

(

S

N

)(

v√
T

)

− D

N
√
T
, (7.19)

where N and S are the normal and shear stresses at the boundary, respectively, v

is the slip velocity, and D is the collisional dissipation at the boundary. To obtain

the correct scaling of the time to reach a steady state in a simple way, we use the

linear boundary condition derived by Richman [104], which can be written as

S

N
= b

v√
T
, (7.20)

where b is a constant that depends on boundary geometry. Substituting Eq. (7.20)

into Eq. (7.19), we find

qb = N
√
T

[

1

b

(

S

N

)2

− dc
]

, (7.21)

where dc is a constant that depends on boundary geometry and impact properties.

Combining Eq. (7.21) with Eq. (7.18), we obtain an equation for the evolution of

the granular temperature,

∂T̄

∂t
≈ 2

3

1 + 4G

H
T̄ 3/2

[(

1

bi
+

1

bo

)(

S

N

)2

− dc,i − dc,o
]

, (7.22)

in which the subscripts i and o stand for the inner and outer boundaries, respec-

tively. In writing Eq. (7.22), we have used the fact that the normal stress is

continuous so that the normal stress N equals the pressure P in the interior and

we have tacitly replaced the granular temperature T in the interior by its averaged

value T̄ . Note that terms on the right hand side of Eq. (7.22) are constants except

G and T . Hence we write it in dimensionless form as

∂ ln T̄ ∗

∂t∗
= Ab(1 + 4G)

√

T̄ ∗, (7.23)
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where T̄ ∗ ≡ T̄ /U 2 is the dimensionless granular temperature, t∗ ≡ tU/H is the

dimensionless time, and Ab is a constant.

As suggested by Eq. (7.23), we find that the relaxation time of the diffusion

process is proportional to

tssU

H
≈ 42

[

(1 + 4G)
√

T̄ss

]−1
, (7.24)

where the granular temperature is evaluated at the steady state. We determine

the constant of proportionality through numerical simulations with different levels

of steady granular temperature and mean volume fraction (Figure 7.3). We expect

that Eq. (7.24) is also valid in the presence of an interstitial gas. Because the

relaxation process to a steady temperature does not, in general, begin with a

granular flow at rest, the time given by Eq. (7.24) may be regarded as conservative.

Finally, by adding contributions from tss and the minimum number of images,

we find that the minimum required time of microgravity is

tµg > tss +
Nminσ

2U
, (7.25)

where tss is given by Eq. (7.24) and Nmin by Eq. (7.14).

7.2.4 Quality of microgravity

The quality of microgravity can be compromised by quasisteady residual accel-

erations, by vibrations and by occasional transients resulting from the firing of

attitude thrusters.

Quasi-steady accelerations

We first contemplate quasisteady microgravity levels, such as those resulting from

atmospheric drag or from tidal forces on experiments located away from the center
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Figure 7.3: Dimensionless relaxation time versus [(1 + 4G)
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steady state. The circles, triangles and squares represent numerical simulations

with conditions of Figure 7.2 at ν̄ = 0.23, 0.33 and 0.43, respectively. For each

volume fraction, the three data points correspond to e = 0.75, 0.85, and 0.95.
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of mass of the International Space Station. In the absence of a gas, the effects

of small accelerations scale with a Froude number Fr involving the diameter of

flow spheres and the relative velocities of the moving boundaries, Fr = grσ/U
2,

where gr is the quasisteady residual acceleration. Thus, reductions in boundary

speeds make the flow more susceptible to residual microgravity. This sensitivity is

exacerbated by the presence of a gas, which further reduces the fluctuation velocity

of the spheres.

To derive an analytical expression for the corresponding requirements, we con-

sider grains flowing along a single direction in a rectilinear, fully developed channel.

As in Section 5.2, we treat the gas drag as an effective body force geff exerted on

all grains in the flow direction. If we assume that the component of mean granular

velocity in the x-direction is us and the components in the y- and z-directions

vanish, the granular momentum balances are then

∂τxy
∂y

+
∂τxz
∂z

+ νρs
(

gr,x + geff
)

= 0, (7.26)

− ∂P

∂y
+ νρsgr,y = 0, (7.27)

and

−∂P
∂z

+ νρsgr,z = 0, (7.28)

where gr,x, gr,y and gr,z are small residual accelerations in the x-, y- and z-directions,

respectively, τxy and τxz are the granular shear stresses, and P is the granular

pressure. Substituting Eqs. (7.27) and (7.28) into Eq. (7.26), we have, after some

manipulation,

P

[

∂

∂y

(

τxy
P

)

+
∂

∂z

(

τxz
P

)]

+
τxy
P
νρsgr,y +

τxz
P
νρsgr,z + νρsgr,x = 0. (7.29)

Using the constitutive relations in Chapter 3 for the granular pressure and shear
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stresses, the dimensionless x-momentum balance becomes,

∂2u∗s
∂y∗2

+
∂2u∗s
∂z∗2 +

F
√
T ∗

J

∂

∂y∗

(

J

F
√
T ∗

)

∂u∗s
∂y∗

+
F
√
T ∗

J

∂

∂z∗

(

J

F
√
T ∗

)

∂u∗s
∂z∗

+
5
√
π

8JG
√
T ∗

(

H

σ

)2(

Frx + Freff +
τxy
P
Fry +

τxz
P
Frz

)

= 0, (7.30)

where u∗s ≡ us/U , y
∗ ≡ y/H, z∗ ≡ z/H, T ∗ ≡ T/U 2, J and F are analytical

functions of ν given in Chapter 3, and the Froude numbers are based on the

particle diameter σ and the relative boundary speed U .

From Eq. (7.30) it is clear that, because τxz/P < τxy/P < 1 in general, the

residual microgravity in the flow direction produces the most severe effects. Thus,

to derive a conservative criterion, we focus our analysis on residual accelerations

in that direction. We then assume for simplicity that us only varies across the cell,

and that ν and T are constant. Thus Eq. (7.30) is simplified to

d2u∗s
dy∗2

≈ − 5
√
π

8JG
√
T ∗

(

H

σ

)2

Frx. (7.31)

Using Eq. (7.31), we then calculate the additional centerline velocity due to the

extra curvature of the velocity profile,

∆u∗s,c ≈
5
√
π

64JG
√
T ∗

(

H

σ

)2

Frx. (7.32)

To calculate the additional velocity due to the extra slip at the bumpy walls, we

first write the imbalance in the shear stress on the two boundaries by integrating

Eq. (7.26) between these, and ignoring the presence of side walls,

S1 − S0 + νρs
(

gr,x + geff
)

H = 0, (7.33)

where S1 and S0 are, respectively, the shear stresses at the top and bottom bumpy

boundaries. From Eq. (7.33), it is clear that the additional shear stresses at the

boundaries due to the residual acceleration satisfy

∆S1 −∆S0 + νρsgr,xH = 0, (7.34)
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which gives, after dividing both sides by normal stress N and using the definition

of Froude number,

∆

(

S

N

)

1

−∆

(

S

N

)

0

+
(H/σ)Frx
(1 + 4G)T ∗

= 0. (7.35)

Substituting the boundary condition (7.20), we calculate the average of the increase

in the slip velocity at the wall,

∆u∗s,b ≈
(H/σ)Frx

(b1 + b0)(1 + 4G)
√
T ∗
, (7.36)

where b1 and b0 are the constants depending on the geometry of the top and

bottom boundaries, respectively. Finally, we take the resulting increase in the

mean granular velocity at the centerline to be the sum of the contributions from

Eq. (7.32) and Eq. (7.36). In this simple analysis, the sum may be written

∆u∗s ≈ c
Frx√
T ∗
, (7.37)

where the coefficient c is a function of ν, H/σ and, through b1 and b0, the ge-

ometry of the boundaries. To evaluate this coefficient, we integrate Eqs. (7.26)

through (7.28) numerically and find ∆u∗s for a variety of volume fractions and ra-

tios Frx/
√
T ∗. The resulting values of c compare well with the estimates from the

simpler analysis of Eqs. (7.32) and (7.36). For the geometrical parameters of our

apparatus, we fit c(ν) to the expression

c(ν) = 10.69 + 80.39ν − 183.4ν2, (0.05 ≤ ν ≤ 0.4). (7.38)

Figure 7.4 shows the curve-fit of c(ν) and the comparison of the increase of granular

velocity at the centerline with Frx/
√
T ∗ from the numerical integration and the

simpler analysis Eq. (7.37). We then specify that the change in the centerline mean

granular velocity resulting from residual accelerations should be smaller than 5%
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of U,

Fr ≡ grσ

U2
< 5%

√
T ∗

c(ν)
. (7.39)

Vibrations

On the International Space Station (ISS), vibrations may be caused by the use

of the robot arm, by the resonance of the KU band antenna, or by the routine

physical exercises carried out by the astronauts. The magnitude of such vibrations

is generally specified as an rms acceleration. To evaluate their effects on our

experiments, we assume that the vibrations are sinusoidal, and we calculate the

corresponding rms velocity fluctuations. We then assume that vibrations play a

negligible role in our tests if the rms velocity fluctuations that they impose on

the cell are much smaller than their granular counterpart,
√
T , over the entire

frequency spectrum. Thus, we require

max(grms/2πf) ≤
√
T (7.40)

where grms is the rms residual acceleration of the ISS at the frequency f and T is

the mean granular temperature in the experiment. Because the rms acceleration

spectrum grows at a rate no greater than the first power of f , this is equivalent to

ensuring that grms at the collision frequency fcoll is less than

grms(fcoll) ≤ 2πfcoll
√
T . (7.41)

Thrusters

Another potentially disruptive source of acceleration arises from the occasional

firing of thruster rockets. Data collected after these transient events are corrupted

and should not be used. We use the time to steady state in Eq. (7.24) as an
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estimate of the waiting time required after thruster firing. Because the grains

are already agitated when a thruster is fired, we anticipate that this estimate is

conservative.

7.2.5 Sphere properties

The material properties of the flow spheres influence experiments in many ways.

We prescribe sphere materials in order to control experimental conditions.

In the derivation of kinetic theory, the coefficient of normal restitution e be-

tween flow particles is assumed to be a constant. Using the collision apparatus

described by Foerster et al [33], we can measure these impact parameters before

experiments. However, it is well known that even for collisions between perfect

spheres, e depends on impact velocity [38, 43]. According to the elastic-plastic

theory of Thornton and Ning [120], the normal restitution coefficient decreases

with relative impact velocity of the order of T 1/2 only when the latter exceeds a

critical value

us,cr =

(

π

E∗

)2(
σ5c

160ρs

)1/2

, (7.42)

where σc is the compressive yield strength of the sphere material and E∗ is a

parameter that combines the Poisson’s ratio and Young’s modulus as defined in

Eq. (4.6). For the sphere materials we considered, the critical impact velocity is

about 0.1 ∼ 1 m/s. Because the projected experiments do not reach a fluctuation

velocity exceeding us,cr, we expect that the impact parameters of the flow spheres

will remain the same as measured in our facility.

In our viscous dissipation experiments, we measure the granular temperature to

infer the viscous dissipation coefficient Rdiss. As Sangani et al [107] and Verberg &

Koch [123] showed, Rdiss depends on the lubrication cut-off εm, which characterizes
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the non-continuum breakdown of the lubrication flow in the gap between two

approaching particles [118].

With real spheres colliding in a gas, three other phenomena may affect the

magnitude of Rdiss. The first arises from the compressibility of the gas. It is

significant when the gap separating two spheres is less than hc in Eq. (4.5). The

second phenomenon occurs when lubrication forces induce elastic deformations in

the solid. It is relevant when the gap is smaller than hd in Eq. (4.6). Because we

plan to determine the dependence of Rdiss on εm by changing λg through partial

evacuation of the cell, we require that the lubrication breakdown be controlled

by the non-continuum effect. Therefore, we choose sphere materials such that

hc < 9.76λg and hd < 9.76λg.

The third potential difficulty is associated with microscopic asperities on the

particle surface. Following the analysis of Leighton [72], Davis [29] showed that

the lubrication force due to small asperities is always much smaller than the corre-

sponding force on the sphere as a whole. However, if asperities rising a distance δ

above the smooth particle surface are larger than the cutoff distance εmσ, they can

bring the grains into mechanical contact before the spheres can experience non-

continuum lubrication flows. Although this suggests that the expression for Rdiss

may be modified by simply substituting the ratio δ/σ in place of εm in Eq. (7.2), it

is unclear how the terms in Rdiss that depend on ν alone and that are measured in

the smooth particle simulations are affected by the new cut-off distance. Nonethe-

less, because these terms are collectively smaller than G(ν) ln εm at sufficiently

large ν, this objection is generally inconsequential. At any rate, because asperities

are much more difficult to characterize than the mean free path of the gas, it is

prudent to ensure that experimental spheres have typical asperities with δ < εmσ,
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which is achievable for material of high polish like ceramic or hard metals.

7.2.6 Continuum flow

To describe the entire gas flow through the particles as a continuum, it is necessary

for the Knudsen number

Kng ≡
λg

Lc

to be small. In this expression, λg is the molecular mean free path of the gas and

Lc is a characteristic length scale of the flow, which can either be the size of the

particles or the gap between them, whichever is smaller. The gap between particles

can be estimated as the product of the particle fluctuation velocity and the mean

free time of particles. Hence the gas Knudsen number is

Kng ≡
λg

min
(

σ,
√
πσ

24G(ν)

)
. (7.43)

In experiments involving partial evacuation of the cell, Kng should be kept much

smaller than one to limit non-continuum gas flow to small regions between ap-

proaching spheres. We adopt the conservative criterion of Kng ≤ 0.01, which is

common practice in continuum flows of molecular gases.

