
A SIMPLE WIND-PUMP ANALYSIS

MICHEL LOUGE

This document outlines a simple power budget for the wind pump, and an analysis of
its dynamics.

1. Power analysis

Consider a single cylinder - single acting engine consisting a slider-crank mechanism
with connecting rod of length L and crankshaft of radius R moving a single piston of cross-
section area A along a straight path measured along the coordinate x from top-dead-center
(TDC). The geometry yields

(1) x = L+R− [
√
L2 −R2 sin2 θ +R cos θ],

where θ is the crank angle with θ = 0 at TDC. In the limit of large L/R, the motion is
nearly sinusoidal with x ' R(1 − cos θ) and velocity ẋ ' Rθ̇ sin θ. If the cylinder intakes
water with 0 < θ < π and exhausts it with π < θ < 2π, and if the angular velocity is
steady (θ̇ = constant), then the mean volume flow rate over an entire cycle is

(2) Q̇ ' −ARθ̇ 1
2π

∫ 2π

θ=π
sin θdθ = ARθ̇/π.

If the cylinder is immersed horizontally below the water line, the hydrostatic pressure
due to this immersion is the same on both sides of the piston, and thus results in no net
force. Then, if we neglect fluid inertia, the only force on the piston during the exhaust
stroke is constant and equal to ρwghA, where h is the required height to lift water above
the tank’s waterline, and ρw is water density. Thus the instantaneous power required to
lift water P = ρwghAẋ; its average is then

(3) P̄ = ρwghQ̇,

where Q̇ is calculated in Eq. (2).
If the crankshaft is connected to a large sprocket of radius R1, itself linked through a

frictionless chain to a smaller sprocket of radius R0 on the windmill shaft, the angular
velocity ω of the windmill is related to that of the crankshaft through

(4) R0ω = R1θ̇.

Combining Eqs. (2) – (4), we find

(5) P̄ = ρwgh
(AR
π

)(R0

R1

)
ω,
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which defines the operating load of the wind pump. The intersection of this straight line
with the windmill characteristic power curve yields the operating point.

This analysis does not address the dynamics of the system. Doing so would require
knowledge of the moment of inertia of the sprockets, shaft and wind blades, as well as the
mass of the piston and added mass from the fluid. Coupled dynamical equations involving
forces on the piston and torques on the two sprockets could be reduced to a single ODE
in θ that would involve the torque curve measured in the lab. The principal benefit of
such analysis would be to calculate intermittency of the system that is mainly due to
single-single-acting nature of the pump.

2. Dynamics

Figure 1. Sketch of the windpump system.

Consider the dynamics of the problem outlined in section 1. Variables and geometries
are sketched in Fig. 1. For simplicity, we assume that the chain and piston have negligible
inertia and friction. The equation of motion of the large sprocket is

(6) I1θ̈ = T1 − FcR sin(θ + θc),

where I1 is the moment of inertia of the large sprocket, T1 is the torque exerted by the
chain on the large sprocket, Fc is the force exerted by the sprocket on the piston along
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the connecting rod,1 and θc is the angle of the latter with the cylinder axis at the piston.
Trigonometry yields sin(θc) = sin(θ)/(L/R). The equation of motion of the piston is

(7) mẍ = Fc cos(θc)− F,
where F is the net force exerted by the piston on water.2 Assuming that the force is only
exerted during exhaust, F = −ρwghA for π < θ 6 2π and zero during intake.3 Neglecting
piston mass m, Eq. (7) reduces to the force balance F = Fc cos(θc). Similarly, the motion
of the small sprocket connected by a shaft to the windmill is

(8) I0θ̈0 = T − T0,

where I0 is the moment of inertia of the small sprocket, the shaft and the windmill,4 T
is the torque generated by wind on the windmill/shaft/small sprocket assembly, and T0 is
the torque exerted by this assembly on the chain.5 A simple balance of forces on the chain
relates the torques that it transmits

(9)
T0

R0
=
T1

R1

Note that θ̇0 ≡ ω, where ω is the angular velocity of the windmill. Then, Eq. (4) also
relates angular accelerations of the two sprockets,

(10) R1θ̈ = R0θ̈0.

We model windmill torque performance as an inverted parabola (Fig. 2),

(11)
T

Tm
=
( ω

ωm

)[
2−

( ω

ωm

)]
.

Combining the preceding equations to eliminate dependent variables in terms of θ, we find
that the dynamics of this system reduce to the single ODE

(12)
[
I1 + I0

(R1

R0

)2]
θ̈ =

(R1

R0

)2
Tm

θ̇

ωm

[
2−

(R1

R0

) θ̇

ωm

]
− FRsin(θ + θc)

cos(θc)
.

We measure time relative to ωm, define t† ≡ tωm, and write the dimensionless version of
Eq. (12)

(13) θ̈† = T †mθ̇
†
[
2−R†θ̇†

]
− L†F † sin(θ + θc)

cos(θc)
,

1... so the force exerted by the piston on the sprocket is −Fc, hence the minus sign in the sprocket
dynamic Eq. (6).

2... so −F is the force exerted by water on the piston, hence the sign in Eq. (7).
3During exhaust, the force on water is directed along the negative x-axis and thus F < 0 for π < θ 6 2π.

If there was more than one piston, F would the sum of the contributions of each piston with appropriate
phase lags.

4If the moment of inertia of the windmill blades is not available, you might estimate them by considering
that each blade is a simple parallelepiped of constant cross section Ab, material density ρb and length Rb.
In this case, the moment of inertia of each blade is (1/3)ρbAbR

3
b Watch for the cubic dependence on Rb!

