SHOCK TUBE STUDY OF CYANIDE SPECIES KINETICS AND SPECTROSCOPY

MICHEL YVES LOUGE

Report #10-243

By

HIGH TEMPERATURE GASDYNAMICS LABORATORY Mechanical Engineering Department Stanford University

SHOCK TUBE STUDY OF CYANIDE SPECIES KINETICS AND SPECTROSCOPY

Ţ

By Michel Yves LOUGE

Report # 10-243

High Temperature Gasdynamics Laboratory Department of Mechanical Engineering Stanford University Stanford, California

October 1984

L

Ł

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

r

(Principal Adviser)

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

> Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies & Research

Acknowledgments

This work was supported by the Environmental Protection Agency under Grant R-810019.

I wish to express my gratitude to the faculty and students of the High Temperature Gasdynamics Laboratory, and to my research advisor Prof. Ronald K. Hanson, for their support and continuous advice throughout this research project.

Je dédie cette thèse à mon épouse Nadine, ma fille Nathalie, et à Georges, Arlette et Alain.

۱

ł

Abstract

The high-temperature kinetics of various elementary reactions of C_2N_2 , HCN, CN and NCO have been investigated using a shock tube and in situ spectroscopic measurement techniques.

The primary diagnostic techniques included broad-band absorption of CN at 388 nm $[B^2\Sigma^+(v=0)+X^2\Sigma^+(v=0)]$ and narrow-line absorption of NCO at 440 nm using a remotely-located cw ring dye laser source. Spectroscopic models were developed to interpret the absorption levels of CN at 388 nm and NCO at 440 nm. A spectral survey of NCO absorption near the $P_2+^PQ_{12}$ head of the $[A^2\Sigma^+(00^00)+X^2\Pi_1(00^10)]$ band was obtained at 1450°K and an oscillator strength of 0.0026 was inferred for the $(00^00)+(00^10)$ band.

Mixtures of cyanogen, oxygen and nitrous oxide diluted in argon were shock-heated to measure the rate constants of

$$C_2N_2 + 0 \rightarrow CN + NCO, \qquad (2)$$

$$CN + O + CO(v) + N,$$
 (3)

$$CN + O_2 + NCO + O_1$$
 (4)

$$NCO + O \rightarrow CO + NO, \tag{5}$$

 $NCO + M \rightarrow N + CO + M, \tag{6}$

with the results
$$k_2=10^{11.70(+0.25,-0.19)}$$
 cm³/mole/sec
and $k_3=10^{13.26(\pm0.26)}$ cm³/mole/sec near 2000°K,
 $k_4=10^{12.68(+0.27,-0.19)}$ cm³/mole/sec near 2400°K,
 $k_5=10^{13.75(+0.20,-0.26)}$ cm³/mole/sec near 1450°K,
and $k_6=10^{16.8(\pm0.4)}T^{-0.5}exp[-24000/T]$ cm³/mole/sec

and

in the temperature range 2150 < T < 2400 °K and at the average pressure p=0.65 atm.

Other experiments in mixtures of hydrogen cyanide, oxygen and nitrous oxide diluted in argon enabled a determination of the ratio k_8/k_2

$$HCN + O \rightarrow NCO + H.$$
(8)

At 1440°K,
$$k_8/k_2=2.4(+2.4,-0.9)$$
.

Utilizing a value extrapolated to 1440°K from the present measurement of k_2 at 2000°K, $k_8=10^{11.70(+0.40,-0.35)}$ cm³/mole/sec at 1440°K.

An additional mixture of cyanogen, oxygen, hydrogen and nitrous oxide diluted in argon was shock-heated and NCO was monitored to infer the rate constants for

v

ł

$$NCO + H \rightarrow CO + NH$$
, (9)

$$NCO + H_2 \rightarrow HNCO + H,$$
 (10)

and the ratio k_{11}/k_{12}

$$C_{2}N_{2} + H \rightarrow CN + HCN, \qquad (11)$$

$$CN + H_2 + HCN + H.$$
(12)

At 1490°K,
$$k_{9}=10^{13.73(+0.42,-0.27)} \text{ cm}^{3/\text{mole/sec}}$$
,
 $k_{10}=10^{12.1(+0.4,-0.7)} \text{ cm}^{3/\text{mole/sec}}$,
and $k_{11}/k_{12}=0.81(+0.89,-0.47)$.

Table of Contents

Signature page	ii
Acknowledgments	iii
Abstract	iv
Table of contents	vi
List of Tables	íx
List of Figures	x
List of Symbols	xii
Chapter 1 Introduction	1
Chapter 2 The Shock Tube	7
Chapter 3 Cyanogen Oxidation Kinetics	13
3.1 Experimental Considerations	13
3.1.1 CN Absorption System	15 17
3.2 C ₂ N ₂ /N ₂ O/argon Mixtures	22
3.2.1 Kinetics Experiments 3.2.2 Reaction Mechanism 3.2.3 Experimental Fit 3.2.4 Discussion and Results	22 23 23
3.3 - 10 N (argon Minturge-Apolysis and Populate	25
3.4 Conclusions	43
Chapter 4 NCO Generation and Quantitative Spectroscopy	45
4.1 Experimental Considerations	46 46 48
4.2 Generation and Oxidation of NCO in Cyanogen Mixtures 4.2.1 Reaction Mechanism	51 53 55
4.3 NCO Absorption at 440 nm-Analysis and Results	57 57 62
4.4 NCO Absorption at 305 nm-Analysis and Results	67
4.5 Recommendation for the NCO Diagnostic	72
 4.6 High-Temperature Rate of NCO Decomposition 4.6.1 Experimental Considerations 4.6.2 NCO Decomposition in N₂O/C₂N₂/argon Mixtures 	72 73 73
4.7 Conclusions	81

۱

ŧ

Chapter 5 The Kinetics of NCO Reactions	83
5.1 HCN Oxidation in HCN/N ₂ O/O ₂ /argon Mixtures 5.1.1 Experimental Considerations 5.1.2 Analysis and Results 5.1.3 Discussion	83 84 84 90
5.2 NCO Reduction in N ₂ O/O ₂ /H ₂ /C ₂ N ₂ /argon Mixtures 5.2.1 Experimental Considerations 5.2.2 Reaction Mechanism, Results and Discussion	95 95 95
5.3 Conclusions	105
Chapter 6 Conclusions	107
Appendix 1 Experimental Conditions in the Shock Tube	109
Al.l Semi-Empirical Correlation for the Post-Shock Conditions	109
Al.2 Uncertainties Associated with the Shock Attenuation	114
Appendix 2 The CN Broad-Band Absorption Diagnostic	119
A2.1 CN Quantitative Absorption Spectroscopy at 388 nm A2.1.1 Line Positions A2.1.2 Line Strengths A2.1.3 Partition Functions A2.1.4 Line Shapes	119 120 121 123 123
A2.2 Sensitivity of the CN Broad-Band Absorption Diagnostic	124
A2.3 Calibration Uncertainties	129
Appendix 3 The CO(v=1) IR Laser Absorption Diagnostic	133
A3.1 Laser Absorption by CO(v=1)	133
A3.2 Calibration Uncertainties	136
A3.3 Vibrational Non-Equilibrium and Relaxation of CO	139
A3.4 N ₂ 0 Absorption Background	143
Appendix 4 Additional Considerations on NCO Spectroscopy	149
A4.1 Systematic Wavemeter Correction	149
A4.2 Electronic Oscillator Strength and Lifetime Measurements	151
A4.3 Theoretical Estimates of NCO Franck-Condon Factors	155
Appendix 5 Spectroscopic Programs	167
A5.1 Program LCN (CN Spectroscopy)	168
A5.2 Program PART (NCO Partition Function)	178
A5.3 Program LNCOA (NCO [A+X] Spectroscopy)	180
A5.4 Program LNCOB (NCO [B+X] Spectroscopy)	191

ł

Appendix 6 Data Reduction Procedure and Uncertainty Analysis	201
A6.1 Determination of Experimental Conditions	201
A6.2 Development of a Chemical Kinetics Model	203
A6.3 Data Reduction Procedure	207
A6.4 Uncertainty Analysis	210
Appendix 7 Analysis of an HCN/argon Cylinder	213
Appendix 8 The Fuel-Nitrogen Mechanism	217
A8.1 Introduction	217
A8.2 Simplified Model of the Fuel-Nitrogen Mechanism	219
A8.3 Discussion	233
References	237

ł

List of Tables

E.

<u>Table</u>		Page
2.1	Analysis of the Test Gases.	11
3.1	CO-CO Coincidences.	18
3.2	Reaction Mechanism - C/N/O System.	24
3.3	Uncertainty Analysis for k ₂ and k ₃ .	29
3.4	Uncertainty Analysis for k_4 and k_5/k_6 .	40
4.1	Uncertainty Analysis for k ₅ .	56
4.2	Summary of NCO Spectroscopic Constants.	60
4.3	Uncertainty Analysis for β .	64
4.4	Uncertainty Analysis for k5/k6.	78
5.1	Reaction Mechanism - H/C/N/O System.	85
5.2	Uncertainty Analysis for k ₈ /k ₂ .	89
5.3	Estimated Normal Frequencies of $({}_{N}^{H}C_{O})^{\ddagger}$.	91
5.4	NCO Profile Sensitivity.	97
5.5	Uncertainty Analysis for k_9 , k_{10} and k_{11}/k_{12} .	102
6.1	Summary of Results and Recommended Rate Constants.	108
Al.1	Typical Diaphragm Bursting Pressures.	113
A2.1	Summary of CN Spectroscopic Constants.	120
A3.1	Spectroscopic Constants for the IR v_3 Sub-band of N ₂ 0.	144
A4.1	Lifetimes of the $A^2\Sigma^+$ State of NCO.	154
A6.1	Experimental Steric Factors.	207
A7.1	Analysis of an HCN Cylinder.	214
A8.1	Kinetic Model of H ₂ /O ₂ /CO/Argon/HCN Combustion.	218

1

ł

List of Figures

Fig.

page

۱

1.1	The fuel-nitrogen mechanism.	2
2.1	A photograph of the shock tube.	8
2.2	A schematic of the shock tube apparatus.	9
3.1	A schematic of the CN and CO($v=1$) absorption diagnostics.	14
3.2	A schematic of the CO-CO spectral coincidence.	18
3.3	Temperature dependence of the CO(v=1) line strength.	20
3.4	Best fit of CN and CO($v=1$) transmission records.	26
3.5	Sensitivity of the CN fit to k_2/k_3 .	27
3.6	Sensitivity of the CN and CO(v=1) fits to k_2 and k_3 .	28
3.7	Arrhenius plot for k ₂ .	31
3.8	Arrhenius plot for k ₃ .	32
3.9	Best fit of a typical NO transmission profile.	34
3.10	Reaction paths for the $C_2N_2/O_2/argon mixtures.$	35
3.11	Best fit of a CN profile in a $C_2N_2/O_2/argon$ experiment.	37
3.12	Sensitivity of the CN fit to excursions in k_5/k_6 .	38
3.13	Insensitivity of the CN fit to k_2 , k_3 and k_5/k_6 .	39
3.14	Arrhenius plot for k ₄ .	42
4.1	A schematic of the NCO absorption system at 305 nm.	47
4.2	A schematic of the NCO absorption system at 440 nm.	49
4.3	Predicted species profiles in $C_2N_2/N_2O/O_2/Ar$ mixtures.	52
4.4	Best fit of an NCO profile ($\lambda \approx 440$ nm).	54
4.5	Theoretical absorption spectrum of NCO around 440 nm.	58
4.6	Experimental NCO absorption spectrum at 440.479 nm.	63
4.7	NCO absorption coefficient β/f_{00} vs. temperature.	66
4.8	Computed NCO absorption spectrum around 305 nm.	68
4.9	Best fit of an NCO profile ($\lambda \approx 305$ nm).	69
4.10	Experimental NCO absorption spectrum around 305.681 nm.	70
4.11	Typical trace in a N ₂ O/C ₂ N ₂ /argon mixture.	75
4.12	Experimental plot of $[C_2N_2]/[NCO]^{\text{peak}}$ vs. $1/(\chi_{N_0O})_{r=0}$.	76
4.13	Predicted species profiles in N ₂ O/C ₂ N ₂ /Ar mixtures.	77
4.14	Arrhenius plot for the ratio k_5/k_6 .	80

x

ł.

