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Abstract 

The high-temperature kinetics of various elementary reactions of 

HCN, CN and NCO have been investigated using a shock tube and in 

situ spectroscopic measurement techniques. 

The primary diagnostic techniques included broad-band absorption of 

CN at 388 nm [B2E+(v=O)«-X2I+(v=O) ] and narrow-line absorption of NCO at 

440 nm using a remotely-located cw ring dye laser source. Spectroscopic 

models were developed to interpret the absorption levels of CN at 388 nm 

and NCO at 440 nm. A spectral survey of NCO absorption near the P2+PQi2 

head of the [A2E+(00°0)*X2ni(0010) ] band was obtained at 1450°K and an 

oscillator strength of 0.0026 was inferred for the (00°0)-«-(OOlO) band. 

Mixtures of cyanogen, oxygen and nitrous oxide diluted in argon were 

shock-heated to measure the rate constants of 

and 

C2N2 + 0 -»• CN + NCO, 

CN + 0 -»• C0(v) + N, 

CN + 02 -► NCO + 0, 

NCO + 0 ■*■ CO + NO, 

NCO + M ->■ N + CO + M, 

(2) 

(3) 

(4) 

(5) 

(6) 

with the results k^o^'^+O^S.-O.ig) Cm3/mole/sec 

and k3=1013*26(±0'26> cm3/mole/sec near 2000°K, 
k4=1012.68(+0.27,-0.19) cm3/mole/gec near 2400oKj 

kr1013-75<+0-2°.-°-26> cmWe/sec near 1450°K, 

and k6=1016-8<±0'4)T-°-5exp[-24000/T] cm3/raole/sec 

in the temperature range 2150<T<2400°K and at the average pressure 

p=0.65 atm. 

Other experiments in mixtures of hydrogen cyanide, oxygen and ni 

trous oxide diluted in argon enabled a determination of the ratio kg/k2 

HCN + 0 -»• NCO + H. (8) 
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At 1440°K, kg/k2=2.4(+2.4,-0.9). 

Utilizing a value extrapolated to 1440°K from the present measurement of 

k at 2000°K, k8=io11-70(+0-40'-°'35) cm3/mole/sec at 1440°K. 

An additional mixture of cyanogen, oxygen, hydrogen and nitrous 

oxide diluted in argon was shock-heated and NCO was monitored to infer 

the rate constants for 

and the ratio 

NCO + H ->■ CO + NH, 

NCO + H2 * UNCO + H, 

C2N2 + H + CN + HCN, 

CN + H2 ♦ HCN + H. 

At 1490°K, kg=1013.73(+0.42,-0.27) cm3/moie/8ec, 

and 

cm3/mole/sec, 

k11/k12=0.81(+0.89,-0.47) 

(9) 

(10) 

(11) 

(12) 
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Chapter 1 

Introduction 

Nitric oxide is a major source of pollution in large urban areas 

[1J. Through its partial oxidation to N02, it usually contributes to the 

familiar photochemical smog. As a source of nitric acid (HNO3), it is 

also partially responsible for acid rain. 

A major source of nitric oxide results from the direct oxidation of 

atmospheric nitrogen. A successful model for this formation of "thermal 

NO" has been attributed to Zeldovich [2] and consists of a three reac 

tion sequence 

N2 + 0 -»• NO + N, 

N + 02 ■*• NO + 0, 

N + OH ■*■ NO + H. 

(15) 

(-16) 

(-22) 

Therraal-NO emission can often be successfully controlled by reducing 

temperature and available oxygen. 

Another important source of nitric oxide results from the combustion 

of nitrogen compounds imbedded in the structure of most fossil fuels 

[3], which are commonly burned in large stationary combustors. The 

mechanism for this transformation (commonly referred to as the "fuel-

nitrogen mechanism") is more complex and involves a multi-reaction 

process, which is sketched in Fig. 1.1. Unlike the Zeldovich mechanism, 

this process results in emissions of NO at lower temperatures and richer 

stoichiometries. Despite its apparent complexity, it can be regarded as 

a sequence of four global steps. 