We are also interested in interpreting our experimental data with a continuum

description of the solid phase. For that to be valid, the particle Knudsen number

must also be small. Here the particle Knudsen number is defined as

Kns ≡
λs

H
, (7.44)

in which

λs =
σ

6
√
2G(ν)

(7.45)
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is the mean free path of particles. In a typical shearing flow, we find that the

continuum theory agrees well with the results of numerical simulations for Kns ≤

0.4. We adopt this criterion for other granular flows as well.

7.2.7 Accuracy of gas flow rate

In the Viscous Drag experiments, we will infer the drag coefficient Rdrag by mea-

suring simultaneously the particle and gas velocities, or, at least, measure the gas

volume flow rate. Thus the accuracy of Rdrag is mainly predicated on the mea-

surement accuracy of the gas flow rate. To estimate this accuracy, we vary Rdrag

in our numerical solutions and find the corresponding changes in the gas volume

flow rate Qg. We also estimate the gas flow rate as

Q∗g ≈ (1− ν̄)ū∗s +
1

H/σ

RτSt

ν̄Rdrag

, (7.46)

which is made dimensionless with the boundary velocity U and the cross sectional

area of the channel. In this expression, ū∗s and ν̄ are the average particle mean

velocity and volume fraction, respectively. When writing Eq. (7.46), we ignored

the effects of solid boundaries on the gas flow rate and balanced the pressure

gradient with the drag. The first term in Eq. (7.46) represents the gas flow due

to the entrainment by the particles. The second term in Eq. (7.46) represents the

relative motion between the gas and the solids due to the gas pressure gradient in

the flow direction.

From this expression, we calculate the change in gas flow rate due to a change

in Rdrag,

∆Q∗g = RτSt
σ

H

1

ν̄

(

1

Rdrag +∆Rdrag

− 1

Rdrag

)

. (7.47)

To obtain Eq. (7.47), we noted that the mean solid velocity is determined almost
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entirely by the gas pressure gradient and is independent of Rdrag.

Eq. (7.47) leads to the relative change in gas flow rate,

∆Q∗g
Q∗g
≈ εdragRτSt

ū∗s(H/σ)ν̄(1− ν̄)Rdrag +RτSt
, (7.48)

in which

εdrag ≡
∆Rdrag

Rdrag

is the relative change in Rdrag and if the change in Rdrag is not large, then

1

Rdrag +∆Rdrag

− 1

Rdrag

≈ ∆Rdrag

Rdrag

= εdrag.

Because ū∗s also varies with ν̄, we can write Eq. (7.48) as

∆Q∗g
Q∗g
≈ εdragRτSt

CQ(ν̄)ν̄(1− ν̄)Rdrag +RτSt
, (7.49)

where CQ(ν̄) is a function of ν̄ that we approximate by curve fitting the results

of the numerical calculations. Figure 7.5 shows the relative change in Q∗g corre-

sponding to a 20% change in Rdrag, i.e., εdrag = 0.2. For this particular cell, the

coefficient CQ(ν̄) is fitted to the expression

CQ = 2.571ν̄−0.2835. (7.50)

We plot in Figure 7.5 the variations of Eq. (7.49) using the expression of CQ(ν̄) in

Eq. (7.50). .

With a specified uncertainty εdrag, Eq. (7.49) then prescribes the minimum

accuracy in Q∗g for each experiment. Alternatively, if the accuracy in gas flow

rate measurement is known, Eq. (7.49) then sets a limit on the combination of

parameters RτSt for meaningful experiments,

RτSt ≥
CQν̄(1− ν̄)RdragεQ

εdrag − εQ
, (7.51)

where εQ is the accuracy that can be achieved in the measurement of gas volume

flow rate.
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Chapter 8

Conclusions and Recommendations

In this work, we studied continuum descriptions of granular flows with negligible

interstitial gas and gas-particle flows with large to moderate particle inertia. In

both kinds of flows, particle collisions are the dominant mechanism for momentum

transfer and the particle velocity distribution is determined by collisions rather

than by hydrodynamic interactions.

We solved the governing equations for the granular and gas phases with appro-

priate boundary conditions and we compared the results with computer simulations

and/or physical experiments in microgravity.

In particular, we derived new boundary conditions for granular flows inter-

acting with bumpy frictional walls made of cylinders perpendicular to the mean

flow, in the case where the wall slip may be large. We developed several numeri-

cal techniques to solve the governing equations for dry granular flows of a single

species, for dry granular flows of a binary mixture, and for granular flows interact-

ing with a viscous gas, with or without body forces present. We generally found

good agreement between theory, simulations and experiments in the limits that

the underlying theories were meant to capture e.g., nearly elastic spheres, nearly

identical species, moderate to high Stokes numbers, etc.

We considered steady, fully-developed flows in rectangular channels, and we

studied flow development along a shear cell shaped as a race track, and along an

axisymmetric Couette cell into which gas is injected.

With the corresponding gas-solid theories, we designed future long-term mi-

crogravity experiments in the axisymmetric cell by prescribing test conditions, by
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evaluating errors in the computer vision techniques used to record granular veloc-

ity statistics, and by providing requirements for carrying out the experiments in

Space.

We now discuss salient problems remaining in this field, and suggest avenues

for further research. Our analyses focused on steady granular flows. It would be

natural to extend our work to unsteady flows in a way outlined by Babic [8]. For

example, one may consider the unsteady segregation process in a Couette cell with

a binary mixture of granular materials. One could also revisit the development

of granular flows by solving the governing equations directly instead of using an

integral treatment and an assumed shape of the velocity profile.

For greater relevance to practical problems, it is desirable to consider flows that

do not involve nearly elastic, nearly frictionless grains. A difficulty with greater in-

elasticity or friction is that the fluctuation energy becomes strongly anisotropic and

that it is not distributed equally among different granular species. Another is that

strong collisional dissipation creates regions where grains condense into amorphous

assemblies or clusters that experience long-term contacts. This situation is typical

of most practical granular flows on Earth. In such regions, the stresses develop a

component that is not rate-dependent [17]. A challenge for future research is to

produce a theory that can successfully reconcile the collisional flows considered in

this work and flows where rate-dependent and rate-independent stresses coexist.

Boundary conditions for collisional granular flows at a solid wall are derived by

considering the transfer of momentum and fluctuation energy at the wall through

collisions between flow particles and the wall. Wall stresses and flux of fluctua-

tion energy are obtained by integrating over the particle velocity distribution. In

current derivations, the particle velocity distribution at the wall is either taken
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to be the same as in the bulk flow [104, 105], or it is assumed to have a simple

form [61, 50]. In principle, the velocity distribution at the wall can be found by

solving the Boltzmann equation with an appropriate collision operator that takes

into account the effect of the solid wall. Another problem associated with the

particle velocity distribution at the wall is that particle velocities before and af-

ter a collision are correlated. As Jenkins & Louge [56] showed, this correlation

can change the flux of fluctuation energy at the wall. For boundary conditions at

frictional walls, the effect of particle spin is only included in a crude way by relat-

ing the mean particle spin to the vorticity of the mean flow. However, computer

simulations showed that this assumption is not valid at the boundary [19, 76],

although it is approximately true for flows in the interior. Recently, Mitarai et

al [88] proposed a “micropolar” theory to predict the transport of particle angular

momentum near solid boundaries, which might be included in the derivation of

boundary conditions.

Stability of granular flows is another important problem that we have ignored.

Collisional shearing flows have been the subject of several stability analyses [7,

129, 128, 2, 98]. Nott et al [98] showed that boundaries play an important role

in stabilizing the flow. However, these authors used heuristic boundary conditions

for their analysis. Although we verified by computer simulations that the steady

solutions in Chapter 3 are stable, it would be instructive to perform stability

analyses of all solutions found in our study.

Lastly, the average equations for gas-particle flows in this work have not been

rigorously derived. In particular, the constitutive equations for the particle phase

are borrowed directly from the kinetic theory of granular flows. Moreover, the

correct form of the term representing the stress due to gas-particle hydrodynamic
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interactions is not yet clear. To extend existing theories to lower Stokes numbers,

one may consider an approach similar to Sangani et al [107] to derive constitu-

tive equations for gas-particle flows with both inelastic and viscous dissipations of

fluctuation kinetic energy.



Appendix A

Collision Integrals

When calculating collisional contributions to the stresses and flux of fluctuation

energy at solid boundaries, we need to evaluate integrals of the form

I(n, a) =

∫ ∞

a

xne−
x2

2T dx,

where n = 0, 1, 2, . . ., is non-negative integers and −∞ ≤ a ≤ ∞.

For arbitrary a, the integrals can be written in compact form as

if n is odd,

I(n, a) =
1

2
Γ

(

n+ 1

2

)

(

2T
)
n+1

2 e−
a2

2T

n−1
2
∑

k=0

(

a2

2T

)k

Γ
(

k + 1
) ;

and if n is even,

I(n, a) =
1

2
Γ

(

n+ 1

2

)

(

2T
)
n+1

2

[

1− erf

(

a√
2T

)

+ e−
a2

2T

n
2
−1
∑

k=0

(

a2

2T

)k+ 1
2

Γ
(

k + 3
2

)

]

;

where Γ(x) is the Gamma-function, and

erf(x) =
2√
π

∫ x

0

e−t2dt, (−∞ ≤ x ≤ ∞),

is the error function.

If a = 0, the two results can be combined as

I(n, 0) =

∫ ∞

0

xne−
x2

2T dx =
1

2
Γ

(

n+ 1

2

)

(

2T
)
n+1

2 , (n = 0, 1, 2, . . .).
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For convenience, some frequently used results with arbitrary a are listed below,

∫ ∞

a

e−
x2

2T dx =
1

2

√
2πT

[

1− erf

(

a√
2T

)

]

,

∫ ∞

a

xe−
x2

2T dx = Te−
a2

2T ,

∫ ∞

a

x2e−
x2

2T dx =
1

2
T
√
2πT

[

1− erf

(

a√
2T

)

]

+ aTe−
a2

2T ,

∫ ∞

a

x3e−
x2

2T dx =
(

a2 + 2T
)

Te−
a2

2T ,

∫ ∞

a

x4e−
x2

2T dx =
3

2
T 2
√
2πT

[

1− erf

(

a√
2T

)

]

+
(

a3 + 3aT
)

Te−
a2

2T .



Appendix B

Approximations of Stresses and Heat

Flux at Flat, Frictional Walls

In section 2.2, we calculated the stress ratio and heat flux at flat frictional walls in

two mutually exclusive cases, respectively called the “all-sticking” and “all-sliding”

limits. On p. 36, we provided simplified expressions of S/N and Q assuming

a distribution of normal velocity shaped as twin δ-functions. In this Appendix,

we list the corresponding expressions for the Maxwellian and Weibull velocity

distributions. These results can be used as approximations to Eqs. (2.48)-(2.51).

For a Maxwellian distribution, in the “small-slip/all-sliding” regime,

S

N
=

√

2

π

µ

γ
r, (B.1)

Q

N
√

Tyy

=

√

2

π

{

1

2γ2
µµ̄0
(

1 + β0
)

r2 − 1

4γ2
µµ̄0
(

1− β0
)

− (1− e)
}

=

√

2

π

{

µ

µ̄0

(

1 + β0
)Txx

Tyy

(

g20
2Txx

)

− 1

2

µ

µ̄0

(

1− β0
)Txx

Tyy

− (1− e)
}

,(B.2)

and in the “all-sliding” regime,

S

N
= µ erf

(

g0√
2Txx

)

≈ µ, (B.3)

Q

N
√

Tyy

≈
√

2

π

[

µµ̄0
(

1 + β0
)

− (1− e)
]

. (B.4)

For a Weibull distribution, in the “small-slip/all-sliding” regime,

S

N
=

√
π

2

µ

γ
r, (B.5)

Q

N
√

Tyy

=

√
π

2

{

1

2γ2
µµ̄0
(

1 + β0
)
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4γ2
µµ̄0
(

1− β0
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− 3

4
(1− e)
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=

√
π

2
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− 1

2

µ
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− 3

4
(1− e)

}

,(B.6)
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and in the “all-sliding” regime,

S

N
= µ erf

(

g0√
2Txx

)

≈ µ, (B.7)

Q

N
√

Tyy

≈ 3
√
π

8

[

µµ̄0
(

1 + β0
)

− (1− e)
]

. (B.8)

Figure B.1 and B.2 compare the stress ratio and heat flux from the two-limit ap-

proximation and the exact calculation for various impact parameters. As with the

twin δ velocity distribution in the small-slip regime, the two-limit approximation

agrees with the exact calculation only when γ is large.
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Figure B.1: Comparison of stress ratios and fluxes of fluctuation energy calcu-

lated in the two limits of “all-sticking” and “all-sliding” with the exact calculation

assuming a Maxwellian distribution. For lines and parameters, see Fig. 2.6.
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Figure B.2: Comparison of stress ratios and fluxes of fluctuation energy calcu-

lated in the two limits of “all-sticking” and “all-sliding” with the exact calculation

assuming a Weibull distribution. For lines and parameters, see Fig. 2.6.



Appendix C

Determination of Granular Pressure

When solving the governing equations for granular flows, we often need to deter-

mine the granular pressure based on a known average particle volume fraction.

The simplest case is when P = const, as in the rectilinear flow without trans-

verse body forces. To that end, we find the solid volume fraction ν as a function of

P ∗/T ∗, where P ∗ ≡ P/ρsU
2 is the dimensionless granular pressure and T ∗ ≡ T/U 2

is the dimensionless granular temperature. For convenience, we denote P ∗/T ∗ as

P̃ . From the constitutive relation for granular pressure, P̃ = ν(1 + 4G). The

variations of ν with P̃ are shown in Figure C.1. After observing the shape of this

curve, we propose to fit it as

ν =
a1P̃

3 + b1P̃
2 + c1P̃ + d1

a2P̃ 3 + b2P̃ 2 + c2P̃ + d2
, (C.1)

where a1, b1, . . ., d2, are constants.