5.1	Best fit to an NCO trace in a $HCN/O_2/N_2O/Ar$ experiment.	92
5.2	Arrhenius plot for kg.	93
5.3	Best fit to an NCO trace in a $C_2N_2/O_2/H_2/N_2O/Ar$ experiment.	99
5.4	Sensitivity of the relative NCO trace to k_{11}/k_{12} .	100
5.5	Sensitivity of the relative NCO trace to kg.	101
5.6	Arrhenius plot for k _{ll} .	104
A1.1	A schematic of a typical incident shock wave experiment.	110
A1.2	Operating curve for the shock tube. Plot of T_{21} vs. p_{41} .	111
A1.3	Operating curve for the shock tube. Plot of p_{21} vs. p_{41} .	112
A1.4	A schematic of the shock attenuation.	115
A1.5	Effect of shock attenuation on a collection of molecules.	116
A2.1	Spectral transmission of CN around 388 nm.	125
A2.2	Computed absorption $(1-i/i_0)$ vs. CN mole fraction χ_{CN} .	127
A2.3	Computed "accuracy" A vs. CN mole fraction $\chi_{ extsf{CN}}$.	128
A3.1	Equilibrium CO line strength S _{CO} vs. temperature.	135
A3.2	Optimum calibration temperature for measuring $2\gamma^{\circ}(300^{\circ}K)$.	138
A3.3	Vibrational relaxation times of $CO(v=1)$ vs. temperature.	140
A3.4	Computed CO and N ₂ O IR absorption lines around 1948 cm^{-1} .	146
A3.5	Computed N ₂ O, CO and NO IR absorption spectra at $T=2000^{\circ}K$.	147
A4.1	A schematic of a zero pressure LIF experiment.	153
A4.2	Internal symmetry coordinates of a linear XYZ molecule.	156
A4.3	Effectiveness vectors $s_{t\alpha}$ of a linear XYZ molecule.	158
A4.4	Normal modes of vibration of a linear XYZ molecule.	161
A8.1	Predicted major species time-histories in the kinetic model.	222
A8.2	Predicted minor species time-histories.	223
A8.3	Major reaction paths in the conversion of HCN (ϕ =1).	224
A8. 4	Effect of pressure on the fuel-nitrogen conversion.	227
A8.5	Effect of temperature on the fuel-nitrogen conversion.	228
A8.6	Effect of equivalence ratio on the fuel-nitrogen conversion.	229
A8.7	Effect of fuel-nitrogen content on the conversion.	230
A8.8	Major reaction paths in the conversion of HCN (ϕ =0.8).	232
A8.9	Major reaction paths in the conversion of HCN (ϕ =1.2).	232

4

хi

۱

l

List of Symbols

F.

a	Voigt parameter.
a	Shock attenuation (μ sec ⁻¹) (see Fig. Al.4).
A	Rate constant pre-exponential factor.
A	Vector of profile features.
A _c	Pre-exponential factor of k _c in Arrhenius form (cm ³ /mole/
-	sec).
Au+l	Einstein A-coefficient (sec ⁻¹).
Av	Spin-orbit coupling constant of vibrational level v (cm^{-1}).
A(X)	"Accuracy" of an absorption diagnostic.
B _v	Rotational constant of vibrational level v (cm^{-1}).
c	Speed of light (2.998 10 ¹⁰ cm/sec).
C, D	Herman-Wallis constants for vibration-rotation interaction.
d	Vectorial separation of normal coordinates (cm $g^{1/2}$).
d	Experimental dilution (see appendix 7).
Dv	Rotational (centrifugal distortion) constant of vibrational
	level v (cm^{-1}) .
e	Charge of the electron (1.602 10^{-19} C).
E _i	Activation energy of reaction (i) (kcal/mole).
e₀‡	Barrier height (kcal/mole).
E(v,J)	Energy of the (v,J) level (cm ⁻¹).
F(T)	Calibration constant (see appendix 7).
F(J)	Rotational energy (cm ⁻¹).
f _{v'v"}	Oscillator strength of the band ($v' \leftrightarrow v$ ").
f _{el}	"Electronic" oscillator strength.
fi	Lower uncertainty factor on k ₁ .
Fi	Upper uncertainty factor on k _i (see appendix 6).
g	Level degeneracy.
G	Kinetic energy matrix (g^{-1}) .
G(v)	Vibrational energy (cm ⁻¹).
h	Planck's constant (6.63 10 ⁻²⁷ erg sec).
н _v	Hermite polynomial of degree v.
i	Transmitted power (mW).
i ₀	Reference power (mW).

xii

1

Ł

J	Rotational quantum number.
J	Jacobian matrix.
K	Quantum number of vibronic angular momentum (polyatomic
	molecules).
K	Quantum number of the total angular momentum apart from spin
	(diatomic molecules).
ĸ	Vector of kinetics parameters.
k _c	Line-of-center collision rate constant (cm ³ /mole/sec).
k _i	Rate constant of reaction (i) $(cm^3/mole/sec)$.
^k de	Rate of vibrational de-excitation (cm ³ /mole/sec).
k _e	Rate of vibrational excitation (cm ³ /mole/sec).
k _f	Forward rate (cm ³ /mole/sec).
k _b	Backward rate $(cm^3/mole/sec \text{ or } cm^6/mole^2/sec \text{ for termolecular})$
	reactions).
К _р	Equilibrium constant (atm $^{\Delta n}$); Δn =number of molecules created
	by the reaction.
٤	Quantum number of vibrational angular momentum.
L	Absorption path length (cm).
m	Rate constant temperature exponent.
۵.	Rotational line index (m=-J for $\Delta J=-1$, m=J+l for $\Delta J=+1$).
М	Third-body (usually argon).
М	Mach number.
^m e	Mass of the electron (9.11 10^{-28} g).
M(v)	Monochromator slit function.
MW	Molecular weight (amu, g/mole).
n	Electronic level index.
N	Avogadro's number $(6.023 \ 10^{23})$.
N	Quantum number of total angular momentum apart from spin.
N	Number of wavemeter fringes.
Ni	Number density of species i (cm^{-3}) .
n(λ)	Index of refraction of air at wavelength λ_{ullet}
P	Splitting constant for Λ - or K-doubling (cm ⁻¹).
Pi	Partial pressure of species i (atm).
P2	Total post-shock pressure (atm).
Ρ(ν)	Lamp relative spectral intensity.

. Bitti

• ,

.

ł

xiii

ł

P ^{1+k}	Fraction of fuel-nitrogen participating in reaction (j).
ل و	Electronic partition function.
Q _r , Q _{rot}	Rotational partition function.
Q _{tot}	Total partition function.
Q _{tr}	Translational partition function (cm^{-3}) .
Q_v, Q_{vib}	Vibrational partition function.
Q _±	Activated complex partition function (excluding the vibra-
•	tional mode along the reaction coordinate).
Q _v ,	Partial vibrational partition function of normal mode v_i .
'1 ¶v'v"	Franck-Condon factor of the band $(v'+v'')$.
r	Inter-atomic distance (Å).
R	Universal gas constant (8.31 10 ⁷ erg °K ⁻¹ mole ⁻¹ or 82.1 atm cm ³ /mole/°K).
R(v',v")	Overlap integral.
R	Vectorial change of equilibrium positions (cm).
RR ^{1+k}	Rate of reaction (j) (sec ⁻¹).
S	Absorption line strength $(cm^{-2}atm^{-1})$.
S	Vector of internal displacement coordinates (cm).
s ₀	Band strength $(cm^{-2}atm^{-1})$.
s _{CO}	Equilibrium CO line strength $(cm^{-2}atm^{-1})$.
$S_{CO(v=1)}$	CO(v=1) line strength (cm ⁻² atm ⁻¹).
S _{J"J} , S	Rotational line strength.
S/N	Signal-to-noise ratio.
s(X)	"Sensitivity" of an absorption diagnostic.
s _{ta}	"Effectiveness" vector.
t	time (µsec).
t 1/2	Time-to-reach half a final concentration (µsec).
t _{l/e}	l/e time (time-to-reach 63% of final concentration).
T	Temperature (°K).
T ₂	Total post-shock temperature (°K).
$T_{e}(n)$	Electronic energy (cm ⁻¹); reference, bottom of potential
	well.
v	Vibrational quantum number.
v	Voltage (mV).
V(a,x)	Voigt function.

ł

v _s	Shock speed (mm/µsec).
x	Normalized Voigt frequency.
x	Gas cylinder dilution (% in argon).
x	Degree of advancement of a reaction.
× A	Anharmonicity correction of the vibrational matrix elements.
X, A, B	Indices of successive electronic levels of a linear molecule.
Y	Dunham coefficient (cm ⁻¹).
Z	Collision frequency (sec ⁻¹).
Note:	(") indicates a ground state and (') an excited state.
	(m) = (m) + (m)

[i] refers to the concentration of species i (mole/cm³).
 For branch notation (e.g. P₁, ^OP₁₂, etc...), see ref. [51].
 (≠) refers to an activated complex.
 Asterisks (*) refer to equilibrium conditions.