The first step in premixed flames consists of a rapid conversion of 

fuel-nitrogen to hydrogen cyanide (HCN) in the reaction zone. Experi 

ments under rich stoichiometries have suggested that such production of 

HCN is fast and nearly complete, regardless of the original nitrogen 

compound [3]. Various mechanism which depend on the nature of the fuel-

nitrogen coumpound have been proposed to explain the chemistry of HCN 

i? 



fi si Because of its apparent speed, 
production in the reaction zone [4,5]. Because o 

^tion of HC co »0 or ,2. - -"^^ ̂ HCH lBto the 
...t. of Miller and co-workers 161. who directly 

Pre»l«d reactants of an H2/02/argon low-pressure turn. 

n, seco^d seep occurs In the post fla»e gases. Hydrogen c,an e 

real -U ac.ve radicals and .«- - ^-^^ ̂ 
NC0. and posslUy «»C0. In the next phase, the s« C 

MFCHANISM 

Flg. 1.1 The fuel-nitrogen mechanism in the post-flame zone of a 

typical premixed flame. 



Nitric oxide can also appear in the reaction zone of rich hydrocar 

bon/air flames without fuel-nitrogen [7]. Feniraore discovered this 

phenomenon and called it the "prompt-NO" mechanism [8]. Despite some 

controversy on the actual chemistry of prompt-NO, it is generally be 

lieved that reactions of molecular nitrogen with hydrocarbon radicals 

can result in the production of HCN 17,9]. As before, HCN is eventually 

converted to NO or N2 by the mechanism in Fig. 1.1. Thus, molecular 

nitrogen reacts like other fuel-nitrogen coumpounds, despite a slower 

rate of conversion to HCN [10]. 

Hydrogen cyanide is therefore an important precursor of nitric oxide 

in hydrocarbon/air flames. To achieve a better understanding of NO 

formation in such flames, it is essential to measure the rates of key 

reactions in the mechanism of Fig. 1.1. 

In this study, a shock tube was used to measure the rates of several 

reactions important in the HCN to NHj conversion 

HCN + 0 ■* NCO + H, 

CN + 0 -»■ CO + N, 

CN + 02 -► NCO + 0, 

NCO + 0 -»• CO + NO, 

NCO + M -► N + CO + M, 

NCO + H -»• NH + CO, 

NCO + H2 -> HNCO + H. 

(8) 

(3) 

(4) 

(5) 

(6) 

(9) 

(10) 

As indicated in Fig. 1.1, CN and NCO play a key role in the conversion 

of HCN to NH^. Therefore, the development of quantitative CN and NCO 

diagnostic techniques has constituted another essential aspect of this 

study. 

In order to simplify the reaction mechanism and minimize interfering 

reactions, mixtures of gases containing only three atoms (C, N and 0) 

were first shock-heated. Using measurements of CN, CO and NO, the rates 

of 

C2N2 + 0 -»■ CN + NCO, (2) 



CN + 0 ■*■ CO + N, 

CN + O2 * NCO + 0, 

(3) 

(4) 

were inferred behind incident shock waves in mixtures of cyanogen 

(C2N2), nitrous oxide (N20), oxygen and argon, and the formation of NCO 

from C2N2 and CN was characterized. Two novel laser techniques were 

subsequently developed to monitor NCO in absorption at 305 and 440 nm. 

Then, additional mixtures of C2N2, N2O and O2 diluted in argon were 

shock-heated and NCO was monitored to measure the rates of 

NCO + 0 * CO + NO, 

NCO + M + N + CO + M, 

(5) 

(6) 

and to characterize the new NCO diagnostic techniques. Fundamental 

spectroscopic parameters were extracted using reproducible levels of NCO 

generated in the shock tube, thus making the NCO absorption diagnostic 

quantitative. Finally, other NCO reactions were studied using the new 

NCO diagnostic 

HCN + 0 + NCO + H, 

NCO + H -> CO + NH, 

NCO + H2 HNCO + H. 

(8) 

(9) 

(10) 

I 

Direct determinations of the above rate constants at flame tempera 

tures are limited. Shaub [11] determined kj using a single-pulse shock 

tube with analysis by gas chromatography. Mulvihill and Phillips [12] 

conducted a flame study using H2/02/N2/C2N2 mixtures and followed the 

reaction with a mass spectrometer to infer k^. Many authors, however, 

have studied k2, k^ and ^ at lower temperatures. Their techniques and 

results have been extensively reviewed by Baulch, et al. [13]. There are 

no previous data for ke and kg, and data for kg are limited. Roth, Lohr, 

and Hermanns [14] measured k8 by shock-heating HCN/N20/argon mixtures in 

the range 1800<T<2500°K and monitoring the H- and 0-atom concentrations 

using an ARAS technique. Davies and Thrush [15] conducted a discharge 

flow study to find kg in the range 469<T<574°K. Recently, Perry and 

I 



Melius [16] inferred Che race of Che global reaction 

HCN + 0 + products (1.1) 

from measurements of NO2 chemiluminescence using a laser photolysis 

technique (575<T<840°K), and observed NCO in laser-induced fluorescence 

Co infer kg (540<T<900°K). There are no previous daCa for kg and k10. 