We require that the curve fit preserve some important properties of the original

function, namely,

ν(P̃ = 0) = 0, (C.2)

ν(P̃ −→∞) −→ νc, (C.3)

and

dν

dP̃

∣

∣

∣

∣

P̃=0

= 1, (C.4)

where νc is the random close-packing volume fraction. Following Torquato [121],

we choose νc = 0.64. It is straightforward to show that these requirements lead to

d1 = 0, (C.5)

a1 = νca2, (C.6)
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and

c1 = d2. (C.7)

Therefore, the functional form C.1 can be written as

ν =
P̃ (νcP̃

2 + aP̃ + b)

P̃ 3 + cP̃ 2 + dP̃ + b
, (C.8)

where a, b, c, and d are constants and can be derived from least square error

conditions,
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, (C.9)

where
∫

() is a short-hand notation for
∫

()dP̃ , and x, y, z, s, and t are functions

of ν and P̃ ,

x ≡ P̃ 2,

y ≡ P̃ − ν,

z ≡ −νP̃ 2,

s ≡ −νP̃ ,

t ≡ (νc − ν)P̃ 3.

For convenience, we choose to fit between 0 ≤ ν ≤ 0.3. Then, we have

a = 1.53650,

b = 0.39083,

c = 4.70196,

d = 3.08592.
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The curve fit is shown in Figure C.1 together with the original function. The

relative error between the original function and Eq. (C.8) is less than 1.5% over

the range 0 ≤ ν ≤ 0.6.

We use the curve fit in an iteration to determine P ∗ once the granular temper-

ature is known from the energy equation. Starting with an initial guess P ∗, we

calculate the local particle volume fraction ν and then compare the cross-sectional

average volume fraction with the known mean value. We then modify our initial

guess of P ∗ until the error in average volume fractions is less than a specified

tolerance.

C.1 Iteration Scheme

We provide details of the iteration procedure for solving the governing equations

appearing in this thesis. We begin with a procedure for ordinary differential equa-

tions associated with a single dimension. We then extend the procedure to partial

differential equations in two dimensions.

C.2 One Dimension

The one dimensional case applies to the integral equations of single species flows in

rectilinear (Sections 3.1.2 and 3.1.2) and axisymmetric geometries (Sec. 3.1.2). It

also pertains to governing equations for rectilinear flows of binary mixtures (Sec-

tions 3.2.1 and 3.2.2). In this Appendix, we illustrate the method with rectilinear

flows of a single species. The corresponding ordinary differential equations (3.25),

(3.26) and (3.30) for the mean granular velocity u, the fluctuation velocity w ≡
√
T

and the “volume fraction integral” I are given in Sec. 3.1.2. Here, we write them
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Figure C.1: Curve fit of ν as a function of P ∗/T ∗. Top plot: ν vs. P ∗/T ∗; symbols

represent the exact function; the solid line is the curve fit of Eq. C.8. Bottom plot:

relative error in the curve fit.
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in generic form,

d2u

dy2
+ pu(y;u,w, ν)

du

dy
+ ru(y;u,w, ν)u = su(y;u,w, ν), (C.10)

d2w

dy2
+ pw(y;u,w, ν)

dw

dy
+ rw(y;u,w, ν)w = sw(y;u,w, ν), (C.11)

and

d2I

dy2
+ pν(y;u,w, ν)

dI

dy
+ rν(y;u,w, ν)I = sν(y;u,w, ν), (C.12)

with the boundary conditions:

at y=0,

du

dy
= au(u,w, ν)u+ bu(u,w, ν), (C.13a)

dw

dy
= aw(u,w, ν)w + bw(u,w, ν), (C.13b)

I(0) = I0, (C.13c)

and at y=H,

du

dy
= cu(u,w, ν)u+ du(u,w, ν), (C.14a)

dw

dy
= cw(u,w, ν)w + dw(u,w, ν), (C.14b)

I(H) = In. (C.14c)

We solve the coupled equations numerically on a set of equally-spaced points yj,

j = 0, 1, · · · , n, with yj+1 − yj = h. For convenience, we introduce the short-hand

notations uj ≡ u(yj), pu,j ≡ pu(yj;uj, wj, νj), etc.

We replace the differentials with finite differences, e.g.

du

dy
≈ uj+1 − uj−1

2h
,

d2u

dy2
≈ uj+1 − 2uj + uj−1

h2
and νj ≈ H

Ij+1 − Ij−1
2h

.

(C.15)
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For example, the difference equation for u is

(

1− h

2
pu,j

)

uj−1 + (−2 + h2ru,j)uj +
(

1 +
h

2
pu,j

)

uj+1 = h2su,j, (j = 0, 1, · · · , n),

(C.16)

in which the values u−1 and un+1 at the “virtual nodes” y−1 and yn+1 are derived

from boundary conditions. For example, at y = 0,

u1 − u−1
2h

≈ du

dy
= auu0 + bu, (C.17)

which yields

u−1 = u1 − 2hauu0 − 2hbu. (C.18)

Similarly, we find

un+1 = un−1 + 2hcuun + 2hdu. (C.19)

The resulting system of finite difference equations for uj can be written in matrix

form as

Auu = bu (C.20)

where

Au =
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1− h
2
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2
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. . . . . . . . .
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2
pu,n−1
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2
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)
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...

h2su,n−1

h2su,n − 2h
(

1 + h
2
pu,n
)

du



























,
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in which

A00 = −2 + h2ru,0 − 2hau
(

1− h

2
pu,0
)

,

and

Ann = −2 + h2ru,n + 2hcu
(

1 +
h

2
pu,n
)

.

The finite difference equations Aww = bw for w are almost identical to those

for u except that the functions pu, ru, · · · , cu, and du are replaced by pw, rw, · · · ,

cw and dw, respectively.

Because the boundary values I0 and In are known, the vector I contains fewer

unknown elements, namely Ij, (j = 1, 2, · · · , n − 1). We write the corresponding

system of equations in the form AνI = bν with

Aν =



























−2 + h2rν,1 1 + h
2
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1− h
2
pν,2 −2 + h2rν,2 1 + h
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1− h
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2
pν,n−2

1− h
2
pν,n−1 −2 + h2rν,n−1
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, and bν =
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...
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(

1 + h
2
pν,n−1

)
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.

In this one-dimensional problem, because the matrices Au, Aw and Aν are

tri-diagonal, it is efficient to invert them using the tri-diagonal matrix algorithm

(TDMA) [112]. However, because this system is non-linear and couples the vectors

u, w and I, the functions p, r, s in the differential equations (C.10), (C.11), (C.12),
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and the functions a, b, c, and d in the boundary conditions (C.13), (C.14) are

not known without finding u, w and ν first. To handle this difficulty, we solve

the difference equation iteratively. At a given iteration step, we use the u, w,

and ν calculated in previous step to evaluate the unknown functions. Effectively,

this technique allows us to decouple and linearize the problem at each step. The

procedure thus consists of the following steps

[1] At step k = 0, set u(k), w(k), and I(k) to the initial guesses u(0), w(0), and

I(0).

[2] Calculate ν
(k)
j from differences of I

(k)
j , j = 0, 1, · · · , n.

[3] Calculate A
(k)
u , A

(k)
w , A

(k)
ν , b

(k)
u , b

(k)
w and b

(k)
ν by evaluating p

(k)
u,j , r

(k)
u,j , · · · and

using u
(k)
j , w

(k)
j , and ν

(k)
j , j = 0, 1, · · · , n.

[4] Use TDMA to solve for u(k+1) =
(

A
(k)
u

)−1
b
(k)
u , w(k+1) =

(

A
(k)
w

)−1
b
(k)
w , and

I(k+1) =
(

A
(k)
ν

)−1
b
(k)
ν .

[5] Repeat from step 2 with k → k+1 if not converged; otherwise, stop iterating.

For simplicity, our convergence criteria are

max
j=0,1,··· ,n

|u(k+1)
j − u(k)j | ≤ εu,

max
j=0,1,··· ,n

|w(k+1)
j − w(k)

j | ≤ εw,

and max
j=0,1,··· ,n

|ν(k+1)
j − ν(k)j | ≤ εν ,

where εu, εw and εν are pre-selected error tolerances.

For the equations governing axisymmetric flows in Sec. 3.1.2 and for the equa-

tions of the simplified mixture theory in Sec. 3.2.2, the iteration procedure is as

shown above, except that y is replaced by r and that all functions pu, pw, etc., have
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different forms. For the equations (3.36), (3.38), and (3.55) of the exact theory

for binary mixtures, we seek four dependent variables u, w, IA, and IB. Here, the

mixture velocity u and the fluctuation velocity w are treated the same way as in

the single species case. The integrals IA and IB are obtained in a similar way than

the volume fraction integral I in the single species case with Dirichlet boundary

conditions, see (C.13) and (C.14).

C.3 Two Dimensions

We extend the procedure above to the partial differential equations (3.18) and

(3.21) given in Sec. 3.1.2. The idea is to solve along either the y- or the z-directions

at each step, while treating quantities in the other direction as known from the

previous iteration. This method allows us to use the efficient TDMA algorithm at

each iteration.

Because it is no longer possible to evaluate the solid volume fraction from a

one-dimensional integral, we derive ν instead by adjusting the constant pressure

imposed by equation (3.19) until the average volume fraction in the cross-section

is equal to the prescribed value for ν̄. In each cell, we calculate ν from P and T by

inverting the equation of state (3.6), ν = ν(P/w2), where w ≡
√
T . The pressure

adjustment is carried out with the procedure described in Appendix C.

We write the partial differential equations for u and w in a generic form,

∂2u

∂y2
+
∂2u

∂z2
+ pu

∂u

∂y
+ qu

∂u

∂z
+ ruu = su, (C.21)

and

∂2w

∂y2
+
∂2w

∂z2
+ pw

∂w

∂y
+ qw

∂w

∂z
+ rww = sw, (C.22)
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subject to the boundary conditions

at y = 0
∂u

∂y
= ayuu+ byu,

∂w

∂y
= ayww + byw, (C.23)

at y = H
∂u

∂y
= cyuu+ dyu,

∂w

∂y
= cyww + dyw, (C.24)

at z = 0
∂u

∂z
= azuu+ bzu,

∂w

∂z
= azww + bzw, (C.25)

at z = H
∂u

∂z
= czuu+ dzu,

∂w

∂z
= czww + dzw, (C.26)

where pu, qu, · · · , dzw depend on u, w and ν in general.

On a rectangular mesh (yj, zi) with yj+1 − yj = hy and zi+1 − zi = hz, (j =

0, 1, · · ·, n; i = 0, 1, · · ·,m), we replace the partial differentials by finite differences,

e.g.,

∂u

∂y
≈ uj+1,i − uj,i

2hy

, (C.27)

∂u

∂z
≈ uj,i+1 − uj,i

2hz

, (C.28)

∂2u

∂y2
≈ uj+1,i − 2uj,i + uj−1,i

h2y
, (C.29)

and

∂2u

∂z2
≈ uj,i+1 − 2uj,i + uj,i−1

h2z
. (C.30)

For example, the difference equations for u are

(

1− hy

2
pu,j,i

)

uj−1,i +
(

1− hz

2
qu,j,i

)h2y
h2z
uj,i−1 +

(

1 +
hy

2
pu,j,i

)

uj+1,i

+
(

1 +
hz

2
qu,j,i

)h2y
h2z
uj,i+1 +

[

− 2
(

1 +
h2y
h2z

)

+ h2yru,j,i

]

uj,i = h2ysu,j,i.

(C.31)

Equation (C.31) can be used directly on interior nodes (j = 1, 2, · · · , n − 1; i =

1, 2, · · · ,m − 1). However, on boundary nodes, the equations involve values of

u at “virtual nodes”, uj,−1, uj,m+1, u−1,i, and un+1,i, which are determined using



241

boundary conditions in a way similar to the derivation of Eq. (C.17) in Sec. C.2.

For example, the difference equations at (0, zi), i = 1, 2, · · · ,m− 1 are

[

− 2
(

1 +
h2y
h2z

)

+ h2yru,0,i − 2hyayu,i
(

1− hy

2
pu,0,i

)

]

u0,i + 2u1,i

+
h2y
h2z

[

(

1− hz

2
qu,0,i

)

u0,i−1 +
(

1 +
hz

2
qu,0,i

)

u0,i+1

]

= h2ysu,0,i + 2hy

(

1− hy

2
pu,0,i

)

byu,i.

(C.32)

At corner nodes, two boundary conditions must be invoked to eliminate the two

“virtual nodes”. For example, the difference equation at (0, 0) is

[

− 2
(

1 +
h2y
h2z

)

+ h2yru,0,0 − 2hyayu,0
(

1− hy

2
pu,0,0

)

− 2
h2y
hz

azu,0
(

1− hz

2
qu,0,0

)

]

u0,0

+ 2u1,0 + 2
h2y
h2z
u0,1 = h2ysu,0,0 + 2hy

(

1− hy

2
pu,0,0

)

byu,0 + 2
h2y
hz

(

1− hz

2
qu,0,0

)

bzu,0.

(C.33)

Equations (C.31), (C.32), and (C.33) form a set of algebraic equations for uj,i,

(j = 0, 1, · · · , n; i = 0, 1, · · · ,m). Unfortunately, because the resulting coefficient

matrix is no longer tri-diagonal, a direct solver is not as efficient as in the one-

dimensional case. Furthermore, because Eqs. (C.21) and (C.22) are non-linear and

coupled, a numerical iteration method is inevitable. However, at each iteration

step, it is not necessary to determine u and w simultaneously in the entire domain.

Instead, as suggested by Peaceman and Rachford [103] for multi-dimensional

heat transfer problems, we accelerate convergence by computing u and w line-by-

line in alternating directions, viz we perform an ordered sweep of the domain on

lines at constant y, followed by a similar orthogonal sweep on lines at constant

z. When solving along each line, the “off-line” unknowns are replaced by their

known values from the previous step and, thus, they are moved to the right side

of the linear system of equations. In this way, the resulting coefficient matrices
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are tri-diagonal at each step and can be solved using the TDMA. For example, at

step k, when determining uj,i along i = const ∈ [1, 2, · · · ,m − 1], the algebraic

equations are written

A
(k−1)
u,i u

(k)
i = b

(k−1)
u,i , (C.34)

where

A
(k−1)
u,i =



























A00 2

1− hy
2
pu,1,i −2 + h2yru,1,i 1 + hy

2
pu,1,i

. . . . . . . . .