Greek

α	Parameter see eq. (A2.28).
α	Parameter see eq. (A4.19).
α	Linear temperature coefficient of $n(\lambda)$.
α, β	Spin splitting indices.
β	Parameter see eq. (A4.19).
β(λ οτ ν)	Absorption coefficient (cm ^{-l} atm ^{-l}).
β*	Approximate absorption coefficient using ϕ^* (cm ⁻¹ atm ⁻¹).
γ	Ratio of specific heats.
γ	Parameter see eq. (A4.19).
2γ(Τ)	Collision width per unit pressure $(cm^{-1}atm^{-1})$.
2γ°	Collision width at 300°K ($cm^{-1}atm^{-1}$).
δ	Non-resonance frequency (cm ⁻¹).
δ	Uncertainty in ∆Hf _O ° (kcal/mole).
∆H	Heat of reaction (kcal/mole).
∆Hf ₀ °(i)	Heat of formation of species (i) at 0°K (kcal/mole).
Δvc	Collision width (cm ⁻¹).
Δν _D	Doppler width (cm ⁻¹).
∆S _f °	Total entropy change for a reaction (kcal/mole/°K).

xv

ε ₀	Permittivity of free space (8.85 10^{-12} F/m).
ε(λ)	Wavemeter correction at wavelength λ .
θ	Activation temperature (=E/R, °K).
θ _{vib}	Vibrational temperature (°K).
λ	Wavelength (nm or Å).
λ	Proportionality constant (see eq. 5.4).
Λ	Quantum number of the total electronic orbital angular momen-
	tum about linear axis; $\Lambda=0$, Σ -state; $\Lambda=1$, Π -state.
μ	Reduced mass (amu, g/mole).
Ņ	Frequency (cm ⁻¹).
⊽ ₀	Average band frequency (cm^{-1}) .
v ₀₀ , v ₁₀	Band origin frequencies (cm ⁻¹).
٧ _i	Vibrational mode.
Ρ21	Density ratio across the shock wave.
٥	Collision cross-section diameter (Å).
٥	Variance.
τ	Characteristic time (µsec).
φ	Equivalence ratio.
φ	Inter-atomic angular displacement.
φ(λ or ν)	Broadening function (cm).
φ *	Approximate broadening function (cm); see eq. (A3.38).
x _i	Mole fraction of species i.
Q	Quantum number of total electronic angular momentum about
	internuclear axis.
^ω e, ^ω i	Normal vibration frequencies (cm^{-1}) ; reference, bottom of
	potential well.
ω _i °	Normal vibration frequency (cm^{-1}) ; reference, zero-point
	energy.

xvi

Chapter 1

Introduction

Nitric oxide is a major source of pollution in large urban areas [1]. Through its partial oxidation to NO_2 , it usually contributes to the familiar photochemical smog. As a source of nitric acid (HNO₃), it is also partially responsible for acid rain.

A major source of nitric oxide results from the direct oxidation of atmospheric nitrogen. A successful model for this formation of "thermal NO" has been attributed to Zeldovich [2] and consists of a three reaction sequence

$$I_2 + 0 + NO + N,$$
 (15)

$$N + O_2 \rightarrow NO + O, \qquad (-16)$$

$$N + OH + NO + H.$$
 (-22)

Thermal-NO emission can often be successfully controlled by reducing temperature and available oxygen.

Another important source of nitric oxide results from the combustion of nitrogen compounds imbedded in the structure of most fossil fuels [3], which are commonly burned in large stationary combustors. The mechanism for this transformation (commonly referred to as the "fuelnitrogen mechanism") is more complex and involves a multi-reaction process, which is sketched in Fig. 1.1. Unlike the Zeldovich mechanism, this process results in emissions of NO at lower temperatures and richer stoichiometries. Despite its apparent complexity, it can be regarded as a sequence of four global steps.

The first step in premixed flames consists of a rapid conversion of fuel-nitrogen to hydrogen cyanide (HCN) in the reaction zone. Experiments under rich stoichiometries have suggested that such production of HCN is fast and nearly complete, regardless of the original nitrogen compound [3]. Various mechanism which depend on the nature of the fuelnitrogen coumpound have been proposed to explain the chemistry of HCN

production in the reaction zone [4,5]. Because of its apparent speed, this initial step has not been considered rate-limiting, and many studies of the fuel-nitrogen mechanism have focused on the subsequent transformation of HCN to NO or N₂. In particular, we note the recent experiments of Miller and co-workers [6], who directly added HCN into the premixed reactants of an $H_2/O_2/argon$ low-pressure flame.

The second step occurs in the post flame gases. Hydrogen cyanide reacts with active radicals and atoms to form cyano species such as CN, NCO, and possibly HNCO. In the next phase, the strong C-N bond is broken and the cyano intermediates give rise to amine species (NH_1) such as N, NH, and NH_2 . Finally, the amine species react to form either NO or N_2 .

FUEL-NITROGEN MECHANISM

Fig. 1.1 The fuel-nitrogen mechanism in the post-flame zone of a typical premixed flame.

Nitric oxide can also appear in the reaction zone of rich hydrocarbon/air flames without fuel-nitrogen [7]. Fenimore discovered this phenomenon and called it the "prompt-NO" mechanism [8]. Despite some controversy on the actual chemistry of prompt-NO, it is generally believed that reactions of molecular nitrogen with hydrocarbon radicals can result in the production of HCN [7,9]. As before, HCN is eventually converted to NO or N_2 by the mechanism in Fig. 1.1. Thus, molecular nitrogen reacts like other fuel-nitrogen coumpounds, despite a slower rate of conversion to HCN [10].

Hydrogen cyanide is therefore an important precursor of nitric oxide in hydrocarbon/air flames. To achieve a better understanding of NO formation in such flames, it is essential to measure the rates of key reactions in the mechanism of Fig. 1.1.

In this study, a shock tube was used to measure the rates of several reactions important in the HCN to NH; conversion

$$HCN + 0 \rightarrow NCO + H, \qquad (8)$$

 $CN + O \rightarrow CO + N,$ (3)

$$CN + O_2 \rightarrow NCO + O, \qquad (4)$$

 $NCO + O + CO + NO, \qquad (5)$

$$NCO + M + N + CO + M, \qquad (6)$$

$$NCO + H + NH + CO, \qquad (9)$$

 $NCO + H_2 \rightarrow HNCO + H.$ (10)

As indicated in Fig. 1.1, CN and NCO play a key role in the conversion of HCN to NH_i. Therefore, the development of quantitative CN and NCO diagnostic techniques has constituted another essential aspect of this study.

In order to simplify the reaction mechanism and minimize interfering reactions, mixtures of gases containing only three atoms (C, N and O) were first shock-heated. Using measurements of CN, CO and NO, the rates of

$$C_2N_2 + 0 \rightarrow CN + NCO, \qquad (2)$$

$$CN + O + CO + N, \qquad (3)$$

$$CN + O_2 \rightarrow NCO + O, \qquad (4)$$

were inferred behind incident shock waves in mixtures of cyanogen (C_2N_2) , nitrous oxide (N_2O) , oxygen and argon, and the formation of NCO from C_2N_2 and CN was characterized. Two novel laser techniques were subsequently developed to monitor NCO in absorption at 305 and 440 nm. Then, additional mixtures of C_2N_2 , N_2O and O_2 diluted in argon were shock-heated and NCO was monitored to measure the rates of

$$NCO + O + CO + NO$$
, (5)

$$NCO + M + N + CO + M, \tag{6}$$

and to characterize the new NCO diagnostic techniques. Fundamental spectroscopic parameters were extracted using reproducible levels of NCO generated in the shock tube, thus making the NCO absorption diagnostic quantitative. Finally, other NCO reactions were studied using the new NCO diagnostic

$$HCN + O \rightarrow NCO + H, \qquad (8)$$

$$NCO + H + CO + NH, \qquad (9)$$

$$NCO + H_2 \rightarrow HNCO + H_{\bullet}$$
 (10)

Direct determinations of the above rate constants at flame temperatures are limited. Shaub [11] determined k_3 using a single-pulse shock tube with analysis by gas chromatography. Mulvihill and Phillips [12] conducted a flame study using $H_2/O_2/N_2/C_2N_2$ mixtures and followed the reaction with a mass spectrometer to infer k_4 . Many authors, however, have studied k_2 , k_3 and k_4 at lower temperatures. Their techniques and results have been extensively reviewed by Baulch, <u>et al.</u> [13]. There are no previous data for k_5 and k_6 , and data for k_8 are limited. Roth, Lohr, and Hermanns [14] measured k_8 by shock-heating HCN/N₂O/argon mixtures in the range 1800<T<2500°K and monitoring the H- and O-atom concentrations using an ARAS technique. Davies and Thrush [15] conducted a discharge flow study to find k_8 in the range 469<T<574°K. Recently, Perry and

Melius [16] inferred the rate of the global reaction

$$HCN + 0 \Rightarrow products \tag{1.1}$$

from measurements of NO₂ chemiluminescence using a laser photolysis technique (575<T<840°K), and observed NCO in laser-induced fluorescence to infer k_8 (540<T<900°K). There are no previous data for k_9 and k_{10} .

Measurements of NCO are limited. Anderson, <u>et al.</u> [17] observed the NCO spectrum in a flame by intracavity laser excitation and reported relative NCO concentration profiles. Bullock and Cooper [18] monitored relative NCO absorption at 438.48 nm in a kinetic study of the gas phase reactions of CN at low temperatures. Perry and Melius [16] observed NCO in laser-induced fluorescence and used HNCO for calibration.

The shock tube facility will be described in chapter 2 of this thesis. In chapter 3, we will examine the kinetics of cyanogen oxidation, and study the rates of CN formation and removal. In chapter 4, we will discuss the generation of reproducible NCO levels and the design of the NCO diagnostic. In chapter 5, additional measurements of NCO reaction rates will be reported. Concluding remarks and recommendations for future work will be given in chapter 6.

Chapter 2

The Shock Tube

Shock tubes have been a major source of experimental data for elementary reaction rates at high temperatures. Precise control of temperature and pressure can be achieved behind shock waves, and low experimental scatter has commonly been reported for the measurements of reaction rates [19]. In large diameter shock tubes (d>5 cm), small shock attenuations and limited boundary layer effects result in substantial reductions of the overall uncertainties in temperature, pressure and particle time. Dilution of the test mixtures with an inert gas such as argon can further reduce the effect of interfering reactions in the chemical mechanism, thereby making the species histories dependent on a small number of elementary reactions of interest. Recent advances in the species diagnostics such as the introduction of dye lasers have reduced experimental uncertainties associated with spectroscopic interferences and have promoted specific measurements of intermediate radicals such as NCO. Digital data recording of experimental traces has also enabled better computer data reduction procedures. The concerted use of a shock tube of large diameter, advanced laser diagnostics and good data acquisition capabilities has been an effective way to determine elementary reaction rates at temperatures greater than 1000°K.

Our experiments were conducted in the shock tube facility of the High Temperature Gasdynamics Laboratory at Stanford University. A picture of the shock tube taken from the driver section is shown in Fig. 2.1. The shock tube consists of two sections, which are shown schematically in Fig. 2.2. The driver section (id, 6"; length, 2.3m) and the test section (id, 6"; length, 10.4 m) were made of stainless steel of circular cross section. The inner surface of the test section has been honed to a smooth finish.

Fig. 2.1 A photograph of the shock tube, taken from the driver section.

L

ł

Near the beginning of the test section, a mixing manifold connects the test gas bottles to a stainless steel mixing tank (id, 9.73cm; height, 30.48cm) provided with a magnetically driven mixing rod. Three pressure gauges connected to the manifold were used to monitor the mixture preparation. A MKS Baratron gauge with digital readout (0 to 1000 torr, 0.1% resolution) was used to monitor low gas pressures, and a Wallace and Tiernan gauge (-30 to 170 "Hg) was used to monitor larger pressures of argon diluent. Additional pressure information was obtained from a Heise gauge (0 to 15 psia). Commercially available test gases were used in all experiments, with purities indicated in Table 2.1. 7

Before each experiment, the shock tube was evacuated with a 15 cm oil diffusion pump backed by a Welch model 197 rotary pump to a pressure of 2×10^{-5} torr or lower. Pneumatically actuated valves were used to control the flow of gases in the entire shock tube, mixing manifold and vacuum system. Leak plus outgassing rates in the test section were monitored with a Veeco RG 31A ionization gauge controlled by a Varian 843 unit. Typical rates were small enough (1 to 5×10^{-5} torr/min) to prevent any significant air impurities from contaminating the test gas before each experiment.