Measuremencs of NCO are limiced. Anderson, et al. [17] observed the 

NCO spectrum in a flame by intracavity laser excitation and reported 

relative NCO concentration profiles. Bullock and Cooper [18] monitored 

relative NCO absorption at 438.48 nm in a kinetic study of the gas phase 

reactions of CN at low temperatures. Perry and Melius [16] observed NCO 

in laser-induced fluorescence and used HNCO for calibration. 

The shock tube facility will be described in chapter 2 of this 

thesis. In chapter 3, we will examine the kinetics of cyanogen oxida 

tion, and study the rates of CN formation and removal. In chapter 4, we 

will discuss the generation of reproducible NCO levels and the design of 

the NCO diagnostic. In chapter 5, additional measurements of NCO reac 

tion rates will be reported. Concluding remarks and recommendations for 

future work will be given in chapter 6. 
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Chapter 2 jl 

The Shock Tube 

Shock tubes have been a major source of experimental data for ele 

mentary reaction rates at high temperatures. Precise control of tempera 

ture and pressure can be achieved behind shock waves, and low experimen 

tal scatter has commonly been reported for the measurements of reaction 

rates [19]. In large diameter shock tubes (d>5 cm), small shock attenua 

tions and limited boundary layer effects result in substantial reduc 

tions of the overall uncertainties in temperature, pressure and particle 

time. Dilution of the test mixtures with an inert gas such as argon can 

further reduce the effect of interfering reactions in the chemical 

mechanism, thereby making the species histories dependent on a small 

number of elementary reactions of interest. Recent advances in the 

species diagnostics such as the introduction of dye lasers have reduced 

experimental uncertainties associated with spectroscopic interferences 

and have promoted specific measurements of intermediate radicals such as 

NCO. Digital data recording of experimental traces has also enabled 

better computer data reduction procedures. The concerted use of a shock 

tube of large diameter, advanced laser diagnostics and good data acqui 

sition capabilities has been an effective way to determine elementary 

reaction rates at temperatures greater than 1000°K. 

Our experiments were conducted in the shock tube facility of the 

High Temperature Gasdynamics Laboratory at Stanford University. A pic 

ture of the shock tube taken from the driver section is shown in Fig. 

2.1. The shock tube consists of two sections, which are shown schemati 

cally in Fig. 2.2. The driver section (id, 6"; length, 2.3m) and the 

test section (id, 6"; length, 10.4 m) were made of stainless steel of 

circular cross section. The inner surface of the test section has been 

honed to a smooth finish. 



Fig. 2.1 A photograph of the shock tube, taken from the driver sec 

tion. 
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Fig. 2.2 A schematic of the shock, tube apparatus. 
}•■■■ 



Near the beginning of the test section, a mixing manifold connects 

the test gas bottles to a stainless steel mixing tank (id, 9.73cm; 

height, 30.48cm) provided with a magnetically driven mixing rod. Three 

pressure gauges connected to the manifold were used to monitor the 

mixture preparation. A MKS Baratron gauge with digital readout (0 to 

1000 torr, 0.1Z resolution) was used to monitor low gas pressures, and a 

Wallace and Tiernan gauge (-30 to 170 "Hg) was used to monitor larger 

pressures of argon diluent. Additional pressure information was obtained 

from a Heise gauge (0 to 15 psia). Commercially available test gases 

were used in all experiments, with purities indicated in Table 2.1. 

Before each experiment, the shock tube was evacuated with a 15 cm 

oil diffusion pump backed by a Welch model 197 rotary pump to a pressure 

of 2x10" torr or lower. Pneumatically actuated valves were used to 

control the flow of gases in the entire shock tube, mixing manifold and 

vacuum system. Leak plus outgassing rates in the test section were 

monitored with a Veeco RG 31A ionization gauge controlled by a Varian 

843 unit. Typical rates were small enough (1 to 5xi0~5 torr/min) to 

prevent any significant air impurities from contaminating the test gas 

before each experiment. 