1− hy
2
pu,n−1,i −2 + h2yru,n−1,i 1 + hy

2
pu,n−1,i

2 Ann



























,

u
(k)
i =



























u
(k)
0,i

u
(k)
1,i

...

u
(k)
n−1,i

u
(k)
n,i



























,

and

b
(k−1)
u,i =



























b0

h2ysu,1,i −
h2
y

h2
z

[

(

1− hz
2
qu,1,i

)

u1,i−1 +
(

1 + hz
2
qu,1,i

)

u1,i+1

]

...

h2ysu,n−1,i −
h2
y

h2
z

[

(

1− hz
2
qu,n−1,i

)

un−1,i−1 +
(

1 + hz
2
qu,n−1,i

)

un−1,i+1

]

bn



























,
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where

A00 =− 2 + h2yru,0,i − 2hyayu,i
(

1− hy

2
pu,0,i

)

,

Ann =− 2 + h2yru,n,i + 2hycyu,i
(

1 +
hy

2
pu,n,i

)

,

b0 =h
2
ysu,0,i + 2hy

(

1− hy

2
pu,0,i

)

byu,i

−
h2y
h2z

[

(

1− hz

2
qu,0,i

)

u0,i−1 +
(

1 +
hz

2
qu,0,i

)

u0,i+1

]

,

and

bn = h2ysu,n,i−2hy

(

1+
hy

2
pu,n,i

)

dyu,i−
h2y
h2z

[

(

1− hz

2
qu,n,i

)

un,i−1+
(

1+
hz

2
qu,n,i

)

un,i+1

]

.

The functions in A
(k−1)
u,i and b

(k−1)
u,i are evaluated using u

(k−1)
j,i , w

(k−1)
j,i , and ν

(k−1)
j,i .

Similarly, when solving along j = const, we have

A
(k−1)
u,j u

(k)
j = b

(k−1)
u,j , (C.35)

with tri-diagonal matrices A
(k−1)
u,j . For the border lines (j = 0, n or i = 0,m),

the coefficient matrices and the vector b have different forms, but the matrices

remain tri-diagonal. The algebraic equations for w are similar to those for u and,

for conciseness, they are not shown here.

The iteration procedure then becomes

[1] At step k = 0, set u
(k)
j,i , w

(k)
j,i , and ν

(k)
j,i to the initial guesses u

(0)
j,i , w

(0)
j,i , and

ν
(0)
j,i , (j = 0, 1, · · · , n, and i = 0, 1, · · · ,m).

[2] For each i = 0, 1, · · · ,m, do steps 3 and 4.

[3] Calculate A
(k)
u,i , A

(k)
w,i, b

(k)
u,i and b

(k)
w,i by evaluating functions in the PDE’s using

u
(k)
j,i , w

(k)
j,i , and ν

(k)
j,i , (j = 0, 1, · · · , n, i ∈ [i− 1, i, i+ 1]).

[4] Solve for u
(k+1)
j,i =

(

A
(k)
u,i

)−1
b
(k)
u,i , and w

(k+1)
j,i =

(

A
(k)
w,i

)−1
b
(k)
w,i, (j = 0, 1, · · · , n),

using the TDMA.
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[5] Find the volume fractions ν
(k+1)
j,i by inverting the equation of state ν =

ν(P/w2) and adjusting the constant pressure P iteratively by the Newton-

Raphson method until the domain-average volume fraction is ν̄.

[6] Set k → k + 1; for each j = 0, 1, · · · , n, do steps 7 and 8.

[7] Calculate A
(k)
u,j , A

(k)
w,j, b

(k)
u,j and b

(k)
w,j by evaluating functions in the PDE’s using

u
(k)
j,i , w

(k)
j,i , and ν

(k)
j,i , (i = 0, 1, · · · ,m, j ∈ [j − 1, j, j + 1]).

[8] Solve for u
(k+1)
j,i =

(

A
(k)
u,j

)−1
b
(k)
u,j , and w

(k+1)
j,i =

(

A
(k)
w,j

)−1
b
(k)
w,j , (i = 0, 1, · · · ,m),

using the TDMA.

[9] Find the volume fraction ν
(k+1)
j,i as in step 5.

[10] Repeat from step 2 with k → k+1 if not converged; otherwise, stop iterating.

The convergence criteria are identical to those in one dimension.
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Expressions in the Exact Mixture

Theory

The elements of the determinant D in Eqs. (3.51) and (3.52) are

1

T

∂P

∂nA

= 1 +
1

R3
AA

νAgAA +
1

R3
BA

νBgAB

+

[

10ν2A + 4
R2

AB

R2
BA

(

RAB

RBA

+
3

2

)

ν2B +
1

R3
BA

(

1 + 3RBA

)

νAνB

]

1

(1− ν)2

+

[

16ν2A + 4
RAB

RBA

(

3
RAB

RBA

+ 1

)

ν2B +
1

R2
BA

(

6 + 4RBA

)

νAνB

]

rAξ2
(1− ν)3

+

[

ν2A +
RAB

RBA

ν2B +
1

RBA

νAνB

]

6r2Aξ
2
2

(1− ν)4 , (D.1)

1

T

∂P

∂nB

= 1 +
1

R3
BB

νBgBB +
1

R3
AB

νAgAB

+

[

10ν2B + 4
R2

BA

R2
AB

(

RBA

RAB

+
3

2

)

ν2A +
1

R3
AB

(

1 + 3RAB

)

νAνB

]

1

(1− ν)2

+

[

16ν2B + 4
RBA

RAB

(

3
RBA

RAB

+ 1

)

ν2A +
1

R2
AB

(

6 + 4RAB

)

νAνB

]

rBξ2
(1− ν)3

+

[

ν2B +
RBA

RAB

ν2A +
1

RAB

νAνB

]

6r2Bξ
2
2

(1− ν)4 , (D.2)

1

T

∂µA

∂nA

=
4

3
πr3A

1

T

∂P

∂nA

+
1

nA

+
4

3
πr3A

{

7

1− ν +
3r2Aξ1

(1− ν)2

+

[

3

(1− ν)2 +
2

ν(1− ν) +
2 ln(1− ν)

ν2

]

3rAξ2

+

[

1 + ν

ν(1− ν)3 −
4− ν

ν2(1− ν) −
4 ln(1− ν)

ν3

]

3r2Aξ
2
2

+

[

6− 2ν

ν3(1− ν) +
6 ln(1− ν)

ν4
+

1

ν2(1− ν)2

]

r3Aξ
3
2

}

, (D.3)
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and

1

T

∂µA

∂nB

=
4

3
πr3A

1

T

∂P

∂nB

+
4

3
πr3B

{

(

1 + 3
RAB

RBA

+ 3
R2

AB

R2
BA

)

1

1− ν +
3r2Aξ1

(1− ν)2

+

[

(

1 + 2
RAB

RBA

)

1

(1− ν)2 +
RAB

RBA

(

2

ν(1− ν) +
2 ln(1− ν)

ν2

)]

3rAξ2

+

[

1 + ν

ν(1− ν)3 −
(

2 +
RAB

RBA

(2− ν)
)

1

ν2(1− ν)

−
(

1 +
RAB

RBA

)

2 ln(1− ν)
ν3

]

3r2Aξ
2
2

+

[

6− 2ν

ν3(1− ν) +
6 ln(1− ν)

ν4
+

1

ν2(1− ν)2

]

r3Aξ
3
2

}

, (D.4)

where

Rij ≡
ri

ri + rj
, i, j = A or B.



Appendix E

Tentative Test Matrices

We list here tentative test matrices for the Viscous Dissipation and the Vis-

cous Drag experiments. The experiment apparatus is the axisymmetric shear cell

sketched in Figure 5.6 with an inner radius Ri = 210 mm and an outer radius

Ro = 228 mm. The two radii are defined at the centers of the boundary cylin-

ders. The diameters of the boundary cylinders are di = do = 2 mm. Separations

between cylinders are si = 1 mm and so = 0. The distance between flat side walls

are Z = 20 mm. Test matrices are for Nitinol spheres with ρs = 6.71 g/cm3 and

σ = 2 mm.

E.1 Viscous Dissipation Experiments

In the viscous dissipation experiments, we vary the rotation speeds of the inner and

outer boundaries systematically to investigate the effect of viscous gas on particle

fluctuation velocity. Some selected parameters are listed in the test matrix:

ν̄ The overall particle volume fraction in the cell. By default, flows in the

viscous dissipation experiments are axisymmetric.

St Stokes number

St ≡ ρsσ
2

18µg

U

H

where U ≡ Ui − Uo is the relative velocity between the inner and outer

boundary and H ≡ Ro − Ri − σ − (di + do)/2 is the distance between the

flow spheres touching the crests of the inner and outer boundary bumps,

respectively.
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Pg Average gas pressure in the cell, which determines the molecular mean free

path of the gas and hence the viscous dissipation through the lubrication

cut-off in Eq. (4.4). We also vary Pg to control gas inertia effect by change

its density, see below.

Ui The velocity of the inner boundary. In the viscous dissipation experiments,

the outer boundary rotates at the same speed as the inner boundary but in

the opposite direction, i.e., Uo = −Ui.

T̄ 1/2 Average particle fluctuation velocity in any cross section of the cell.

ReT Reynolds number based on the particle fluctuation velocity

ReT ≡
ρgσT̄

1/2

µg

where ρg and µg are the gas density and molecular viscosity, respectively. We

control ReT by changing ρg through Pg.

Stlocal Stokes number defined in Eq. (7.8).

Stcr Critical Stokes number defined in Eq. (7.11). If Stlocal ≤ Stcr, then the mea-

sured particle fluctuation velocity may be different from predictions derived

from the isotropic theory of Sangani et al [107].

Fmin The required minimum camera frame rate, which is determined from our

analysis of measurement errors, i.e., Eqs. (6.11), (6.12), and (6.30).

Nmin Required minimum number of images from Eq. (7.15).



249

Table 1: Viscous Dissipation Experiments.

Control Parameters Flow Parameters Image System

ν̄ St Pg Ui T̄ 1/2 ReT Stlocal Stcr Fmin Nmin

(atm) (cm/s) (cm/s) (fps)

0.05 5 1 0.04 0.01 0.01 2 131 0.6 9776

0.05 10 1 0.08 0.02 0.02 4 131 1.2 10161

0.05 20 1 0.17 0.05 0.07 14 131 2.8 11690

0.05 20 0.1 0.17 0.05 0.01 15 123 2.9 11960

0.05 20 0.01 0.17 0.05 0.00 16 115 2.9 12230

0.05 40 1 0.34 0.12 0.18 39 131 6.4 13243

0.05 40 0.1 0.34 0.13 0.02 40 123 6.4 13394

0.05 40 0.01 0.34 0.13 0.00 41 115 6.5 13546

0.05 50 1 0.42 0.16 0.23 51 131 8.2 13594

0.05 50 0.1 0.42 0.16 0.02 52 123 8.2 13718

0.05 50 0.01 0.42 0.17 0.00 53 115 8.3 13841

0.05 80 1 0.67 0.28 0.40 89 131 13.6 14140

0.05 100 1 0.84 0.36 0.52 115 131 17.2 14325

0.05 200 1 1.68 0.76 1.09 242 131 35.3 14694

0.05 500 1 4.20 1.94 2.80 623 131 89.5 14912

0.05 1000 1 8.40 3.92 5.65 1257 131 179.9 14984

0.10 5 1 0.04 0.00 0.01 3 167 0.5 4372

0.10 10 1 0.08 0.01 0.02 7 167 1.1 4589

0.10 20 1 0.17 0.03 0.05 23 167 2.5 5158

0.10 20 0.1 0.17 0.04 0.01 26 150 2.6 5339



250

Table 1 (Continued)

Control Parameters Flow Parameters Image System

ν̄ St Pg Ui T̄ 1/2 ReT Stlocal Stcr Fmin Nmin

(atm) (cm/s) (cm/s) (fps)

0.10 20 0.01 0.17 0.04 0.00 29 133 2.6 5515

0.10 40 1 0.34 0.09 0.13 65 167 5.5 5758

0.10 40 0.1 0.34 0.09 0.01 68 150 5.6 5858

0.10 40 0.01 0.34 0.10 0.00 70 133 5.7 5957

0.10 50 1 0.42 0.12 0.17 86 167 7.1 5895

0.10 50 0.1 0.42 0.12 0.02 89 150 7.2 5976

0.10 50 0.01 0.42 0.13 0.00 92 133 7.4 6153

0.10 80 1 0.67 0.21 0.30 150 167 12.1 6281

0.10 80 0.1 0.67 0.21 0.03 153 150 12.3 6405

0.10 80 0.01 0.67 0.21 0.00 156 133 12.5 6530

0.10 100 1 0.84 0.26 0.38 193 167 15.5 6458

0.10 200 1 1.68 0.56 0.80 409 167 32.8 6822

0.10 500 1 4.20 1.44 2.07 1056 167 84.6 7044

0.10 1000 1 8.40 2.91 4.19 2135 167 170.9 7118

0.20 25 1 0.21 0.03 0.05 63 237 5.1 4237

0.20 25 0.1 0.21 0.04 0.01 71 200 5.7 4762

0.20 25 0.01 0.21 0.04 0.00 79 162 6.3 5277

0.20 50 1 0.42 0.08 0.11 157 237 12.6 5245

0.20 50 0.1 0.42 0.08 0.01 165 200 13.3 5525

0.20 50 0.01 0.42 0.09 0.00 174 162 13.9 5803
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Table 1 (Continued)

Control Parameters Flow Parameters Image System

ν̄ St Pg Ui T̄ 1/2 ReT Stlocal Stcr Fmin Nmin

(atm) (cm/s) (cm/s) (fps)