Pressure-driven incident shock waves were generated in all experiments. A Lexan diaphragm was sealed with O-rings between flanges at the junction of the two shock tube sections. After evacuation of the driver section, commercial helium (see Table 2.1) was gradually introduced to build up pressure and slowly distort the diaphragm. A crossed knife-edge located a short distance downstream was used to puncture the diaphragm in four uniform petals, thereby initiating a shock wave in the test gas. Test gas pressure and diaphragm thickness were chosen to control the temperature and pressure behind the shock wave, using a semi-empirical correlation outlined in Appendix 1. Commercially available Lexan was used in four different thicknesses (0.01", 0.02", 0.04" and 0.06"). Experimental temperatures and pressures behind the shock were computed from the measured incident shock speeds. Four platinum thin film gauges mounted flush with the inner shock tube surface provided pulse signals to trigger three time interval counters (Eldorado 255-1). The counters

10

Ł

ł

Species	Manufacturer	Impurities
N2 ⁰ >99.9%	Liquid Carbonic	<0.1% air
0 ₂ >99.95%	Matheson	
^Н 2 >99.999%	Liquid Carbonic	<1 ppm O ₂ <5 ppm N ₂ <1 ppm H ₂ O
C ₂ N2 ^a	Matheson	<50 ppm HCN <50 ppm CNC1 <50 ppm CO ₂ <20 ppm O ₂
нсм 7.4% b	Airco	<1 ppm H ₂ O <0.2 ppm SO ₂ <1 ppm O ₂ <1 ppm CO ₂
Argon	Matheson	1.19 ppm 0 ₂ 0.91 ppm H ₂ 0 <0.05 ppm Total HC ≃ CH ₄
He ^c >99.995%	Liquid Carbonic	-
^a Three cylinde ^b Measured dilu ^C Driver gas.	ers: C_2N_2 , 0.95%, 1.03% and attion in argon, see Append	nd 1.01% dilute in argon. Hix 7.

Table 2.1 - Analysis of the Test Gases

were calibrated with a time mark generator (Tektronix model 180A) to check the specified ± 0.1 µsec accuracy. Shock attenuation attributed to non-ideal effects [20,21] was observed in all experiments. Shock speeds were found to decrease linearly with distance. The attenuation was typically 1.2%/m (maximum 2.5%/m) for the weakest shocks (T=1500°K) and 0.9%/m for the strongest (T=2400°K). The effects of attenuation on typical experimental conditions are further discussed in Appendix 1.

Chapter 3

Cyanogen Oxidation Kinetics

This chapter focuses on the study of important CN reactions in the fuel-nitrogen mechanism. In order to simplify the reaction mechanism and minimize interfering reactions, mixtures of gases containing only three atoms (C,N and O) were shock-heated. One mixture was composed of N_2O and C_2N_2 diluted in argon. Measurements of the CN and CO time histories were performed to determine the rate constants of reactions (2) and (3), the rate constant for (1) already being well established [22]

$$N_2 O + M + N_2 + O + M,$$
 (1)

$$C_2N_2 + 0 + CN + NCO,$$
 (2)

$$CN + O + CO(v=1) + N.$$
 (3)

Another mixture containing 0_2 and C_2N_2 diluted in argon was shock heated and CN was monitored to infer k_4 and the ratio k_5/k_6

$$CN + O_2 + NCO + O_1$$
 (4)

$$NCO + O + CO + NO, \tag{5}$$

$$NCO + M \rightarrow N + CO + M.$$
 (6)

In this chapter, the optical diagnostics for CN, CO(v=1) and NO will be described, then the data reduction and results for each of the mixtures will be presented.

3.1 Experimental Considerations

The shock tube test section and optical diagnostic systems for CO and CN are shown schematically in Fig. 3.1. The signals obtained from all spectroscopic diagnostics were acquired by a digital oscilloscope (Nicolet Explorer III, dc-coupled through a 100 kHz upper frequency cutoff filter) and stored on tape using a computer interface for further data reduction.

L

3.1.1 CN absorption system

The absorption from the $[B^2\Sigma^+(v=0)+X^2\Sigma^+(v=0)]$ band of CN at 388 nm was used as a CN diagnostic. The system consisted of a high-pressure broad-band Hg lamp (Oriel, 200 Watts), focusing optics, a 0.3 meter monochromator and a photomultiplier tube (RCA 1P28A) with a 6kQ load resistor.

The monochromator (Instruments S.A., holographic grating blazed at 250 nm, linear dispersion 12.5 Å/mm) was calibrated using a Hg spectral lamp (Oriel) and an Ar^+ laser. The entrance and exit slit widths were measured to be 190 and 103 μ m by recording a scan of the slit function under illumination from a He-Ne laser. An iris was used to block extraneous CN emission (see Fig. 3.1). Although the lamp blackbody temperature was always higher than the experimental heat bath, it was discovered from separate measurements that CN emission exceeded that expected for electronic equilibrium. This confirmed, under our experimental conditions, the findings of Setser and Thrush [23], who attributed the non-equilibrium emission to the reaction

$$0 + 0 + CN + CN^* + 0_2.$$
 (3.1)

In fact, the detected signal may be as much as 1000 times higher than the equilibrium CN emission for the $N_2O/C_2N_2/Ar$ mixtures and 50 times for the $O_2/C_2N_2/Ar$ mixtures, which is consistent with a strong dependence of the non-equilibrium emission with O-atom concentration. In order to find the upper temperature for emission-free experiments, a few tests were conducted with the Hg lamp blocked. It was found that the nonequilibrium emission could be neglected below 2100°K for the $N_2O/C_2N_2/Ar$ mixtures and below 2450°K for the $O_2/C_2N_2/Ar$ mixtures.

A computer program to predict the CN transmission under specified conditions was written in a manner similar to that reported by Colket [24]. Spectroscopic constants for CN were taken from various sources [24-27]. The position, strength and shape of each line seen by the photomultiplier were computed to generate an absorption coefficient profile $\beta(\nu)$ as a function of frequency,

$$\beta(\nu) = \sum_{\substack{\text{lines} \\ m_e c^2}} \left(\frac{\pi e^2}{m_e c^2}\right) \frac{(2J^*+1)exp\left[-\frac{hc}{kT}(T_e(n^*)+G(\nu^*)+F(J^*))\right]}{Q_e Q_v Q_r} \times \frac{N}{RT} f_{el} q_{v'v''} \frac{S_{J'J''}}{(2J^*+1)} \phi(\nu-\nu_0) \quad (cm^{-1}atm^{-1}), \qquad (3.2)$$

where $T_e(n'')$, G(v'') and F(J'') are the electronic, vibrational and rotational energies of the lower state (cm^{-1}) ; R is the universal gas constant (atm cc/mole/°K); N is Avogadro's number; f_{el} , $q_{v''v'}$ and $S_{J''J'}$ are the oscillator strength, the Franck-Condon factor and the rotational line strength, respectively; Q_e , Q_v and Q_r are the electronic, vibrational and rotational partition functions; $\phi(v-v_0)$ is the lineshape factor (cm). (The quantity $\pi e^2/m_e c^2 = 8.826 \ 10^{-13}$ cm.) A more complete description of CN quantitative spectroscopy is given in Appendix 2. The monochromator slit function M(v) and the lamp spectral intensity P(v)were integrated to obtain the predicted transmission,

$$\frac{1}{1_0} = \frac{\int P(v) M(v) \exp[-\beta(v) p_{CN} L] dv}{\int P(v) M(v) dv} \qquad (3.3)$$

The computer program was used to relate the experimental transmission traces to the actual CN time-history. This procedure is necessary since CN is a strong absorber and in most experiments the gas is not optically thin. Further considerations on experimental sensitivity of the CN diagnostic are discussed in Appendix 2. A listing of the computer model is given in Appendix 5.

Calibration experiments were performed by shock-heating C_2N_2 and Ar. Partial equilibrium of reaction (7) was assumed and the CN plateau was used as a reference,

$$C_2 N_2 + M \rightarrow CN + CN + M.$$
 (7)

A significant uncertainty in the heat of formation of CN prompted us to run these experiments at a relatively high temperature, where conversion of C_2N_2 to CN was virtually complete. A discussion of the sensitivity of

ł

the calibration procedure to the heat of formation of CN is given in Appendix 2. Typical conditions were: $0.31 \le p_2 \le 0.36$ atm , $2890 \le T_2 \le 3150$ °K , $150 \le \chi_{CN} \le 197$ ppmv. The monochromator wavelength setting was fine-tuned by running experiments with slightly different settings; the position that produced the maximum absorption was retained (the theory predicts this setting to be 3884 Å for our spectral bandpass, about 2.4Å).

Since we used known CN spectroscopic parameters, a calibration was in principle superfluous. However, small errors in the monochromator dial position and slit function could have a significant effect on the actual transmission. The calibration runs were thus aimed at establishing an "effective" value for the oscillator strength f_{el} , which could later be used to extrapolate transmission calculations to other conditions. The quantity was found to be 0.024, which is within the range of the literature values [28]. The experimental scatter was less than 6%, which implies an equal uncertainty in the inferred CN concentration.

Additional uncertainties in [CN] are due to the lamp noise $(\Delta^{\chi}_{CN}/\chi_{CN} = (\Delta i/i_0)/A(\chi) = 7\chi$, see Appendix 2) and to the error introduced by extrapolating the calibration to conditions outside the range of calibration (<15%). The three uncorrelated [CN] uncertainties mentioned above may be combined to give a global calibration uncertainty of [Σ (uncertainty)²]/2 = ±18%.

3.1.2 CO Laser Absorption System

The CO laser system is sketched in Fig. 3.1. It is composed of a liquid nitrogen cooled CW electric discharge CO laser, aligning and focusing optics, a monochromator (Jarrell-Ash, 0.5 meter, 4 μ m grating) and a fast (lµsec) InSb infrared detector (Judson J-10, with Perry 720 preamplifier). The laser has been described by Hanson, <u>et al.</u> [29]. The grating (blazed at 5.2 μ m) enables tuning of the output beam to the desired CO line. The monochromator is used to remove adjacent interfering laser lines. This diagnostic takes advantage of certain spectral coincidences between high-lying CO laser lines and lower-lying CO absorption lines (see Fig. 3.2). Only two such coincidences were found in the spectral range of our laser (Table 3.1). The quantity δ is the

frequency spacing between the laser line and the CO absorption line center (cm⁻¹). Both choices provide an absorption diagnostic sensitive to the CO population in the first vibrational state v''=1.

CO I	Laser ⊵ (30}	CO absor line	ption a	non-resonance δ	line strength S _{CO(v=1)} at 2000°K ^b
transitio	n v(cm ⁻¹)	transition	v(cm ⁻¹)	cm ⁻¹	cm ⁻² atm ⁻¹
v(6+5) J(15+16)	1948.7274	v(2+1) J(37+38)	1948.7429	0.0155	0.374
v(9+8) J(6+7)	1907 6872	v(2+1) J(45+46)	1907 -6765	0.0107	0.175

Table 3.1 - CO-CO coincidences

^b Using the experimental band strength at 273.2°K of 282 cm⁻² atm⁻¹ (Varghese and Hanson [31]).