Pressure-driven incident shock waves were generated in all experi 

ments. A Lexan diaphragm was sealed with 0-rings between flanges at the 

junction of the two shock tube sections. After evacuation of the driver 

section, commercial helium (see Table 2.1) was gradually introduced to 

build up pressure and slowly distort the diaphragm. A crossed knife-edge 

located a short distance downstream was used to puncture the diaphragm 

In four uniform petals, thereby initiating a shock wave in the test gas. 

Test gas pressure and diaphragm thickness were chosen to control the 

temperature and pressure behind the shock wave, using a semi-empirical 

correlation outlined in Appendix 1. Commercially available Lexan was 

used in four different thicknesses (0.01", 0.02", 0.04" and 0.06"). 

Experimental temperatures and pressures behind the shock were computed 

from the measured incident shock speeds. Four platinum thin film gauges 

mounted flush with the inner shock tube surface provided pulse signals 

to trigger three time interval counters (Eldorado 255-1). The counters 

10 



Table 2.1 - Analysis of the Test Gases 

Species Manufacturer Impurities 

N20 

>99.9Z 

>99.95% 

>99.999% 

C2N2 

HCN 

7.4% b 

Argon 

He c 

>99.995% 

Liquid Carbonic 

Matheson 

Liquid Carbonic 

Matheson 

Airco 

Matheson 

Liquid Carbonic 

<0.1Z air 

<1 ppm 02 

<5 ppm N2 

<1 ppm H2o 

<50 ppm HCN 

<50 ppm CNC1 

<50 ppm C02 

<20 ppm 02 

<1 ppm H20 

<0.2 ppm S02 

<1 ppm 02 

<1 ppm C02 

1.19 ppm 02 

0.91 ppm H20 

<0.05 ppm Total HC = CH, 

a Three cylinders: C2N2, 0.95%, 1.03% and 1.01% dilute in argon, 

Measured dilution in argon, see Appendix 7. 

c Driver gas. 



were calibrated with a time mark generator (Tektronlx model 180A) to 

check the specified ±0.1 usec accuracy. Shock attenuation attributed to 

non-ideal effects [20,21] was observed in all experiments. Shock speeds 

were found to decrease linearly with distance. The attenuation was 

typically 1.22/m (maximum 2.52/m) for the weakest shocks (T=1500°K) and 

0.9%/m for the strongest (T=2400°K). The effects of attenuation on 

typical experimental conditions are further discussed in Appendix 1. 

■■?. 
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Chapter 3 

if 

Cyanogen Oxidation Kinetics 

This chapter focuses on the study of important CN reactions in the 

fuel-nitrogen mechanism. In order to simplify the reaction mechanism and 

minimize interfering reactions, mixtures of gases containing only three 

atoms (C,N and 0) were shock-heated. One mixture was composed of N,0 and 

C2N2 diluted in argon. Measurements of the CN and CO time histories were 

performed to determine the rate constants of reactions (2) and (3), the 

rate constant for (1) already being well established [22] 

N20 + M •*> N2 + 0 + M, 

C2N2 + 0 •*■ CN + NCO, 

CN + 0 -»• C0(v=»l) + N. 

(1) 

(2) 

(3) 

Another mixture containing 02 and C2N2 diluted in argon was shock heated 

and CN was monitored to infer k^ and the ratio ke/k6 

CN + 02 + NCO + 0, 

NCO + 0 + CO + NO, 

NCO + M -»• N + CO + M. 

(4) 

(5) 

(6) 

In this chapter, the optical diagnostics for CN, C0(v=l) and NO will be 

described, then the data reduction and results for each of the mixtures 

will be presented. 

3.1 Experimental Considerations 

The shock tube test section and optical diagnostic systems for CO 

and CN are shown schematically in Fig. 3.1. The signals obtained from 

all spectroscopic diagnostics were acquired by a digital oscilloscope 

(Nicolet Explorer III, dc-coupled through a 100 kHz upper frequency cut 

off filter) and stored on tape using a computer interface for further 

data reduction. 

13 
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Fig. 3.1 A schematic of the CN and CO(v=l) absorption diagnostics. 
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