0.20 60 1 0.50 0.10 0.14 195 237 15.6 5428

0.20 60 0.1 0.50 0.10 0.01 203 200 16.3 5663

0.20 60 0.01 0.50 0.11 0.00 212 162 17.0 5896

0.20 80 1 0.67 0.14 0.20 271 237 21.7 5660

0.20 80 0.1 0.67 0.14 0.02 280 200 22.4 5837

0.20 80 0.01 0.67 0.15 0.00 288 162 23.1 6015

0.20 100 1 0.84 0.18 0.25 348 237 27.9 5801

0.20 200 1 1.68 0.37 0.53 730 237 58.5 6090

0.20 500 1 4.20 0.95 1.37 1879 237 150.4 6267

0.20 1000 1 8.40 1.91 2.76 3795 237 303.7 6326

0.30 25 1 0.21 0.03 0.04 114 334 9.2 5085

0.30 25 0.1 0.21 0.03 0.00 132 268 10.6 5909

0.30 25 0.01 0.21 0.04 0.00 150 201 12.1 6701

0.30 50 1 0.42 0.07 0.10 278 334 22.3 6193

0.30 50 0.1 0.42 0.07 0.01 297 268 23.8 6614

0.30 50 0.01 0.42 0.08 0.00 316 201 25.3 7030

0.30 60 1 0.50 0.08 0.12 344 334 27.6 6386

0.30 60 0.1 0.50 0.09 0.01 363 268 29.1 6738

0.30 60 0.01 0.50 0.09 0.00 382 201 30.6 7086

0.30 80 1 0.67 0.11 0.16 477 334 38.2 6629
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Table 1 (Continued)

Control Parameters Flow Parameters Image System

ν̄ St Pg Ui T̄ 1/2 ReT Stlocal Stcr Fmin Nmin

(atm) (cm/s) (cm/s) (fps)

0.30 80 0.1 0.67 0.12 0.02 496 268 39.7 6894

0.30 80 0.01 0.67 0.12 0.00 515 201 41.2 7158

0.30 100 1 0.84 0.15 0.21 609 334 48.8 6776

0.30 200 1 1.68 0.30 0.44 1273 334 101.9 7075

0.30 500 1 4.20 0.78 1.12 3265 334 261.3 7256

0.30 1000 1 8.40 1.57 2.26 6584 334 526.9 7316

0.40 25 1 0.21 0.03 0.04 217 490 17.4 7252

0.40 50 1 0.42 0.06 0.09 515 490 41.3 8592

0.40 50 0.1 0.42 0.07 0.01 555 374 44.5 9261

0.40 50 0.01 0.42 0.07 0.00 594 258 47.6 9917

0.40 60 1 0.50 0.08 0.11 634 490 50.8 8818

0.40 60 0.1 0.50 0.08 0.01 674 374 54.0 9375

0.40 60 0.01 0.50 0.09 0.00 714 258 57.2 9924

0.40 80 1 0.67 0.10 0.15 873 490 69.9 9101

0.40 80 0.1 0.67 0.11 0.02 913 374 73.1 9520

0.40 80 0.01 0.67 0.11 0.00 953 258 76.3 9933

0.40 100 1 0.84 0.13 0.19 1112 490 89.0 9272

0.40 200 1 1.68 0.28 0.40 2307 490 184.7 9615

0.40 500 1 4.20 0.71 1.02 5892 490 471.5 9821

0.40 1000 1 8.40 1.42 2.05 11866 490 949.7 9890
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E.2 Viscous Drag Experiments

The Viscous Drag experiments will be carried out in the same apparatus and will

use the same Nitinol spheres as the Viscous Dissipation experiments. Two versions

of the test matrices for the Viscous Drag experiments exist. The first assumes

the presence of two gas distributors separated by an angle 180◦ for gas injection

and withdrawal, respectively. The second adds a third distributor to create an

isokinetic section, in which the mean gas volume flow rate can be evaluated, see

Chapter refchap:FD. For conciseness, we only provide here the test matrices for

two distributors. In these experiments, we allow only the inner boundary to rotate.

Consequently, the cell is divided into a co-flow region and a counter flow region.

The parameters in the test matrices are:

St Stokes number

St ≡ ρsσ
2

18µg

Ui

H

where Ui is the velocity of the inner boundary. Note that in the viscous drag

experiments, the outer boundary is stationary, Uo = 0.

Rτ Dimensionless pressure gradient

Rτ ≡
∆Pg/πR

ρsσ(Ui/H)2

where ∆Pg is the pressure difference between gas injection and withdrawal

and R ≡ (Ri +Ro)/2 is the average radius of the cell.

Pg Average gas pressure in the cell, see comments on the Viscous Dissipation

experiments.

Ui The velocity of the inner boundary.



254

ν̄FD Average particle volume fraction in the fully developed regions of the co- or

counter-flow sections.

T̄
1/2
FD Average particle fluctuation velocity in the fully developed regions.

ūg Average gas velocity in the fully developed regions.

In these parameters, St, Rτ , and Pg are control parameters, while ν̄FD, T̄
1/2
FD and ūg

are theoretical predictions. They are listed here to guide the design of experiments,

and in particular to choose appropriate instruments.
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Table 2: Viscous Drag Experiments (¯̄ν = 0.15).

Control Parameters Co-flow Region Counter-flow

St Rτ Pg Ui ν̄FD T̄
1/2
FD ūg ν̄FD T̄

1/2
FD ūg

(atm) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

50 0.002 1 0.84 0.13 0.12 0.47 0.17 0.10 0.32

50 0.002 0.1 0.84 0.13 0.13 0.47 0.17 0.10 0.32

50 0.002 0.01 0.84 0.13 0.13 0.47 0.17 0.11 0.32

80 0.002 1 1.34 0.13 0.21 0.77 0.17 0.18 0.50

80 0.002 0.1 1.34 0.13 0.21 0.77 0.17 0.18 0.50

80 0.002 0.01 1.34 0.13 0.22 0.77 0.17 0.19 0.50

100 0.002 1 1.68 0.13 0.27 0.98 0.17 0.23 0.61

100 0.002 0.1 1.68 0.13 0.27 0.98 0.17 0.23 0.61

100 0.002 0.01 1.68 0.13 0.28 0.99 0.17 0.24 0.61

160 0.002 1 2.69 0.13 0.45 1.68 0.17 0.38 0.89

160 0.002 0.1 2.69 0.13 0.46 1.68 0.17 0.39 0.89

160 0.002 0.01 2.69 0.13 0.46 1.68 0.17 0.39 0.89

400 0.002 1 6.72 0.13 1.17 5.36 0.17 1.01 1.35

400 0.002 0.1 6.72 0.13 1.18 5.36 0.17 1.01 1.35

400 0.002 0.01 6.72 0.13 1.18 5.36 0.17 1.01 1.36

700 0.002 1 11.76 0.13 2.08 11.95 0.17 1.78 0.48

700 0.002 0.1 11.76 0.13 2.08 11.95 0.17 1.79 0.48

700 0.002 0.01 11.76 0.13 2.09 11.96 0.17 1.79 0.49

1000 0.002 1 16.81 0.13 2.98 20.77 0.17 2.56 -2.00

1000 0.002 0.1 16.81 0.13 2.99 20.77 0.17 2.56 -2.00

1000 0.002 0.01 16.81 0.13 2.99 20.78 0.17 2.57 -2.00
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Table 2 (Continued)

Control Parameters Co-flow Region Counter-flow

St Rτ Pg Ui ν̄FD T̄
1/2
FD ūg ν̄FD T̄

1/2
FD ūg

(atm) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

50 0.004 1 0.84 0.12 0.13 0.54 0.18 0.10 0.27

50 0.004 0.1 0.84 0.12 0.13 0.54 0.18 0.10 0.28

50 0.004 0.01 0.84 0.12 0.13 0.54 0.18 0.10 0.28

80 0.004 1 1.34 0.12 0.22 0.91 0.18 0.17 0.41

80 0.004 0.1 1.34 0.12 0.22 0.91 0.18 0.18 0.41

80 0.004 0.01 1.34 0.12 0.23 0.91 0.18 0.18 0.42

100 0.004 1 1.68 0.12 0.28 1.18 0.18 0.22 0.49

100 0.004 0.1 1.68 0.12 0.28 1.18 0.18 0.23 0.49

100 0.004 0.01 1.68 0.12 0.29 1.18 0.18 0.23 0.49

160 0.004 1 2.69 0.12 0.47 2.13 0.18 0.37 0.63

160 0.004 0.1 2.69 0.12 0.47 2.13 0.18 0.38 0.63

160 0.004 0.01 2.69 0.12 0.47 2.13 0.18 0.38 0.63

400 0.004 1 6.72 0.12 1.21 7.89 0.18 0.97 -0.01

400 0.004 0.1 6.72 0.12 1.21 7.89 0.18 0.98 0.00

400 0.004 0.01 6.72 0.12 1.22 7.89 0.18 0.98 0.00

700 0.004 1 11.76 0.13 2.14 19.46 0.18 1.73 -3.48

700 0.004 0.1 11.76 0.13 2.14 19.46 0.18 1.73 -3.48

700 0.004 0.01 11.76 0.13 2.15 19.46 0.18 1.74 -3.48

1000 0.004 1 16.81 0.13 3.07 35.89 0.18 2.48 -9.93

1000 0.004 0.1 16.81 0.13 3.07 35.89 0.18 2.49 -9.93

1000 0.004 0.01 16.81 0.13 3.08 35.89 0.18 2.49 -9.93
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Table 2 (Continued)

Control Parameters Co-flow Region Counter-flow

St Rτ Pg Ui ν̄FD T̄
1/2
FD ūg ν̄FD T̄

1/2
FD ūg

(atm) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

50 0.008 1 0.84 0.10 0.14 0.70 0.20 0.09 0.22

50 0.008 0.1 0.84 0.11 0.14 0.69 0.20 0.09 0.22

50 0.008 0.01 0.84 0.11 0.14 0.69 0.20 0.10 0.22

80 0.008 1 1.34 0.11 0.23 1.24 0.20 0.16 0.29

80 0.008 0.1 1.34 0.11 0.23 1.24 0.20 0.16 0.29

80 0.008 0.01 1.34 0.11 0.24 1.23 0.19 0.17 0.30

100 0.008 1 1.68 0.11 0.30 1.67 0.19 0.21 0.31

100 0.008 0.1 1.68 0.11 0.30 1.67 0.19 0.21 0.31

100 0.008 0.01 1.68 0.11 0.30 1.66 0.19 0.22 0.31

160 0.008 1 2.69 0.11 0.49 3.27 0.19 0.35 0.23

160 0.008 0.1 2.69 0.11 0.49 3.26 0.19 0.35 0.23

160 0.008 0.01 2.69 0.11 0.49 3.25 0.19 0.36 0.23

400 0.008 1 6.72 0.11 1.26 14.20 0.19 0.92 -2.19

400 0.008 0.1 6.72 0.11 1.27 14.19 0.19 0.92 -2.19

400 0.008 0.01 6.72 0.11 1.27 14.18 0.19 0.93 -2.19

700 0.008 1 11.76 0.11 2.23 38.14 0.19 1.63 -9.93

700 0.008 0.1 11.76 0.11 2.24 38.12 0.19 1.64 -9.93

700 0.008 0.01 11.76 0.11 2.24 38.10 0.19 1.64 -9.94

1000 0.008 1 16.81 0.11 3.20 73.49 0.19 2.34 -22.90

1000 0.008 0.1 16.81 0.11 3.21 73.46 0.19 2.35 -22.91

1000 0.008 0.01 16.81 0.11 3.21 73.43 0.19 2.35 -22.92



258

Table 2 (Continued)

Control Parameters Co-flow Region Counter-flow

St Rτ Pg Ui ν̄FD T̄
1/2
FD ūg ν̄FD T̄

1/2
FD ūg

(atm) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

50 0.01 1 0.84 0.10 0.14 0.78 0.20 0.09 0.20

50 0.01 0.1 0.84 0.10 0.14 0.77 0.20 0.09 0.20

50 0.01 0.01 0.84 0.10 0.14 0.77 0.20 0.10 0.20

80 0.01 1 1.34 0.10 0.23 1.43 0.20 0.16 0.25

80 0.01 0.1 1.34 0.10 0.24 1.42 0.20 0.16 0.25

80 0.01 0.01 1.34 0.10 0.24 1.42 0.20 0.17 0.25

100 0.01 1 1.68 0.10 0.30 1.95 0.20 0.20 0.24

100 0.01 0.1 1.68 0.10 0.30 1.94 0.20 0.21 0.24

100 0.01 0.01 1.68 0.11 0.30 1.93 0.20 0.21 0.24

160 0.01 1 2.69 0.11 0.49 3.91 0.20 0.34 0.07

160 0.01 0.1 2.69 0.11 0.50 3.90 0.20 0.35 0.07

160 0.01 0.01 2.69 0.11 0.50 3.89 0.20 0.35 0.07

400 0.01 1 6.72 0.11 1.28 17.89 0.20 0.90 -3.12

400 0.01 0.1 6.72 0.11 1.28 17.87 0.20 0.90 -3.13

400 0.01 0.01 6.72 0.11 1.28 17.85 0.20 0.91 -3.13

700 0.01 1 11.76 0.11 2.26 49.12 0.20 1.60 -12.71

700 0.01 0.1 11.76 0.11 2.26 49.09 0.20 1.60 -12.72

700 0.01 0.01 11.76 0.11 2.26 49.06 0.20 1.61 -12.72

1000 0.01 1 16.81 0.11 3.24 95.64 0.20 2.29 -28.51

1000 0.01 0.1 16.81 0.11 3.24 95.60 0.20 2.30 -28.52

1000 0.01 0.01 16.81 0.11 3.24 95.56 0.20 2.30 -28.53
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Table 3: Viscous Drag Experiments (¯̄ν = 0.2).