۱

L

The first coincidence (1948 cm^{-1}) was used, because it provided better detection limits and more reliable lasing conditions. Calibration runs were performed to measure $2\gamma(300^{\circ}\text{K})$, the collision width per unit pressure, which is needed to calculate the Voigt absorption lineshape factor for the high temperature experiments. Knowledge of $2\gamma(300^{\circ}\text{K})$ and the CO(v=1) line strength is sufficient to calculate the concentration of CO(v=1) from a transmission measurement at known pressure and temperature [29,31]. Using Beer's law,

 $i/i_0 = \exp[-\beta p_{CO(v=1)}L]$ (3.4)

and

$$\beta = S_{CO(y=1)}(T)\phi(2\gamma p,T;\delta),$$
 (3.5)

where $S_{CO(v=1)}$ is the line strength of the CO transition and ϕ the line shape factor. A plot of $S_{CO(v=1)}$ for the transition CO[v(2+1), J(37+38)] is shown in Fig. 3.3. Additional considerations for the CO(v=1) system are discussed in Appendix 3.

In the calibration runs, mixtures of CO and Ar were shock-heated under the following conditions: $2040^{\circ}K < T_2 < 2430^{\circ}K$, $0.58 < p_2 < 0.70$ atm, $CO:Ar \simeq 2:98$. The temperature dependence that Hanson [32] had determined for the P(11) line was assumed here,

$$2\gamma(300^{\circ}K)=2\gamma(T)(T/300)^{0.73},$$
 (3.6)

yielding the result $2\gamma(300$ °K)=0.10±0.03 cm⁻¹atm⁻¹. This value is in good agreement with the recent findings of Varghese and Hanson [31,32].

To interpret the CO absorption records, the vibrational relaxation (about 500 μ sec particle time for $p_2=0.7$ atm and $T_2=2000$ °K) was modeled using the following excitation/de-excitation process:

$$CO(v=1) + M \frac{k_{de}}{k_{e}} CO(v\neq1) + M,$$
 (3.7)

where CO($v \neq 1$) represents all vibrational states but v=1. In Appendix 3, it is shown that

Fig. 3.3 Temperature dependence of the CO(v=1) line strength for the transition CO[v(2+1), J(37+38)].
$$\frac{k_{e}}{k_{de}} \equiv \frac{[CO(v\neq1)]^{*}}{[CO(v=1)]^{*}} = \frac{\exp[-\theta_{vib}/T]}{Q_{vib} - \exp[-\theta_{vib}/T]}, \qquad (3.8)$$

and

$$p\tau(v=1) = \frac{RT}{k_e + k_{de}}$$
, (3.9)

where τ is the vibrational relaxation time from v=1; θ_{vib} is the vibrational temperature = $hc\omega_e/k$; Q_{vib} is the vibrational partition function; the asterisk (*) refers to equilibrium conditions. Millikan and White's [33] results for p τ were used. These results agreed within 16% with our own measurements conducted in CO/Ar mixtures with $1800 < T_2 < 2900$ °K. From the above expressions, k_e and k_{de} were extracted and fit to Arrhenius expressions for use in the kinetics modeling. Vibrational relaxation of CO is discussed in more detail in Appendix 3.

In all kinetics experiments a background absorption of the CO laser was observed that we attributed to N₂O. Accordingly, the absorption spectrum of N₂O in the vicinity of the CO laser lines [34-38] was calculated for a temperature of 2000°K. At this temperature N₂O has a large number of high-level v₃ sub-bands which might produce the observed background interference. Many lines of strengths up to 0.001 cm⁻² atm⁻¹ likely are present in this spectral region. Assuming reasonable broadening parameters, the initial background absorption is consistent with the experimental observations. The CO(v=1) theoretical profiles were numerically converted to fractional transmission and corrected for the N₂O absorption background prior to comparison with the actual experimental traces,

$$\frac{i}{i_0} = \left(\frac{i}{i_0}\right)_{CO=1} \times \left(\frac{i}{i_0}\right)_{t=0}^{\frac{\chi_{N_2O}}{(\chi_{N_2O})_{t=0}}}, \qquad (3.10)$$

where $(i/i_0)_{CO=1}$ is the transmission corresponding to the first vibrational level of CO, $(i/i_0)_{t=0}$ is the observed transmission at t=0, χ_{N_20} the computed mole fraction of N₂O and (i/i_0) the corrected transmission.

In a few experiments, the CO laser diagnostic was tuned to coincidence with an NO(v=O) absorption line [Λ -doublet, Q(3/2+3/2), v(1+O), J(39/2+37/2)] using the CO laser line at 1935.48165 cm⁻¹ [v(7+6), J(12+13)], see Hanson, et al. [29]. Interference from the N₂O background was observed again in these experiments. Computed NO profiles were converted to fractional transmission using the line strength and broadening parameter reported by Hanson, et al. [29], and corrected for N₂O interference prior to comparison with the experimental traces.

3.2 C₂N₂/N₂O/argon Mixtures

3.2.1 Kinetics Experiments

Seven runs were conducted with mixtures of $N_20:C_2N_2:Ar\approx 12:3:985$ and conditions in the range: $0.67 < p_2 < 0.75$ atm, $1920 < T_2 < 2110$ °K, $3.51 < \rho_{21} < 3.61$. (ρ_{21} is the density ratio across the shock and also the ratio of particle time to laboratory time.) Shock speeds varied between 1.37 and 1.45 mm/µsec, with attenuation of 1%/m or less. Typical leak plus outgassing rates were $1-3\times10^{-5}$ torr/min. Gases were taken directly from commercial cylinders (Table 2.1), with C_2N_2 (0.95%) dilute in argon.

In these $N_2O/C_2N_2/Ar$ mixtures, spontaneous emission considerations in the CN absorption system placed an upper bound on the temperature. The lower bound on temperature was set by reaction rate and detection limit considerations. Excess N_2O was used to minimize interferences from reactions other than (2) and (3); however, the initial $[N_2O]/[C_2N_2]$ ratio was kept below 4.5 to avoid excessive N_2O background absorption and possible production of undesirable radicals such as NCN [39] by the postulated reaction sequence

$$N_20 + CN + NCN + NO,$$
 (32)

$$NCN + 0 \rightarrow CN + NO, \qquad (33)$$

$$NCN + N + CN + N_2. \tag{34}$$

The C_2N_2 level was adjusted to ensure an optimum sensitivity of the absorption system in measuring the peak value of [CN] (see Appendix 2).

3.2.2 Reaction Mechanism

The complete reaction mechanism utilized is shown in Table 3.2, but a simplified description can be given as follows. At early times, N_2O rapidly decomposes to provide O-atoms; C_2N_2 then reacts to form CN, which in turn is removed by O-atoms to give CO,

$$N_{2}O + M + N_{2} + O + M,$$
 (1)

$$C_2N_2 + 0 + CN + NCO,$$
 (2)

$$CN + 0 + CO(v) + N.$$
 (3)

The rate of change of CN concentration is given by

$$\frac{d[CN]}{dt} = k_2 [C_2 N_2] [0] - k_3 [CN] [0] . \qquad (3.11)$$

At the peak of the CN trace

$$\frac{d[CN]}{dt} = 0$$
, and hence $\frac{[CN]}{[C_2N_2]} = \frac{k_2}{k_3}$. (3.12)

It follows that the relative CN profile (using the peak as a reference) depends primarily on the rate of reaction (3) since, for this simplified model

$$\frac{d}{dt} \left(\frac{[CN]}{[CN]^{\text{peak}}} \right) = k_3[0] \left(1 - \frac{[CN]}{[CN]^{\text{peak}}} \right) . \tag{3.13}$$

The [CN] peak value thus depends primarily on the ratio k_2/k_3 , and the relative time behavior depends on k_3 . A record of [CN] is therefore sufficient to infer k_2 and k_3 .

3.2.3 Experimental Fit

A numerical routine derived from the NASA-Lewis general chemical kinetics program [40] incorporating the mechanism in Table 3.2 was used for the kinetics calculations. The calculated CN concentrations were numerically converted into transmission profiles for comparison with the experimental traces (see Appendix 2).

	Reactions	∆H ^a	equil. const ^b	rate constants ^C		Source (Ref #)	
				log ₁₀ A	m	θ(°K)	
1	N ₂ 0+M+N ₂ +0+M	+40	-2.1	23.89	-2.5	32710	[22]
2	C ₂ N ₂ +O+CN+NCO	+3	0.5	12.66	0	4440	This study
3	CN+0+CO(v=1)+N	-75	6.7	13.31	0	210	This study
4	CN+02→NCO+0	-1	0.1	12.75	0	0	This study
5	NCO+O+CO+NO	-106	10.5	13.75	0	0	This study
6	NCO+M+N+CO+M	+48	-3.7	16.80	-0.5	24000	This study
7	C ₂ N ₂ +M→CN+CN+M	+126	-10.0	34.46	-4.5	63150	[82]
13	N20+0+N0+N0	-39	5.3	13.84	0	13400	[22]
14	N ₂ 0+0+N ₂ +0 ₂	-83	8.3	14.00	0	14100	[22]
15	N2+0+N+NO	+75	-6.8	14.26	0	38370	[22]
16	N0+0+N+02	+32	-3.8	9.58	1.0	20820	[22]
17	NCO+N→N2+CO	-182	17.3	13.30	0	0	[44]
18	NCO+N+CN+NO	-31	3.7	14.66	0	5530	[45] ^d
19	Cn+n→c+n ₂	-44	4.0	14.64	0	4530	[92]
32	n ₂ 0+cn→ncn+no	+4	0.8	4.60	2.5	6080	[93]
33	NCN+O+CN+NO	-43	4.5	10.20	1.1	1160	[93]
34	NCN+N+CN+N2	-119	11.3	10.50	0.9	0	[93]
35	NCO+C+CN+CO	-137	13.3	14.00	0	0	estimate
	CO _{v⊐l} +M→CO+M ^e	-6	0.7	-5.81	4.6	3610	[33] ^f

Table 3.2 - Reaction Mechanism - C/N/O System

- ^a Heat of reaction at 2200°K (kcal/mole) [63]. Thermochemical data was taken from the JANAF tables for all species [63], except for CN, where we used ΔHf_0^0 (CN)=101.2 kcal/mole, an average of the values of Colket [24] and JANAF [63].
- ^b log₁₀(k_{forward}/k_{backward}) at 2200°K [63].
- ^c Using the notation k=A $T^m \exp[-\theta/T]$ (cm³/mole/sec).
- ^d Colket measured $k_{backward}=10^{14}exp[-21190/T]$ (cm³/mole/sec); the expression $k_f/k_b=4.54$ exp[15660/T] was assumed.
- ^e Single step vibrational relaxation model for CO(v=1); see eq. (3.7).
 ^f See Appendix 3, ¶ A3.3.

Figure 3.4 shows a best computer fit (solid lines) to the CN and CO traces simultaneously recorded in one experimental run. The error bars correspond to the calibration uncertainties, namely $\Delta[CN]/[CN]=\pm18\%$ for CN and $\Delta[2\gamma(300^{\circ}K)]=0.03 \text{ cm}^{-1}\text{atm}^{-1}$ for CO. The dotted line that appears on the CO record is a computer prediction which assumes that reaction (3) produces CO in the ground vibrational state. In this case, according to the model, CO(v=1) would barely absorb any incoming laser radiation at the early stages of the experiment, since its relaxation is very slow. We conclude therefore that reaction (3) produces CO in excited vibrational states; the quality of the fit further suggests that CO(v=1) is the principal product of this reaction. For a more detailed discussion of the products of reaction (3) at room temperature, the reader is directed to the paper by Schmatjko and Wolfrum [41].