5... so the torque on the small sprocket assembly if −T0, hence the sign in Eq. (8).
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Figure 2. Torque characteristics of a windmill. Symbols are data and
the line is a least-squares fit to Eq. (11).

where R† ≡ R1/R0 and

(14) T †m ≡
(R1

R0

)2 Tm
ω2
m[I1 + I0(R1/R0)2]

is a characteristic torque of the windmill and

(15) L† ≡ ρwghAR

ω2
m[I1 + I0(R1/R0)2]

is a characteristic load on the pump. The dimensionless force on the piston is F † = −1 for
π < θ 6 2π and zero otherwise.6

It is evident that, with a vanishing torque at ω = 0, the windpump cannot start unas-
sisted.7 In this model, we merely assume that it starts with a small angular velocity and at
a finite value of θ. The Matlab program windpump.m integrates the equation of motion
and finds the dimensionless volume flow rate V̇ † by integrating it, along with θ and θ̇†, in
Matlab’s ODE45 solver using

(16)
dV †

dt†
= θ̇†f2(θ),

where f2(θ) is a kinematic function calculated in Matlab as pistonkin.m such that ẋ ≡
2Rθ̇f2(θ;L/R). At the program’s end, the actual volume flowrate is found using V̇ =
2RAV̇ †θ̇.

6Note that the term F † sin(θ + θc)/ cos(θc) > 0 for π < θ 6 2π; it is indeed a load on the system,

contributing to the deceleration of θ̇ in Eq. (12).
7In practice, the torque is not zero at rest.
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ODE45 is a versatile program that carries out 4-th order Runge-Kutta integration of the
column vector (θ; θ̇†;V †) simultaneously, whereby

d

dt†

 θ

θ̇†

V †

 =

 θ̇†

T †mθ̇†[2−R†θ̇†]− L†F † sin(θ + θc)/ cos(θc)
θ̇†f2(θ)

(17)

In ODE45 integration, we must make sure that Matlab does not automatically choose
a time step that exceeds the period of the crankshaft.8 To that end, we set the maximum
time step ∆t to a fourth of the piston cycle period that the windmill can muster at its
maximum rotation rate 2ωm. Because the windmill period is 2π/ω, and the (longer)
piston cycle period is (2π/ω)(R1/R0), we impose the maximum dimensionless tim step is
∆t† < πR†/4.

As example, the commands:

inpI = [.03;.12;.04;.15;pi/4*.04^2;8000*pi/2*.04^4*.01+...
2000*.1*.02*.75^3;8000*pi/2*.15^4*.01;50;.6;1000*9.81] ;
[tiarr,tharr,vearr,vfr,omef,freq,volp] = windpump(inpI,pi/2,3,600);

yield the result in Fig. 3. A copy of the Matlab program is available on Blackboard. If
your design calls for more than one single-acting, single-cylinder, it is relatively straight-
forward to amend the program with a torque on the crankshaft that incorporates several
pistons with appropriate phase lags.

Finally, Eq. (13) lends itself to an approximate analytical solution. Because oscillations
of the slider-crank are typically fast compared to the rise time of the crankshaft angular
velocity, we can reasonably assume that θ̇† is constant during a cycle of the piston (0 <
θ 6 2π). We call this new variable ˙̄θ†.

In this case, the second term on the right-hand-side of Eq. (13), which represents the
load on the piston that is constant over the interval π < θ 6 2π, can be replaced by its
average over one cycle of the piston of length 2π using the integral

(18)
1

2π

∫ 2π

θ=π

sin{θ + arcsin[sin(θ)/(L/R)]}
cos{arcsin[sin(θ)/(L/R)]}

dθ = − 1
π
.

Carrying the average of Eq. (13) over one cycle, we find, approximately, using F † = −1 for
0 < θ 6 2π,

(19) ¨̄θ† = T †m
˙̄θ†
[
2−R† ˙̄θ†

]
− L

†

π
.

To solve this ODE, we first factorize its quadratic right-hand-side,

(20) T †m
˙̄θ†
[
2−R† ˙̄θ†

]
− L

†

π
= −R†T †m( ˙̄θ† − α+)( ˙̄θ† − α−),

8Matlab constantly readjusts the integration time step to save CPU time.
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Figure 3. Example of Matlab output. On the left graphs, the blue,
green and red lines are, respectively, the computed crankshaft angular ve-
locity (rad/s), the prediction of Eq. (24), and the computed average value.
On the right graphs, the blue line of volume flow rate (liter/s). Note that
volume flow rate is intermittent, as expected of this single-cylinder, single
acting piston engine.

where

(21) α± =
πT †m ±

√
π2T †2m − πR†T †mL†

πR†T †m
.

Our ability to factorize is governed by the sign of the argument in the square root. It is
positive if and only if

(22) T †m > R†L†/π,
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which sets the minimum windmill performance to handle the load. To integrate Eq. (19),
we write it

(23) −R†T †mdt† =
1

(α+ − α−)

[ ∫ ˙̄θ†

α=θ̇0

dα

(α− α+)
−
∫ ˙̄θ†

α=θ̇0

dα

(α− α−)

]
,

with the solution

(24)
( ˙̄θ† − α+

˙̄θ† − α−

)(α0 − α−
α0 − α+

)
= exp

[
− 2
π
t†
√
π2T †2m − πR†T †mL†

]
,

from which ˙̄θ† can be found in terms of the exponential. In Fig. 3, the green line is ˙̄θ†; it
agrees well with the Matlab numerical solution of the ODE.

Equation (24) indicates that the windpump reaches its steady operation on a dimen-
sionless time scale

(25) τ † =
π

2
√
π2T †2m − πR†T †mL†

.

As we would expect, this time increases as the load grows (greater L†), or as the windmill
torque decreases (smaller T †m). As Eq. (22) draws near equality, τ † →∞ i.e., the windmill
is overwhelmed by the load.