Control Parameters Co-flow Region Counter-flow

St Rτ Pg Ui ν̄FD T̄
1/2
FD ūg ν̄FD T̄

1/2
FD ūg

(atm) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

50 0.002 1 0.84 0.17 0.10 0.46 0.23 0.08 0.33

50 0.002 0.1 0.84 0.17 0.10 0.46 0.23 0.09 0.33

50 0.002 0.01 0.84 0.17 0.11 0.46 0.23 0.09 0.33

80 0.002 1 1.34 0.17 0.17 0.74 0.23 0.15 0.52

80 0.002 0.1 1.34 0.18 0.18 0.74 0.23 0.15 0.52

80 0.002 0.01 1.34 0.18 0.18 0.74 0.23 0.16 0.53

100 0.002 1 1.68 0.18 0.22 0.93 0.23 0.19 0.64

100 0.002 0.1 1.68 0.18 0.23 0.93 0.22 0.20 0.65

100 0.002 0.01 1.68 0.18 0.23 0.93 0.22 0.20 0.65

160 0.002 1 2.69 0.18 0.37 1.55 0.22 0.33 0.99

160 0.002 0.1 2.69 0.18 0.38 1.55 0.22 0.33 0.99

160 0.002 0.01 2.69 0.18 0.38 1.55 0.22 0.34 0.99

400 0.002 1 6.72 0.18 0.97 4.54 0.22 0.86 1.98

400 0.002 0.1 6.72 0.18 0.97 4.54 0.22 0.86 1.98

400 0.002 0.01 6.72 0.18 0.98 4.54 0.22 0.87 1.98

700 0.002 1 11.76 0.18 1.71 9.45 0.22 1.53 2.35

700 0.002 0.1 11.76 0.18 1.72 9.45 0.22 1.53 2.36

700 0.002 0.01 11.76 0.18 1.72 9.45 0.22 1.54 2.36

1000 0.002 1 16.81 0.18 2.46 15.67 0.22 2.19 1.79

1000 0.002 0.1 16.81 0.18 2.46 15.67 0.22 2.20 1.79

1000 0.002 0.01 16.81 0.18 2.47 15.67 0.22 2.20 1.79



260

Table 3 (Continued)

Control Parameters Co-flow Region Counter-flow

St Rτ Pg Ui ν̄FD T̄
1/2
FD ūg ν̄FD T̄

1/2
FD ūg

(atm) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

50 0.004 1 0.84 0.16 0.10 0.51 0.24 0.08 0.29

50 0.004 0.1 0.84 0.16 0.11 0.50 0.24 0.09 0.30

50 0.004 0.01 0.84 0.16 0.11 0.50 0.24 0.09 0.30

80 0.004 1 1.34 0.16 0.18 0.83 0.24 0.15 0.46

80 0.004 0.1 1.34 0.16 0.18 0.83 0.24 0.15 0.47

80 0.004 0.01 1.34 0.17 0.19 0.83 0.24 0.16 0.47

100 0.004 1 1.68 0.17 0.23 1.06 0.24 0.19 0.56

100 0.004 0.1 1.68 0.17 0.23 1.06 0.24 0.19 0.57

100 0.004 0.01 1.68 0.17 0.24 1.06 0.23 0.20 0.57

160 0.004 1 2.69 0.17 0.38 1.84 0.23 0.32 0.82

160 0.004 0.1 2.69 0.17 0.38 1.84 0.23 0.33 0.82

160 0.004 0.01 2.69 0.17 0.39 1.83 0.23 0.33 0.82

400 0.004 1 6.72 0.17 0.99 6.06 0.23 0.84 1.14

400 0.004 0.1 6.72 0.17 0.99 6.06 0.23 0.85 1.14

400 0.004 0.01 6.72 0.17 1.00 6.06 0.23 0.85 1.14

700 0.004 1 11.76 0.17 1.75 13.91 0.23 1.50 -0.06

700 0.004 0.1 11.76 0.17 1.75 13.90 0.23 1.50 -0.06

700 0.004 0.01 11.76 0.17 1.76 13.90 0.23 1.51 -0.06

1000 0.004 1 16.81 0.17 2.51 24.57 0.23 2.15 -3.00

1000 0.004 0.1 16.81 0.17 2.51 24.57 0.23 2.16 -3.00

1000 0.004 0.01 16.81 0.17 2.52 24.57 0.23 2.16 -3.00
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Table 3 (Continued)

Control Parameters Co-flow Region Counter-flow

St Rτ Pg Ui ν̄FD T̄
1/2
FD ūg ν̄FD T̄

1/2
FD ūg

(atm) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

50 0.008 1 0.84 0.14 0.11 0.62 0.26 0.08 0.25

50 0.008 0.1 0.84 0.14 0.11 0.61 0.26 0.08 0.25

50 0.008 0.01 0.84 0.14 0.11 0.61 0.26 0.09 0.26

80 0.008 1 1.34 0.15 0.19 1.06 0.26 0.14 0.38

80 0.008 0.1 1.34 0.15 0.19 1.05 0.26 0.14 0.38

80 0.008 0.01 1.34 0.15 0.19 1.05 0.25 0.15 0.38

100 0.008 1 1.68 0.15 0.24 1.39 0.26 0.18 0.44

100 0.008 0.1 1.68 0.15 0.24 1.38 0.25 0.18 0.44

100 0.008 0.01 1.68 0.15 0.25 1.37 0.25 0.19 0.45

160 0.008 1 2.69 0.15 0.40 2.55 0.25 0.30 0.56

160 0.008 0.1 2.69 0.15 0.40 2.54 0.25 0.31 0.56

160 0.008 0.01 2.69 0.15 0.40 2.54 0.25 0.31 0.56

400 0.008 1 6.72 0.15 1.03 9.88 0.25 0.80 -0.20

400 0.008 0.1 6.72 0.15 1.04 9.87 0.25 0.81 -0.20

400 0.008 0.01 6.72 0.15 1.04 9.86 0.25 0.81 -0.20

700 0.008 1 11.76 0.15 1.82 25.06 0.25 1.42 -3.90

700 0.008 0.1 11.76 0.15 1.83 25.04 0.25 1.43 -3.91

700 0.008 0.01 11.76 0.15 1.83 25.01 0.25 1.44 -3.91

1000 0.008 1 16.81 0.15 2.62 46.90 0.25 2.05 -10.66

1000 0.008 0.1 16.81 0.15 2.62 46.87 0.25 2.05 -10.67

1000 0.008 0.01 16.81 0.15 2.62 46.84 0.25 2.06 -10.68
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Table 3 (Continued)

Control Parameters Co-flow Region Counter-flow

St Rτ Pg Ui ν̄FD T̄
1/2
FD ūg ν̄FD T̄

1/2
FD ūg

(atm) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

50 0.01 1 0.84 0.14 0.11 0.68 0.27 0.08 0.24

50 0.01 0.1 0.84 0.14 0.11 0.67 0.27 0.08 0.24

50 0.01 0.01 0.84 0.14 0.11 0.66 0.26 0.09 0.24

80 0.01 1 1.34 0.14 0.19 1.18 0.26 0.14 0.35

80 0.01 0.1 1.34 0.14 0.19 1.17 0.26 0.14 0.35

80 0.01 0.01 1.34 0.14 0.19 1.17 0.26 0.15 0.35

100 0.01 1 1.68 0.14 0.24 1.56 0.26 0.18 0.40

100 0.01 0.1 1.68 0.14 0.24 1.56 0.26 0.18 0.40

100 0.01 0.01 1.68 0.14 0.25 1.55 0.26 0.19 0.40

160 0.01 1 2.69 0.14 0.40 2.96 0.26 0.30 0.46

160 0.01 0.1 2.69 0.15 0.40 2.95 0.26 0.30 0.46

160 0.01 0.01 2.69 0.15 0.41 2.94 0.26 0.31 0.46

400 0.01 1 6.72 0.15 1.04 12.10 0.26 0.79 -0.75

400 0.01 0.1 6.72 0.15 1.04 12.08 0.26 0.79 -0.75

400 0.01 0.01 6.72 0.15 1.05 12.07 0.26 0.80 -0.75

700 0.01 1 11.76 0.15 1.84 31.55 0.26 1.40 -5.51

700 0.01 0.1 11.76 0.15 1.85 31.53 0.26 1.40 -5.52

700 0.01 0.01 11.76 0.15 1.85 31.50 0.26 1.41 -5.52

1000 0.01 1 16.81 0.15 2.64 59.77 0.26 2.01 -13.85

1000 0.01 0.1 16.81 0.15 2.65 59.73 0.26 2.02 -13.86

1000 0.01 0.01 16.81 0.15 2.65 59.70 0.26 2.02 -13.87
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Table 4: Viscous Drag Experiments (¯̄ν = 0.3).

Control Parameters Co-flow Region Counter-flow

St Rτ Pg Ui ν̄FD T̄
1/2
FD ūg ν̄FD T̄

1/2
FD ūg

(atm) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

50 0.002 1 0.84 0.25 0.08 0.45 0.35 0.07 0.32

50 0.002 0.1 0.84 0.25 0.08 0.45 0.35 0.08 0.33

50 0.002 0.01 0.84 0.26 0.09 0.45 0.34 0.08 0.33

80 0.002 1 1.34 0.26 0.14 0.72 0.34 0.13 0.52

80 0.002 0.1 1.34 0.26 0.14 0.72 0.34 0.13 0.53

80 0.002 0.01 1.34 0.26 0.15 0.72 0.34 0.14 0.53

100 0.002 1 1.68 0.26 0.18 0.91 0.34 0.16 0.66

100 0.002 0.1 1.68 0.26 0.18 0.91 0.34 0.17 0.66

100 0.002 0.01 1.68 0.26 0.19 0.90 0.34 0.17 0.67

160 0.002 1 2.69 0.26 0.30 1.47 0.34 0.27 1.04

160 0.002 0.1 2.69 0.26 0.30 1.47 0.34 0.28 1.05

160 0.002 0.01 2.69 0.26 0.31 1.47 0.34 0.28 1.05

400 0.002 1 6.72 0.26 0.78 3.92 0.34 0.72 2.45

400 0.002 0.1 6.72 0.26 0.79 3.93 0.34 0.73 2.45

400 0.002 0.01 6.72 0.26 0.79 3.93 0.34 0.73 2.46

700 0.002 1 11.76 0.27 1.39 7.52 0.33 1.28 3.88

700 0.002 0.1 11.76 0.27 1.39 7.52 0.33 1.29 3.88

700 0.002 0.01 11.76 0.27 1.40 7.52 0.33 1.29 3.88

1000 0.002 1 16.81 0.27 1.99 11.69 0.33 1.84 4.92

1000 0.002 0.1 16.81 0.27 2.00 11.69 0.33 1.85 4.93

1000 0.002 0.01 16.81 0.27 2.00 11.70 0.33 1.85 4.93
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Table 4 (Continued)

Control Parameters Co-flow Region Counter-flow

St Rτ Pg Ui ν̄FD T̄
1/2
FD ūg ν̄FD T̄

1/2
FD ūg

(atm) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

50 0.004 1 0.84 0.24 0.08 0.49 0.36 0.07 0.30

50 0.004 0.1 0.84 0.24 0.08 0.49 0.36 0.07 0.31

50 0.004 0.01 0.84 0.24 0.09 0.48 0.36 0.08 0.32

80 0.004 1 1.34 0.24 0.14 0.78 0.36 0.12 0.50

80 0.004 0.1 1.34 0.25 0.15 0.78 0.35 0.13 0.50

80 0.004 0.01 1.34 0.25 0.15 0.78 0.35 0.13 0.51

100 0.004 1 1.68 0.25 0.18 0.98 0.35 0.16 0.62

100 0.004 0.1 1.68 0.25 0.19 0.98 0.35 0.17 0.62

100 0.004 0.01 1.68 0.25 0.19 0.98 0.35 0.17 0.63

160 0.004 1 2.69 0.25 0.30 1.61 0.35 0.27 0.97

160 0.004 0.1 2.69 0.25 0.31 1.61 0.35 0.28 0.98

160 0.004 0.01 2.69 0.25 0.31 1.61 0.35 0.28 0.98

400 0.004 1 6.72 0.26 0.79 4.64 0.34 0.72 2.10

400 0.004 0.1 6.72 0.26 0.79 4.64 0.34 0.72 2.10

400 0.004 0.01 6.72 0.26 0.80 4.64 0.34 0.73 2.10

700 0.004 1 11.76 0.26 1.40 9.53 0.34 1.27 2.88

700 0.004 0.1 11.76 0.26 1.40 9.53 0.34 1.28 2.88

700 0.004 0.01 11.76 0.26 1.41 9.54 0.34 1.28 2.88

1000 0.004 1 16.81 0.26 2.01 15.67 0.34 1.83 2.96

1000 0.004 0.1 16.81 0.26 2.01 15.67 0.34 1.83 2.96

1000 0.004 0.01 16.81 0.26 2.02 15.68 0.34 1.84 2.97
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Table 4 (Continued)