3.2.4 Discussion and Results

For the $N_2O/C_2N_2/Ar$ mixtures, the peak [CN] value is nearly proportional to the ratio k_2/k_3 . The uncertainty in the fit to the peak is therefore also the uncertainty in k_2/k_3 . Figure 3.5 shows the influence of varying k_2/k_3 in the kinetic calculation by $\pm 18\%$ (the overall calibration uncertainty for [CN]; see Table 3.3).

For a fixed k_2/k_3 ratio, the shape of the CN trace is dependent on the specific values of k_2 and k_3 . The uncertainty in k_2 and k_3 (associated with the fitting process) is thus determined by the range of values that produce an acceptable fit. Figure 3.6 shows the sensitivity of the fit to excursions of both k_2 and k_3 , with the ratio k_2/k_3 fixed. The +50% excursion particularly affects the time-to-peak and the fit after 40µsec. Larger excursions clearly would not provide an acceptable fit. The -30% excursion fails to reproduce the initial slope. Note that these excursions produce equally unacceptable fits of the CO(v=1) trace. Conservative minimum uncertainties in k_2 and k_3 are therefore +50%, -30% (see "uncertainty in the fit" in Table 3.3). The reader is directed to Appendix 6 for a determination of uncertainty factors.

Fig. 3.4 Best fit of simultaneous CN and CO(v=1) transmission records. The conditions are: $T_2=1943$ °K, $p_2=0.67$ atm, $N_20:C_2N_2:Ar=12:3:985$. The solid line is a best computer fit using $k_2=10^{11.67}$, $k_3=10^{13.26}$ (cm³/mole/sec), and other rates shown in Table 3.2. The dotted line is a computer-generated profile assuming CN+0+CO(v=0)+N. The initial absorption corresponds to the N₂O background interference (see appendix 3).

Fig. 3.5 Sensitivity of the CN fit to excursions in k_2/k_3 . The conditions are identical to Fig. 3.4. The dotted lines are computer-generated profiles using the best rates in Fig. 3.4 except (***) k_2/k_3 (+20%); (- * -), k_2/k_3 (-20%).

<u>Fig. 3.6</u> Sensitivity of the CN and CO(v=1) fits to excursions in k_2 and k_3 . The conditions are identical to Fig. 3.4. The dotted lines are computer-generated profiles using the best rates in Fig. 3.4 except (- \cdot -), k_2 and k_3 (-30%); ($\cdot\cdot\cdot$), k_2 and k_3 (+50%).

Reactions	Uncertainty factors		effect on:					
		-	k	⁴ 2	1	c3	k	2/k3
1 N ₂ 0+M+N ₂ +0+M	1.22		-18%	• • • • • • • •	-18%		0%	
	0.82			+18%		+18%	0%	
5 NCO+O+CO+NO	10.0		0%		-4%			+4%
	0.1		0%			+4%	-4%	
6 NCO+M→N+CO+M	10.0		0%		-8%			+8%
	0.1		0%			+8%	-8%	
19 CN+N+C+N_2^a	1.45		-12%		-40%			+18%
calibration	+18%		-9%			+9%	-18%	
uncertainty	-18%			+9%	-9%			+18%
uncertainty				+50%		+50%	0%	<u> </u>
in the fit			-30%		-30%		0%	
exp. scatter	***	·	-20%	+20%	-20%	+20%	-20%	+20%
total uncertain	ty ^b = [Σ (uncer	$(t_{\cdot})^{2} \frac{1}{2}$	-43%	+57%	-58%	+58%	-28%	+34%
^a This reaction was introduced in the mechanism with								

Table 3.3 - Uncertainty Analysis for k_2 and k_3

 $k=(4.4\pm2) \ 10^{14} \ \exp(-4530/T) \ cm^3/mole/sec \ (Slack [92]).$

^b The individual uncertainties are statistically independent.

Additional uncertainties in k_2 and k_3 may result from uncertain knowledge of other rates of reactions present in the mechanism. In order to estimate these uncertainties, individual rates (Table 3.3) were adjusted by reasonable factors (based on current literature or our judgment); k_2 and k_3 were subsequently modified to ensure the return to an optimum fit. Table 3.3 summarizes the uncertainty analysis. The reaction $CN+N+C+N_2$ was introduced as a possible interference to the proposed mechanism, although there is considerable question regarding its rate constant (see Baulch, <u>et al.</u> [13]). Note that, according to our fitting method, k_2 and k_3 are dependent quantities (e.g., the uncertainty in k_1 produces equal uncertainties in k_2 and k_3 ; see Table 3.3). As a consequence, the relative uncertainty in the ratio k_2/k_3 is less than the sum of the respective uncertainties in k_2 and k_3 .

On the basis of this analysis, at temperatures near 2000°K:

$$k_{2}=10^{11.70(+0.25,-0.19)}$$
 cm³/mole/sec
 $k_{3}=10^{13.26\pm0.26}$ cm³/mole/sec
 $k_{2}/k_{3}=10^{-1.56(+0.15,-0.12)}$.

No noticeable temperature dependence was observed in the limited range of these experiments (1920<T<2110°K).

This measurement of k_2 is plotted in Fig. 3.7 along with the result of Boden and Thrush [42] (shown with error bars recommended by Baulch, et al. [13]). An activation energy of 8.8 ± 2.0 kcal/mole can be deduced assuming a straight-line fit (labelled "this evaluation") to the high and low temperature data.

Figure 3.8 shows the present result for k_3 plotted on the compilation of Baulch, <u>et al.</u> [13]. As expected for this exothermic reaction, the activation energy of k_3 is low. An accurate determination of this activation energy is prohibited by the size of our error bars and the scatter of low temperature data. A simple straight-line fit (labelled "this evaluation") to the present data at 2000°K and the room temperature recommendation of Baulch, <u>et al.</u> [13] was used for the detailed kinetics modeling.

30

and

Fig. 3.7 Arrhenius plot for k_2 . Note that $(- \cdot -)$ is an Arrhenius fit to the high- and low-temperature data. The abscissa shows reciprocal temperatures $10^4/T$ (K⁻¹).

Fig. 3.8 Arrhenius plot for k₃.

In a few experiments, the CO laser diagnostic was tuned to coincidence with an NO(v=0) absorption line. Vibrational equilibrium of NO was assumed, even though there is some evidence for NO production in excited vibrational states (see Basco [43]). A NO transmission record, corrected for N_2O absorption, was calculated using the computer-generated NO profile and compared with the experimental trace. Modeling shows that the NO profile is reasonably sensitive to the ratio k_5/k_6 with larger values of k_5 producing more NO; on the contrary, larger values of k_6 lead to increased levels of N-atoms, which in turn remove NO by reaction (-15):

$$N + NO + N_2 + O$$
 (-15)

Figure 3.9 shows the computer fit (solid line) using $k_2=10^{11.56}$ cm³/mole/sec, $k_3=10^{13.08}$ cm³/mole/sec, and $k_5/k_6=10^{3.36\pm0.27}$ for $T_2=2150$ °K. The dashed line is the computer fit obtained by assuming previous literature values for k_5 and k_6 ($k_5=10^{13}$ cm³/mole/sec [44] and $k_6=10^{13}T^{0.5}$ exp(-20630/T) [45]), and the set of rate constants which would, within reasonable bounds, predict the largest production of NO. It is clear that the literature-based value for k_5/k_6 [44,45] cannot fit the experimental NO trace and is too low. This observation is confirmed at higher temperatures in the discussion of $0_2/C_2N_2/Ar$ mixtures and in chapter 4.

Fig. 3.9 Best fit of a typical NO transmission profile. The conditions are $T_2=2150$ °K, $p_2=0.65$ atm, $N_20:C_2N_2:Ar=12:3:985$. The solid line is a best computer fit to the trace using $k_2=10^{11.56}$, $k_3=10^{13.08}$ cm³/mole/sec, $k_5/k_6=10^{3.36}$, and other rates shown in Table 3.2. The dotted line is a computer-generated profile assuming $k_5/k_6=10^{2.50}$ (previous literature values for k_5 [44] and k_6 [45]) and the set of rate constants that would, within reasonable bounds, predict the largest production of NO. The initial absorption corresponds to the N₂0 background interference.

3.3 $0_2/C_2N_2/Ar$ Mixtures-Analysis and Results

Four runs were conducted with mixtures of $O_2: C_2N_2: Ar = 6:6:988$ and $0.56 \le p_2 \le 0.61$ atm, $2320 \le T_2 \le 2450$ °K, $3.62 \le p_{21} \le 3.65$. Shock speeds varied between 1.52 and 1.58 mm/µsec, with attenuation of 0.9%/m or less. The temperature of the experiments was set by considerations of growing interferences from spontaneous emission at higher temperatures and by insufficient rates of CN production by reaction (7) at lower temperatures,

$$C_2N_2 + M + CN + CN + M. \tag{7}$$

Despite the apparent simplification of this mixture (no N_2^0 is present), the reaction paths prove to be more complicated. Figure 3.10 shows a sketch of the global mechanism.

Fig. 3.10 Reaction paths for the $C_2N_2/O_2/argon$ mixtures. Note the critical role of O-atoms in this mechanism.

As a first step, C_2N_2 decomposes slowly via reaction (7) to give CN. The latter then reacts immediately with oxygen to form 0-atoms,

$$CN + O_2 \rightarrow NCO + O_{\bullet}$$
(4)

As soon as they are produced, the O-atoms provide a sink for C_2N_2 via reaction (2). As the chemistry proceeds, more O-atoms are available to attack CN (reaction 3) or NCO (reaction 5). O-atoms obviously play a critical role in this system and any reaction involving them can affect the history of all species, including CN. With an overall mechanism that allows little simplification, a computer fitting technique proves necessary.

Figure 3.11 shows a best computer fit (solid line) to an experimental trace. The dotted lines illustrate the dependence of the fit on k_4 . It appears that increasing or decreasing k_4 generates a parallel fit which retains a similar overall shape.

Using the computer model, it was showed that an increase in k_5 or a decrease in k_6 (and conversely) produced equivalent variations in the predicted CN profile. The fit therefore depends on the ratio k_5/k_6 . Furthermore, it was found that this ratio, unlike k_4 , controls not only the peak CN value, but also the shape of the fit, especially at late times. This effect is due to the critical role of O-atoms mentioned above. If k_5 is large, reaction (5) consumes O-atoms to a greater extent, thus preventing a faster decay of CN by reaction (3). An equivalent situation arises from a small k_6 . In this case, NCO levels are increased, reaction (5) becomes the preferential NCO removal path and O-atoms consumption via reaction (5) is again increased. Note that the opposite effect (acceleration of the CN decay) would be obtained through a smaller k_5 or a larger k_6 .

It therefore appears possible to determine k_4 and k_5/k_6 by fitting the CN trace alone: a unique set of values for k_4 and k_5/k_6 can fit both the slope of the CN decay (influenced by k_5/k_6) and the peak CN concentration (influenced by k_5/k_6 and k_4). Figure 3.12 illustates the effect of k_5/k_6 on the slope of the CN decay.