Control Parameters Co-flow Region Counter-flow

St Rτ Pg Ui ν̄FD T̄
1/2
FD ūg ν̄FD T̄

1/2
FD ūg

(atm) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

50 0.008 1 0.84 0.22 0.08 0.55 0.38 0.07 0.28

50 0.008 0.1 0.84 0.22 0.09 0.54 0.38 0.07 0.29

50 0.008 0.01 0.84 0.23 0.09 0.54 0.37 0.08 0.30

80 0.008 1 1.34 0.23 0.14 0.89 0.37 0.12 0.46

80 0.008 0.1 1.34 0.23 0.15 0.89 0.37 0.13 0.46

80 0.008 0.01 1.34 0.23 0.15 0.89 0.37 0.13 0.47

100 0.008 1 1.68 0.23 0.18 1.14 0.37 0.16 0.56

100 0.008 0.1 1.68 0.23 0.19 1.13 0.37 0.16 0.57

100 0.008 0.01 1.68 0.24 0.19 1.13 0.36 0.17 0.57

160 0.008 1 2.69 0.24 0.31 1.95 0.36 0.27 0.86

160 0.008 0.1 2.69 0.24 0.31 1.94 0.36 0.27 0.86

160 0.008 0.01 2.69 0.24 0.32 1.94 0.36 0.28 0.86

400 0.008 1 6.72 0.24 0.80 6.29 0.36 0.71 1.52

400 0.008 0.1 6.72 0.24 0.81 6.29 0.36 0.71 1.53

400 0.008 0.01 6.72 0.24 0.81 6.28 0.36 0.72 1.53

700 0.008 1 11.76 0.24 1.42 14.25 0.36 1.25 1.24

700 0.008 0.1 11.76 0.24 1.42 14.24 0.36 1.26 1.24

700 0.008 0.01 11.76 0.24 1.43 14.24 0.36 1.26 1.24

1000 0.008 0.1 16.81 0.24 2.04 25.00 0.36 1.80 -0.28

1000 0.008 0.01 16.81 0.24 2.04 24.99 0.36 1.81 -0.28
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Table 4 (Continued)

Control Parameters Co-flow Region Counter-flow

St Rτ Pg Ui ν̄FD T̄
1/2
FD ūg ν̄FD T̄

1/2
FD ūg

(atm) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

50 0.01 1 0.84 0.21 0.08 0.58 0.39 0.07 0.27

50 0.01 0.1 0.84 0.22 0.09 0.57 0.38 0.07 0.28

50 0.01 0.01 0.84 0.22 0.09 0.57 0.38 0.08 0.29

80 0.01 1 1.34 0.22 0.14 0.95 0.38 0.12 0.44

80 0.01 0.1 1.34 0.22 0.15 0.95 0.38 0.13 0.45

80 0.01 0.01 1.34 0.23 0.15 0.94 0.37 0.13 0.45

100 0.01 1 1.68 0.22 0.19 1.22 0.38 0.16 0.54

100 0.01 0.1 1.68 0.23 0.19 1.22 0.37 0.16 0.55

100 0.01 0.01 1.68 0.23 0.19 1.21 0.37 0.17 0.55

160 0.01 1 2.69 0.23 0.31 2.13 0.37 0.27 0.81

160 0.01 0.1 2.69 0.23 0.31 2.12 0.37 0.27 0.81

160 0.01 0.01 2.69 0.23 0.32 2.12 0.37 0.28 0.82

400 0.01 1 6.72 0.23 0.81 7.24 0.37 0.70 1.29

400 0.01 0.1 6.72 0.23 0.81 7.23 0.37 0.71 1.29

400 0.01 0.01 6.72 0.24 0.81 7.21 0.37 0.71 1.29

700 0.01 1 11.76 0.24 1.43 16.95 0.37 1.24 0.56

700 0.01 0.1 11.76 0.24 1.43 16.94 0.37 1.25 0.56

700 0.01 0.01 11.76 0.24 1.43 16.92 0.37 1.25 0.55

1000 0.01 1 16.81 0.24 2.05 30.38 0.37 1.79 -1.64

1000 0.01 0.1 16.81 0.24 2.05 30.36 0.37 1.79 -1.64

1000 0.01 0.01 16.81 0.24 2.06 30.34 0.37 1.80 -1.65
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Table 5: Viscous Drag Experiments (¯̄ν = 0.4).

Control Parameters Co-flow Region Counter-flow

St Rτ Pg Ui ν̄FD T̄
1/2
FD ūg ν̄FD T̄

1/2
FD ūg

(atm) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

50 0.002 1 0.84 0.33 0.07 0.44 0.47 0.07 0.32

50 0.002 0.1 0.84 0.34 0.08 0.44 0.46 0.07 0.33

50 0.002 0.01 0.84 0.35 0.08 0.43 0.45 0.08 0.34

80 0.002 1 1.34 0.34 0.13 0.70 0.46 0.12 0.52

80 0.002 0.1 1.34 0.35 0.13 0.70 0.45 0.12 0.53

80 0.002 0.01 1.34 0.35 0.13 0.69 0.45 0.13 0.54

100 0.002 1 1.68 0.35 0.16 0.88 0.45 0.15 0.66

100 0.002 0.1 1.68 0.35 0.16 0.87 0.45 0.16 0.67

100 0.002 0.01 1.68 0.35 0.17 0.87 0.45 0.16 0.68

160 0.002 1 2.69 0.35 0.27 1.40 0.45 0.26 1.07

160 0.002 0.1 2.69 0.35 0.27 1.40 0.45 0.26 1.08

160 0.002 0.01 2.69 0.36 0.28 1.39 0.44 0.27 1.09

400 0.002 1 6.72 0.36 0.70 3.60 0.44 0.67 2.64

400 0.002 0.1 6.72 0.36 0.71 3.59 0.44 0.68 2.65

400 0.002 0.01 6.72 0.36 0.71 3.58 0.44 0.68 2.66

700 0.002 1 11.76 0.36 1.24 6.58 0.44 1.19 4.45

700 0.002 0.1 11.76 0.36 1.25 6.57 0.44 1.19 4.46

700 0.002 0.01 11.76 0.36 1.25 6.56 0.44 1.20 4.47

1000 0.002 1 16.81 0.36 1.79 9.83 0.44 1.71 6.10

1000 0.002 0.1 16.81 0.36 1.79 9.82 0.44 1.71 6.11

1000 0.002 0.01 16.81 0.36 1.79 9.81 0.44 1.72 6.12
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Table 5 (Continued)

Control Parameters Co-flow Region Counter-flow

St Rτ Pg Ui ν̄FD T̄
1/2
FD ūg ν̄FD T̄

1/2
FD ūg

(atm) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

50 0.004 1 0.84 0.32 0.07 0.47 0.48 0.07 0.31

50 0.004 0.1 0.84 0.33 0.08 0.47 0.47 0.07 0.32

50 0.004 0.01 0.84 0.34 0.08 0.46 0.46 0.08 0.33

80 0.004 1 1.34 0.33 0.13 0.75 0.47 0.12 0.51

80 0.004 0.1 1.34 0.34 0.13 0.74 0.46 0.12 0.52

80 0.004 0.01 1.34 0.34 0.13 0.73 0.46 0.13 0.53

100 0.004 1 1.68 0.33 0.16 0.94 0.47 0.15 0.64

100 0.004 0.1 1.68 0.34 0.17 0.92 0.46 0.16 0.65

100 0.004 0.01 1.68 0.34 0.17 0.91 0.46 0.16 0.66

160 0.004 1 2.69 0.34 0.27 1.50 0.46 0.25 1.03

160 0.004 0.1 2.69 0.34 0.27 1.49 0.46 0.26 1.04

160 0.004 0.01 2.69 0.35 0.28 1.48 0.45 0.26 1.05

400 0.004 1 6.72 0.35 0.70 3.99 0.45 0.67 2.47

400 0.004 0.1 6.72 0.35 0.71 3.97 0.45 0.67 2.48

400 0.004 0.01 6.72 0.35 0.71 3.96 0.45 0.68 2.49

700 0.004 1 11.76 0.35 1.25 7.62 0.45 1.18 4.00

700 0.004 0.1 11.76 0.35 1.25 7.60 0.45 1.19 4.00

700 0.004 0.01 11.76 0.35 1.26 7.59 0.45 1.19 4.01

1000 0.004 1 16.81 0.35 1.79 11.83 0.45 1.70 5.22

1000 0.004 0.1 16.81 0.35 1.80 11.81 0.45 1.70 5.22

1000 0.004 0.01 16.81 0.35 1.80 11.80 0.45 1.71 5.22
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Table 5 (Continued)

Control Parameters Co-flow Region Counter-flow

St Rτ Pg Ui ν̄FD T̄
1/2
FD ūg ν̄FD T̄

1/2
FD ūg

(atm) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

50 0.008 1 0.84 0.30 0.07 0.52 0.50 0.07 0.30

50 0.008 0.1 0.84 0.31 0.07 0.51 0.49 0.07 0.31

50 0.008 0.01 0.84 0.32 0.08 0.50 0.48 0.08 0.32

80 0.008 1 1.34 0.31 0.13 0.83 0.49 0.12 0.49

80 0.008 0.1 1.34 0.32 0.13 0.82 0.48 0.12 0.50

80 0.008 0.01 1.34 0.32 0.13 0.81 0.48 0.13 0.51

100 0.008 1 1.68 0.31 0.16 1.04 0.48 0.15 0.61

100 0.008 0.1 1.68 0.32 0.17 1.03 0.48 0.16 0.62

100 0.008 0.01 1.68 0.33 0.17 1.01 0.47 0.16 0.63

160 0.008 1 2.69 0.32 0.27 1.71 0.48 0.25 0.97

160 0.008 0.1 2.69 0.33 0.27 1.69 0.47 0.26 0.98

160 0.008 0.01 2.69 0.33 0.28 1.67 0.47 0.26 0.99

400 0.008 1 6.72 0.33 0.71 4.86 0.47 0.66 2.20

400 0.008 0.1 6.72 0.33 0.71 4.84 0.47 0.67 2.21

400 0.008 0.01 6.72 0.33 0.72 4.82 0.47 0.67 2.21

700 0.008 1 11.76 0.33 1.25 9.97 0.47 1.17 3.26

700 0.008 0.1 11.76 0.33 1.26 9.95 0.47 1.18 3.26

700 0.008 0.01 11.76 0.33 1.26 9.92 0.47 1.18 3.26

1000 0.008 1 16.81 0.33 1.80 16.40 0.47 1.68 3.77

1000 0.008 0.1 16.81 0.33 1.80 16.36 0.47 1.69 3.77

1000 0.008 0.01 16.81 0.33 1.81 16.33 0.47 1.69 3.76



270

Table 5 (Continued)

Control Parameters Co-flow Region Counter-flow

St Rτ Pg Ui ν̄FD T̄
1/2
FD ūg ν̄FD T̄

1/2
FD ūg

(atm) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

50 0.01 1 0.84 0.30 0.07 0.53 0.50 0.07 0.30

50 0.01 0.1 0.84 0.30 0.07 0.53 0.50 0.07 0.31

50 0.01 0.01 0.84 0.31 0.08 0.52 0.49 0.08 0.31

80 0.01 1 1.34 0.30 0.13 0.87 0.49 0.12 0.48

80 0.01 0.1 1.34 0.31 0.13 0.86 0.49 0.12 0.49

80 0.01 0.01 1.34 0.32 0.13 0.84 0.48 0.13 0.50

100 0.01 1 1.68 0.31 0.16 1.09 0.49 0.15 0.60

100 0.01 0.1 1.68 0.31 0.17 1.08 0.49 0.16 0.61

100 0.01 0.01 1.68 0.32 0.17 1.06 0.48 0.16 0.62

160 0.01 1 2.69 0.32 0.27 1.80 0.48 0.25 0.95

160 0.01 0.1 2.69 0.32 0.27 1.78 0.48 0.26 0.96

160 0.01 0.01 2.69 0.32 0.28 1.77 0.48 0.26 0.97

400 0.01 1 6.72 0.32 0.71 5.31 0.48 0.66 2.09

400 0.01 0.1 6.72 0.33 0.71 5.28 0.47 0.66 2.10

400 0.01 0.01 6.72 0.33 0.72 5.26 0.47 0.67 2.10

700 0.01 1 11.76 0.33 1.26 11.22 0.47 1.17 2.94

700 0.01 0.1 11.76 0.33 1.26 11.18 0.47 1.17 2.94

700 0.01 0.01 11.76 0.33 1.26 11.15 0.47 1.18 2.94

1000 0.01 1 16.81 0.33 1.80 18.83 0.47 1.68 3.14

1000 0.01 0.1 16.81 0.33 1.81 18.79 0.47 1.68 3.14

1000 0.01 0.01 16.81 0.33 1.81 18.75 0.47 1.69 3.13
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Table 6: Viscous Drag Experiments (¯̄ν = 0.45).

Control Parameters Co-flow Region Counter-flow

St Rτ Pg Ui ν̄FD T̄
1/2
FD ūg ν̄FD T̄

1/2
FD ūg

(atm) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

50 0.002 1 0.84 0.39 0.07 0.41 0.51 0.07 0.32

50 0.002 0.1 0.84 0.40 0.07 0.42 0.50 0.07 0.33

50 0.002 0.01 0.84 0.40 0.08 0.42 0.50 0.08 0.34

80 0.002 1 1.34 0.40 0.12 0.67 0.50 0.12 0.53

80 0.002 0.1 1.34 0.40 0.13 0.67 0.50 0.12 0.54

80 0.002 0.01 1.34 0.41 0.13 0.67 0.49 0.13 0.55

100 0.002 1 1.68 0.40 0.16 0.84 0.50 0.15 0.67

100 0.002 0.1 1.68 0.40 0.16 0.83 0.50 0.16 0.68

100 0.002 0.01 1.68 0.41 0.16 0.83 0.49 0.16 0.69

160 0.002 1 2.69 0.41 0.26 1.33 0.49 0.25 1.09

160 0.002 0.1 2.69 0.41 0.26 1.33 0.49 0.26 1.10

160 0.002 0.01 2.69 0.41 0.27 1.33 0.49 0.26 1.11

400 0.002 1 6.72 0.41 0.68 3.37 0.49 0.66 2.73

400 0.002 0.1 6.72 0.41 0.68 3.37 0.49 0.66 2.74

400 0.002 0.01 6.72 0.41 0.69 3.37 0.48 0.67 2.75

700 0.002 1 11.76 0.41 1.20 6.14 0.49 1.16 4.65

700 0.002 0.1 11.76 0.41 1.21 6.14 0.49 1.17 4.66

700 0.002 0.01 11.76 0.41 1.21 6.13 0.49 1.17 4.67

1000 0.002 1 16.81 0.41 1.73 9.09 0.49 1.67 6.46

1000 0.002 0.1 16.81 0.41 1.73 9.09 0.49 1.67 6.47

1000 0.002 0.01 16.81 0.41 1.74 9.08 0.49 1.68 6.48
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Table 6 (Continued)

Control Parameters Co-flow Region Counter-flow

St Rτ Pg Ui ν̄FD T̄
1/2
FD ūg ν̄FD T̄

1/2
FD ūg

(atm) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

50 0.004 1 0.84 0.37 0.07 0.45 0.53 0.07 0.31

50 0.004 0.1 0.84 0.38 0.07 0.44 0.52 0.07 0.32

50 0.004 0.01 0.84 0.39 0.08 0.44 0.51 0.08 0.33

80 0.004 1 1.34 0.38 0.12 0.71 0.52 0.12 0.52

80 0.004 0.1 1.34 0.39 0.13 0.70 0.51 0.12 0.53

80 0.004 0.01 1.34 0.40 0.13 0.69 0.50 0.13 0.54

100 0.004 1 1.68 0.39 0.16 0.88 0.51 0.15 0.66

100 0.004 0.1 1.68 0.39 0.16 0.87 0.50 0.15 0.67

100 0.004 0.01 1.68 0.40 0.16 0.86 0.50 0.16 0.68

160 0.004 1 2.69 0.40 0.26 1.40 0.50 0.25 1.07

160 0.004 0.1 2.69 0.40 0.26 1.39 0.50 0.26 1.08

160 0.004 0.01 2.69 0.40 0.27 1.39 0.50 0.26 1.09

400 0.004 1 6.72 0.40 0.68 3.61 0.49 0.66 2.61

400 0.004 0.1 6.72 0.41 0.68 3.61 0.49 0.66 2.62

400 0.004 0.01 6.72 0.41 0.69 3.60 0.49 0.67 2.63

700 0.004 1 11.76 0.40 1.20 6.77 0.50 1.16 4.34

700 0.004 0.1 11.76 0.40 1.21 6.77 0.50 1.17 4.34

700 0.004 0.01 11.76 0.40 1.21 6.76 0.50 1.17 4.35

1000 0.004 1 16.81 0.40 1.73 10.34 0.50 1.66 5.86

1000 0.004 0.1 16.81 0.40 1.73 10.33 0.50 1.67 5.86

1000 0.004 0.01 16.81 0.40 1.74 10.32 0.50 1.68 5.87
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Table 6 (Continued)

Control Parameters Co-flow Region Counter-flow

St Rτ Pg Ui ν̄FD T̄
1/2
FD ūg ν̄FD T̄

1/2
FD ūg

(atm) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

50 0.008 1 0.84 0.35 0.07 0.50 0.55 0.07 0.31

50 0.008 0.1 0.84 0.36 0.07 0.48 0.54 0.07 0.32

50 0.008 0.01 0.84 0.37 0.08 0.47 0.53 0.08 0.33

80 0.008 1 1.34 0.36 0.12 0.77 0.53 0.12 0.51

80 0.008 0.1 1.34 0.37 0.12 0.76 0.53 0.12 0.52

80 0.008 0.01 1.34 0.38 0.13 0.75 0.52 0.13 0.53

100 0.008 1 1.68 0.37 0.16 0.96 0.53 0.15 0.64

100 0.008 0.1 1.68 0.38 0.16 0.95 0.52 0.15 0.65

100 0.008 0.01 1.68 0.38 0.16 0.93 0.52 0.16 0.66

160 0.008 1 2.69 0.38 0.26 1.54 0.52 0.25 1.02

160 0.008 0.1 2.69 0.38 0.27 1.53 0.52 0.25 1.03

160 0.008 0.01 2.69 0.39 0.27 1.51 0.51 0.26 1.04

400 0.008 1 6.72 0.39 0.68 4.16 0.51 0.65 2.41

400 0.008 0.1 6.72 0.39 0.69 4.14 0.51 0.66 2.42

400 0.008 0.01 6.72 0.39 0.69 4.12 0.51 0.66 2.42

700 0.008 1 11.76 0.39 1.21 8.12 0.51 1.16 3.79

700 0.008 0.1 11.76 0.39 1.21 8.10 0.51 1.16 3.80

700 0.008 0.01 11.76 0.39 1.22 8.09 0.51 1.17 3.80

1000 0.008 1 16.81 0.39 1.73 12.96 0.51 1.66 4.79

1000 0.008 0.1 16.81 0.39 1.74 12.95 0.51 1.66 4.80

1000 0.008 0.01 16.81 0.39 1.74 12.92 0.51 1.67 4.79
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Table 6 (Continued)

Control Parameters Co-flow Region Counter-flow

St Rτ Pg Ui ν̄FD T̄
1/2
FD ūg ν̄FD T̄

1/2
FD ūg

(atm) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

50 0.01 1 0.84 0.34 0.07 0.51 0.56 0.07 0.31

50 0.01 0.01 0.84 0.37 0.08 0.49 0.53 0.08 0.32

80 0.01 1 1.34 0.36 0.12 0.81 0.54 0.12 0.50

80 0.01 0.1 1.34 0.37 0.12 0.79 0.53 0.12 0.51

80 0.01 0.01 1.34 0.37 0.13 0.77 0.52 0.13 0.52

100 0.01 1 1.68 0.36 0.16 1.00 0.54 0.15 0.63

100 0.01 0.1 1.68 0.37 0.16 0.99 0.53 0.15 0.64

100 0.01 0.01 1.68 0.38 0.16 0.97 0.52 0.16 0.65

160 0.01 1 2.69 0.37 0.26 1.62 0.53 0.25 1.01

160 0.01 0.1 2.69 0.38 0.26 1.60 0.52 0.25 1.01

160 0.01 0.01 2.69 0.38 0.27 1.58 0.52 0.26 1.02

400 0.01 1 6.72 0.38 0.68 4.46 0.52 0.65 2.33

400 0.01 0.1 6.72 0.38 0.69 4.44 0.52 0.66 2.33

400 0.01 0.01 6.72 0.38 0.69 4.42 0.52 0.66 2.34

700 0.01 1 11.76 0.38 1.21 8.92 0.52 1.15 3.56

700 0.01 0.1 11.76 0.39 1.21 8.90 0.51 1.16 3.56

700 0.01 0.01 11.76 0.39 1.22 8.87 0.51 1.16 3.56

1000 0.01 1 16.81 0.38 1.73 14.43 0.51 1.65 4.33

1000 0.01 0.1 16.81 0.39 1.74 14.40 0.51 1.66 4.33

1000 0.01 0.01 16.81 0.39 1.74 14.38 0.51 1.67 4.33
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Bird. Phys. Fluids, 9:2057–2060, 1997.

[95] J. J. Moreau. Some numerical methods in multibody dynamics: Application
to granular materials. Euro. J. Mech. A, 13(4(Suppl.)):93–114, 1994.

[96] D. M. Mueth, G. F. Debregeas, G. S. Karczmar, P. J. Eng, S. R. Nagel,
and H.M. Jaeger. Signatures of granular microstructure in dense shear flows.
Nature, 406:385–389, 2000.

[97] M. Nakagawa, S. A. Altobelli, A. Caprihan, E. Fukushima, and E.-K. Jeong.
Noninvasive measurements of granular flows by magnetic resonance imaging.
Exp. Fluids, 12:54, 1993.

[98] P. R. Nott, M. Alam, K. Agrawal, R. Jackson, and S. Sundaresan. The effect
of boundaries on the plane Couette flow of granular materials: a bifurcation
analysis. J. Fluid Mech., 397:203–229, 1999.

[99] J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations
in several variables. Academic Press, 1970.



282

[100] D. J. Parker, A. E. Dijkstra, T. W. Martin, and J. P. K. Seville. Positron
emission particle tracking studies of spherical particle motion in rotating
drums. Chem. Eng. Sci., 52:2011–2022, 1997.

[101] G. C. Pasquarell. Granular flows: Boundary conditions for slightly bumpy
walls. ASCE J. Eng. Mech., 117:312–325, 1991.

[102] G. C. Pasquarell and N. L. Ackermann. Boundary conditions for planar
granular flows. ASCE J. Eng. Mech., 115:1283–1302, 1989.

[103] D. W. Peaceman and H. H. Rachford. The numerical solution of parabolic
and elliptic differential equations. J. SIAM, 3:28–41, 1955.

[104] M. W. Richman. Boundary conditions based upon a modified Maxwellian
velocity distribution function for flows of identical, smooth, nearly elastic
spheres. Acta Mech., 75:227–240, 1988.

[105] M. W. Richman and C. S. Chou. Boundary effects on granular flows of
smooth disks. J. Appl. Mech. Phys.(ZAMP), 39:885–901, 1988.

[106] A. S. Sangani and G. Mo. Inclusion of lubrication forces in dynamic simula-
tions. Phys. Fluids, 6:1653–1662, 1994.

[107] A. S. Sangani, G. Mo, H.-K. Tsao, and D. L. Koch. Simple shear flows
of dense gas-solid suspensions at finite Stokes numbers. J. Fluid Mech.,
313:309–341, 1996.

[108] S. B. Savage. Analyses of slow high-concentration flows of granular materials.
J. Fluid Mech., 377:1–26, 1998.

[109] S. B. Savage and M. Sayed. Stresses developed by dry cohesionless granular
materials sheared in an annular shear cell. J. Fluid Mech., 142:391–430, 1984.

[110] N. Sela and I. Goldhirsch. Hydrodynamic equations for rapid flows of smooth
inelastic spheres, to Burnett order. J. Fluid Mech., 361:41–74, 1998.

[111] N. Sela, I. Goldhirsch, and S. H. Noskowicz. Kinetic theoretical study of a
simply sheared two-dimensional granular gas to Burnett order. Phys. Fluids,
8:2337–2353, 1996.

[112] S. Shih. Numerical Heat Transfer. Hemisphere, 1984.

[113] J. L. Sinclair and R. Jackson. Gas-particle flow in a vertical pipe with
particle-particle interactions. AIChE J., 39:1473–1486, 1989.

[114] M. Stein, J. P. K. Seville, and D. J. Parker. Attrition of porous glass particles
in a fluidised bed. Powder Tech., 100:242–250, 1998.



283

[115] P. Strating. The stress tensor in colloidal suspensions. J. Chem. Phys.,
103:10226–10237, 1995.

[116] S. Sundaram and L. R. Collins. Collision statistics in an isotropic particle-
laden turbulent suspension. I. Direct numerical simulations. J. Fluid Mech.,
335:75–109, 1997.

[117] S. Sundaram and L. R. Collins. A numerical study of the modulation of
isotropic turbulence by suspended particles. J. Fluid Mech., 379:105–143,
1999.

[118] R. R. Sundararajakumar and D. L. Koch. Non-continuum lubrication flows
between particles colliding in a gas. J. Fluid Mech., 313:283–308, 1996.

[119] S. Sundaresan. Instabilities in fluidized beds. Annu. Rev. Fluid Mech., 35:63–
88, 2003.

[120] C. Thornton and Z. Ning. A theoretical model for the stick-bounce behaviour
of adhesive, elastic-plastic spheres. Powder Tech., 99:154–162, 1998.

[121] S. Torquato. Nearest-neighbor statistics for packings of hard spheres and
disks. Phys. Rev. E, 51(4):3170–3182, 1995.

[122] J.-C. Tsai, W. Losert, G. A. Voth, and J.P. Gollub. Two-dimensional gran-
ular Poiseuille flow on an incline: Multiple dynamical regimes. Phys. Rev.
E, 65(011306), 2002.

[123] R. Verberg and D. L. Koch. Viscous dissipation of granular fluctuation energy
at finite Reynold number. Private communication, 2003.

[124] O. R. Walton. Numerical simulations of inclined chute flows of monodisperse,
inelastic, frictional spheres. Mech. Materials, 16:239–253, 1993.

[125] O. R. Walton. Numerical simulations of inelastic, frictional particle-particle
interactions. In M. C. Roco, editor, Particulate Two-Phase Flow, pages 884–
911. Butterworth-Heinemann, 1993.

[126] O. R. Walton and R. L. Braun. Stress calculations for assemblies of inelastic
spheres in uniform shear. Acta Mech., 63:73–86, 1986.

[127] O. R. Walton and R. L. Braun. Viscosity, granular temperature and stress
calculations for shearing assemblies of inelastic, frictional disks. J. Rheol.,
30:949–980, 1986.

[128] C.-H. Wang, R. Jackson, and S. Sundaresan. Instability of fully developed
rapid flow of a granular material in a channel. J. Fluid Mech., 342:179–197,
1996.



284

[129] C.-H. Wang, R. Jackson, and S. Sundaresan. Stability of bounded rapid
shear flows of a granular material. J. Fluid Mech., 308:31–62, 1996.

[130] W. Weibull. A statistical distribution function with wide applicability. J.
Appl. Mech., 73:293–297, 1951.

[131] K. Wieghardt. Experiments in granular flow. Annu. Rev. Fluid Mech., 7:89–
114, 1975.

[132] R. D. Wildman and J. M. Huntley. Novel method for measurement of granu-
lar temperature distributions in two-dimensional vibro-fluidised beds. Pow-
der Tech., 113:14–22, 2000.

[133] J. T. Willits and B. O. Arnarson. Kinetic thoery of a binary mixture of
nearly elastic disks. Phys. Fluids, 11:3116–3122, 1999.

[134] J. J. Wylie and D. L. Koch. Particle clustering due to hydrodynamic inter-
actions. Phys. Fluids, 12:964–970, 2000.

[135] J. J. Wylie, D. L. Koch, and A. J. C. Ladd. Rheolog of suspensions with
high particle inertia and moderate fluid inertia. J. Fluid Mech., 480:95–118,
2003.

[136] K. Yamane, M. Nakagawa, S. A. Altobelli T. Tanaka, and Y. Tsuji. Steady
particulate flows in a horizontal rotating cylinder. Phys. Fluids, 10:1419–
1427, 1998.

[137] C. Zener. The intrinsic inelasticity of large plates. Phys. Rev., 59:669, 1941.