Fig. 3.11 Best fit of a typical CN transmission profile in a $C_2N_2/O_2/$ argon experiment. The conditions are $T_2=2315^{\circ}K$, $p_2=0.61$ atm, $O_2:C_2N_2:Ar=6:6:988$. The solid line is a best computer fit using $k_4=10^{12.70}$ cm³/mole/sec, $k_5/k_6=10^{2.93}$ and other rates shown in Table 3.2. The dotted lines are computer-generated profiles using the best rates except (- · -), k_4 (+60%); (···), k_4 (-60%)

Fig. 3.12 Sensitivity of the CN fit to excursions in k_5/k_6 . The conditions are identical to Fig. 3.11. The dotted lines are computer-generated profiles using the best rates, except (***), k_5/k_6 (+60%) and k_4 (-34%); (- * -), k_5/k_6 (-60%) and k_4 (+56%).

Fig. 3.13 Insensitivity of the CN fit to simultaneous excursions in k_2 , k_3 and k_5/k_6 . The conditions are identical to Fig. 3.11. The dotted lines are computer-generated profiles using the best rates except (***), k_2 and k_3 (+40%); k_5/k_6 (+40%); (- * -), k_2 and k_3 (-40%); k_5/k_6 (-40%).

Reactions	Uncertainty factors		effect on:
			k5/k6
$2 C_{2N_2+0} \rightarrow CN+NC0^{4}$	1.79	+13%	+58%
3 CN+O+CO+N ^a	0.56	+24%	-58%
7 C_2N_2 +M+2CN+M ^b	1.67	+18%	+8%
	0.60	-11%	0%
$17 \text{ NCO+N} + N_2 + CO$	10.0	-11%	-26%
18 NCO+N+CN+NO	10.0	+30%	07
calibration	+18%	+37%	02
uncertainty	-18%	-37%	0%
exp. scatter		-18% +18%	-15% +15%
total uncertaint	$y = [\Sigma(uncert.)^2]^{1/2}$	-44% +61%	-65% +60%

Table 3.4 - Uncertainty Analysis for k_4 and k_5/k_6

^a Both k₂ and k₃ were equally modified.

^b This rate controls the early CN slope and could be adjusted accordingly.

In order to estimate the uncertainties in these determinations, Table 3.4 was constructed in a fashion similar to that used in our analysis of $N_2O/C_2N_2/Ar$ mixtures. An important feature of this table is the influence of the previous uncertainties in k_2 and k_3 . If a known ratio k_2/k_3 is assumed, then most of the uncertainty in k_2 and k_3 is translated into a similar uncertainty in k_5/k_6 . This effect is illustrated in Fig. 3.13. Here, k_2 , k_3 and k_5/k_6 are simultaneously varied by ±40%. The result of these excursions still appears as a reasonable fit; thus, any variation in (k_2,k_3) can approximately be offset by the same variation in k_5/k_6 . The inferred values for k_4 and k_5/k_6 at temperatures near 2400°K are

k₄=10^{12.68(+0.27,-0.19)} cm³/mole/sec

and

$$k_5/k_6=10^{2.69\pm0.28}$$
.

This value of k_5/k_6 at 2400 °K is higher than the literature estimate by at least a factor of two. A more detailed discussion of k_5/k_6 will be given in chapter 4.

Figure 3.14 is an Arrhenius plot adding the present value for k_A to the review of Baulch, et al. [13]. Measurements of E_4 , the activation energy of reaction (4), are limited. Boden and Thrush [42] conducted experiments in the range 570<T<687°K and concluded that $E_4=0$ by comparison with the work of Basco at lower temperatures [43]. Bullock and Cooper [18] claimed a slightly negative activation energy for k_{Δ} in the range 303<T<375°K. On the other hand, Albers, et al. [70] inferred $E_{\perp}=1.0\pm0.3$ kcal/mole in the range 298<T<391°K, despite their reported individual error bars suggesting $0 \le E_4 \le 3$ kcal/mole. The present measurement agrees well with previous work, except for the flame study of Mulvihill & Phillips [12]. Within the scatter of the low and high temperature results, the reaction shows no significant temperature dependence. This observation is consistent with the recommendation of Baulch, et al. [13] for the activation energy $E_4=0.9\pm0.9$ kcal/mole. This low activation energy is otherwise plausible for a mildly exothermic reaction ($\Delta H_R^{=-4}$ kcal/mole at 298°K). The value $k_4 = 10^{12.75(+0.20, -0.15)}$ $cm^3/mole/sec$ is recommended over the temperature range 300<T<2400°K.

41

Fig. 3.14 Arrhenius plot for k_4 . The abscissa shows reciprocal temperatures $10^4/T$ (K⁻¹).

42

l

3.4 Conclusions

Using mixtures of C_2N_2 , N_2O and O_2 dilute in argon, the rates of reactions (2), (3) and (4) were inferred at high temperatures

 $C_2N_2 + 0 + CN + NCO,$ (2)

 $CN + 0 \rightarrow CO(v=1) + N, \qquad (3)$

$$CN + O_2 + NCO + O_3$$
 (4)

and the ratio k_5/k_6 was measured at 2150°K and 2400°K,

$$NCO + O + CO + NO, \tag{5}$$

$$NCO + M + N + CO + M.$$
 (6)

Reactions (3) and (4) are important in the fuel-nitrogen mechanism. Furthermore, our recommendation for k_2 , k_3 and k_4 can be used to predict levels of NCO produced in $C_2N_2/N_2O/O_2/argon$ mixtures. This information will be used in the next chapter to characterize the NCO laser absorption diagnostic at 305 and 440 nm, and to perform additional measurements of k_5 and k_6 at high temperatures.

Chapter 4

NCO Generation and Quantitative Spectroscopy

The radical NCO is of interest in combustion; as mentioned in chapter 1, it serves as a critical intermediate in the formation of NO during combustion of nitrogen-containing fuels. The spectral characteristics of NCO have been studied extensively, but few attempts have been made to perform quantitative measurements of NCO in a combustion environment.

In this study, two novel laser absorption diagnostics of NCO were demonstrated in the shock tube. Mixtures of C_2N_2 , N_2O and O_2 dilute in argon and mixtures of HCN, N_2O and O_2 dilute in argon were shock heated to generate reproducible levels of NCO under specified conditions of pressure (0.6 atm) and temperature (1450°K). Narrow-linewidth absorption spectra around 440.5 and 304.7 nm were mapped out by conducting a series of nearly identical experiments, each at a different laser wavelength. Using the relative NCO time-histories from the C_2N_2 mixtures, the rate of reaction (5)

$$NCO + O + CO + NO, \tag{5}$$

was inferred, thus providing a measurement of NCO concentrations. Absolute peak absorption coefficients near 440.5 and 304.7 nm were subsequently inferred and compared with theoretical models to extract band oscillator strengths and Franck-Condon factors at both wavelengths.

In this chapter, the experimental facility and optical techniques will first be described. The method for generating NCO in the shock tube will then be discussed, and the spectroscopic models and results for the two techniques will be presented. Finally, a determination of the rate of NCO decomposition (reaction 6) will be reported to illustrate the use of the diagnostic at 440 nm,

$$NCO + M + N + CO + M.$$
(6)

4.1 Experimental Considerations

The experiments were conducted behind incident shock waves in our 15.24 cm internal diameter pressure-driven shock tube. Typical leak plus outgassing rates were $3-5\times10^{-5}$ torr/min.

4.1.1 Experiments at 305 nm

The absorption from the R₁ band head of the $[B^2\Pi_1(10^10)+X^2\Pi_1(00^10)]$ band of NCO at 304.68 nm (vac) was observed using the optical set-up shown in Fig. 4.1. The laser system consisted of an Ar⁺ laser (Spectra-Physics model 164) and a ring dye laser (Spectra-Physics model 380C), frequency-doubled using an intracavity crystal (AD*A) placed in a temperature-controlled oven [46]. The available power from the Ar⁺ laser (4 W all lines) provided a typical UV dye laser output of 5 mW. Single-mode operation of the visible dye laser beam was verified using a confocal interferometer (Spectra-Physics model 470, free spectral range 2 GHz). A wavemeter (Burleigh model WA-10) was used to set the visible laser wavelength. The UV output was single-passed through the shock tube test section using UV-coated fused silica windows (Fig. 4.1). An iris was used to block extraneous spontaneous emission from the test gas, without reducing the incident power on detector D_2 . A small fraction of the beam was split off before and after passing through the shock tube to enable measurement of the fractional transmission. Prior to each experiment, the laser light was chopped and the reference signal (i_0) and transmitted signal (i) were balanced (i.e., equalized) by adjusting the angle of the beam splitters to vary the surface reflectance, hence the reflected intensity. The detectors (EG&G UV 100B photodiodes) were mounted in an amplifier/filter package with a 240kHz (-3dB) cut-off frequency and shielded from the room lights by Corning broadband-pass filters (80% transmission from 300 to 400 nm). The difference signal (i_0-i) and the reference signal (i_{Ω}) were recorded on two separate channels of a digital storage oscilloscope (Nicolet Explorer III, dc-coupled through a 100 kHz upper frequency cut-off filter). The data were subsequently transferred to the computer for analysis.

Fourteen runs were conducted with the following C_2N_2 mixtures and conditions: $N_2O:O_2:C_2N_2:Ar=4:1:8:987$, $T_2=1470\pm15$ °K, $p_2=0.63$ atm and $\rho_{21}=3.36$ (ρ_{21} is the density ratio across the shock and also the ratio of particle time to laboratory time.) Shock speeds varied between 1.16 and 1.18 mm/µsec, with attenuation of 1.3%/m or less. Gases were taken directly from commercial cylinders, with C_2N_2 (1.03%) dilute in argon (Table 2.1). For these experiments, the laser was set at nine different wavelengths in the range 304.638 $\langle 304.752$ nm (vac).

4.1.2 Experiments at 440 nm

The absorption from the $P_2 + P_{Q_{12}}$ band head of the $[A^2\Sigma^+(00^00) + X^2\Pi_4]$ $(00^{1}0)$] band of NCO at 440.479 nm (vac.) was used to monitor NCO. The laser system consisted of a UV-enhanced Ar⁺ laser (Spectra-Physics model 171-18) and a standard Spectra-Physics 380A ring dye laser. The available Ar⁺ UV power (1.9 W all lines) was sufficient to excite the stilbene S3 dye above threshold, providing a typical dye laser output power of 60 mW. The nominal laser wavelength was varied using a standard 3-plate birefringent filter; fine tuning was achieved with an uncoated 5 mmthick fused silica etalon in a temperature-controlled oven. Single mode output of the laser was verified using a confocal interferometer (Spectra-Physics model 470, free spectral range 2 GHz). An amplitude stabilizer (Coherent Associates model 307) was employed to improve the signal quality. The component of the laser power rejected by the amplitude stabilizer was sufficient to drive the wavemeter (Burleigh model WA-10) used for setting the laser wavelength. It was necessary to correct the displayed wavelength for the change in the index of refraction of air between the He-Ne reference wavelength at 632.991 nm and the blue wavelength at 440.479 nm (correction= actual - displayed wavelength= +0.002 nm, see Appendix 4).

The laser light was coupled into a 200 μ m fused silica optical fiber for transport to the shock tube facility (length, 65 m). The output from the optical fiber was double-passed through the shock tube test section using UV-coated fused silica windows (see Fig. 4.2). The incident and return beams were monitored on two separate detectors D₁ and D₂ (EG&G UV

ł

100B silicon photodiodes mounted in an amplifier/filter package with a 240kHz (-3dB) cutoff frequency). Neutral density filters (transmission. 10^{-1}) were used to reduce the incident power of 1 mW below the saturation limit of the detectors while proportionally reducing the spontaneous emission from the test gas. Narrow bandpass filters (FWHM, 40 nm; centered at 450 nm) were used to discriminate against other sources (primarily room lights). Detectors and filters were tilted slightly to prevent extraneous reflections from striking the photodiodes. The shock tube window was also tilted to prevent multiple reflections inside the tube. The signal from each detector was passed through a differential amplifier (Tektronix model AM 502, dc-1MHz bandwidth). Prior to each experiment, the laser light was chopped to balance (i.e., equalize) the reference signal (i_0) and the return signal (i) using small dc offset and gain adjustments on one of the differential amplifiers. The difference (i_0-i) and the reference signal (i_0) were recorded on two separate channels of the digital oscilloscopes, thereby providing a direct measurement of the fractional absorption through the system. The transport via optical fiber was made necessary by the absence of an adequate power outlet for the Ar⁺ laser in the shock tube laboratory. To prevent excessive laser power attenuations, a relatively large fiber optic (200µm) was used, but the fiber diameter prevented good spatial confinement of the collimated output beam. Consequently, no iris could be used to further limit the interference of spontaneous emission from the test gas without reducing the laser power on detector D2. This restriction placed an upper bound on temperature for experiments free of emission interference.

Nine runs were conducted with the following HCN mixtures and conditions: N₂O:O₂:HCN:Ar≈8:1:8:983, T₂=1430±20°K, p₂≈0.60 atm, ρ_{21} ≈3.32, and wavelengths in the range: 440.474< λ <440.482 nm (vac). Shock speeds varied between 1.14 and 1.17 mm/µsec, with a typical attenuation of 2.5%/m. Three additional runs were conducted with C₂N₂ mixtures at 440.479 nm, the peak absorption wavelength, and N₂O:O₂:C₂N₂:Ar≈4:1:4: 991, T₂=1450±10°K, p₂≈0.60 atm, ρ_{21} ≈3.31. Shock speeds varied between 1.15 and 1.16 mm/µsec, with a typical attenuation of 1.2%/m. Gases were

taken directly from commercial cylinders, with $C_{2}N_{2}$ (1.01%) dilute in argon (Table 2.1).

The temperature of the experiments was set by considerations of growing interference on NCO removal by reaction (6) at higher temperatures,

$$NCO + M + N + CO + M, \tag{6}$$

and increasing uncertainty in the rate of reaction (1) at lower temperatures. In addition, a few tests were conducted with the laser blocked to monitor possible spontaneous emission interferences from the test gas. These emission levels were found to be insignificant.

4.2 Generation and Oxidation of NCO in Cyanogen Mixtures

The fractional transmission of both laser systems is related to the level of NCO through the Lambert-Beer law

$$i/i_0 = \exp[-\beta(\lambda) p_{NCO} L], \qquad (4.1)$$

where i/i_0 is the fractional transmission, $\beta(\lambda)$ is the absorption coefficient at wavelength λ , $p_{\rm NCO}$ is the partial pressure of NCO and L is the optical path length (15.24 cm for the system at 305 nm and 30.5 cm for the system at 440 nm). Under our experimental conditions, both HCN and C_2N_2 mixtures provided reproducible NCO plateau levels. By running nearly identical experiments and recording the plateau absorption levels, we were able to measure relative absorption coefficients of NCO as a function of wavelength.

In addition, information from the relative NCO time-histories in the C_2N_2 mixtures was used to measure the rate of reaction (5)

$$NCO + O + CO + NO, \tag{5}$$

thereby putting the absorption coefficients on an absolute basis.

<u>Fig. 4.3</u> Computer-generated profiles of N₂O, C₂N₂, O₂, NCO, O, CN and N mole fractions using the rates shown in Table 3.2. The conditions are T₂=1440°K, p_2 =0.60 atm, N₂O:O₂:C₂N₂:Ar= 4:1:4: 991 and ρ_{21} =3.31.

Ł

4.2.1 Reaction Mechanism

A complete reaction mechanism was utilized in the data reduction (see Table 3.2), but the following simplified description is helpful in understanding how k_5 and β were inferred from NCO absorption profiles. At early times, N₂O rapidly decomposes to provide O-atoms; C₂N₂ then reacts to form NCO, which in turn is removed by O-atoms,

$$N_{2}O + M + N_{2} + O + M,$$
 (1)

$$C_2 N_2 + 0 \rightarrow CN + NCO, \qquad (2)$$

$$NCO + O + CO + NO.$$
 (5)

The presence of molecular oxygen converts the CN into additional NCO and replenishes the O-atom pool via reaction (6),

$$CN + O_2 \rightarrow NCO + 0. \tag{4}$$

Assuming a steady-state of [CN] between reaction (2) and (4), the rate of change of NCO concentration is given by

$$\frac{d[NCO]}{dt} = 2 k_2 [C_2 N_2] [0] - k_5 [NCO] [0] . \qquad (4.2)$$

Since 0 and C_2N_2 are nearly constant throughout the process (see Fig. 4.3), the NCO profile eventually reaches a plateau (d[NCO]/dt=0) where

$$\frac{[\text{NCO}]^{\text{plateau}}}{[C_2N_2]} \approx 2 \frac{k_2}{k_5} . \tag{4.3}$$

It follows that the relative NCO profile (using the plateau as a reference) depends primarily on the rate of reaction (5), since, for this simplified model,

$$\frac{d[NCO]/[NCO]^{plateau}}{dt} \approx k_5[0] \left(1 - [NCO]/[NCO]^{plateau}\right) . \quad (4.4)$$

Fig. 4.4 Best fit of a typical NCO profile in a $C_2N_2/O_2/N_2O/argon$ experiment using the absorption diagnostic at 440 nm. The conditions are $T_2=1440^{\circ}$ K, $p_2=0.60$ atm and $N_2O:O_2:C_2N_2:$ Ar= 4:1:4:991. The absorption at 500µsec is 4.6%. The solid line is a best computer fit using $k_5=10^{13.75}$ cm³/mole/sec and other rates shown in Table 3.2. The dotted lines are computer-generated profiles using the best rates except (- -), $k_5 \times$ 1.50; (***), $k_5 \times 0.67$. The NCO plateau concentration thus depends primarily on the ratio k_2/k_5 and the relative time behavior depends on k_5 . A record of NCO is therefore sufficient to infer k_5 and, using the recommended value of k_2 , the plateau value for the NCO concentration and the absorption coefficient β . This approach for the establishment of a known level of NCO forms the basis of the present study of NCO spectroscopy.

Vibrational equilibrium of NCO was assumed, even though there is some evidence for NCO production in excited vibrational states from reaction (4) at lower temperatures [47].

4.2.2 <u>Results and Discussion</u>

A numerical routine incorporating the mechanism in Table 3.2 was used for the kinetics calculations. Values for k_5 were inferred from best fits to the measured relative NCO concentration profiles. Figure 4.4 shows such a best fit (solid line) to the relative NCO trace and the influence of varying k_5 by factors of 0.67 and 1.50 (dashed lines). The modified curves clearly fail to fit the data. The range of possible values for an acceptable fit is conservatively [×0.74, ×1.35] around the reported rate. Additional uncertainties in k_5 may result from uncertain knowledge of other rates of reactions present in the mechanism. In order to estimate these uncertainties, individual rates (Table 4.1) were adjusted by reasonable factors (based on current literature or our judgment); k5 was subsequently modified to ensure the return to an optimum fit. The resulting uncertainty in k_5 were approximately [×0.60, ×1.42]. The two uncorrelated uncertainties mentioned above may be combined to give a global uncertainty of $[\Sigma(\text{uncertainty})^2]^{1/2} \approx [\times 0.55]$. ×1.60]. On the basis of this analysis, at temperatures near 1450°K,

k₅=10^{13.75(-0.26,+0.20)} cm³/mole/sec.

There are no previous data available for comparison.

From the computer-predicted NCO plateau and the corresponding experimental absorption, a value for the absorption coefficient can be inferred at the peak wavelength.

Reactions	Uncertainty factors	effect	on k ₅
1 N20+M+N2+O+M	1.2	-16%	
	0.6		+21%
2 $C_2N_2+0 \rightarrow CN+NCO$	1.85		+14%
	0.54	-5%	
4 CN+02+NCO+0	1.60	-16%	
	0.63		+187
6 NCO+M+N+CO+M	5.0	-42%	
	0.2		+12%
17 NCO+N+N ₂ +CO	10.	-11%	
	0.1		+5%
Uncertainty in	2.0		+5%
K _f °(CN)	0.5	-5%	
Uncertainty in th	he fit	-30%	+30%
Total uncertainty≖	$[\Sigma(uncert.)^2]^{1/2}$	-58% -	

Table 4.1 - Uncertainty Analysis for k_5

4.3 NCO Absorption at 440 nm - Analysis and Results

4.3.1 Spectroscopic Model

Under typical experimental conditions, the $P_2+P_{Q_{12}}$ band head of the $[A^2\Sigma^+(00^00)+X^2\Pi_1(00^10)]$ band of NCO at 440.48 nm is the strongest absorption feature of this electronic system and, apart from a weak $^{OP}_{12}$ branch, it does not overlap with neighboring branches or other vibrational bands [48]. These features are important in establishing a sensitive and quantitative diagnostic for NCO.

A computer program was written to predict the absorption spectrum of the $(00^{0}0)+(00^{1}0)$ band under specified conditions. Spectroscopic constants were taken from Dixon [48]. The position, strength and shape of each line were computed to generate a relative absorption coefficient profile $\beta(\lambda)/f_{00}$ as a function of wavelength

$$\frac{\beta(\lambda)}{f_{00}} = \left(\frac{\pi e^2}{m_e c^2}\right) \sum_{\text{lines}} \frac{(2J''+1)\exp[-\frac{hc}{kT} F(J'')]}{Q_{\text{total}}} \times \frac{\frac{N}{RT} \frac{S_{J'J''}}{(2J''+1)} \phi(\lambda-\lambda_0) \quad (cm^{-1}atm^{-1}), \quad (4.5)$$

where F(J") is the rotation energy of the lower state (cm⁻¹); R is the universal gas constant (atm cm³/mole/°K); N is Avogadro's number; f₀₀ is the oscillator strength of the (00⁰0)+(00¹0) band; Q_{total} is the total partition function (see below); S_{J'J}" is the rotational line strength; $\phi(\lambda-\lambda_0)$ is the line shape factor (cm) computed using a Voigt profile. (A uniform value of the Voigt parameter is assumed for all lines in the band.) The quantity $\pi e^2/m_e c^2$ is equal to 8.826 10⁻¹³ cm. Figure 4.5 shows a computed spectrum of NCO around 440 nm for the conditions T= 1500°K, a=0.1 (Voigt parameter).

To calculate rotational term energies and line positions, we adopted for simplicity the Hill and Van Vleck formulae which Dixon used to fit rotational constants in the $A^2\Sigma^+$ and $X^2\Pi_i$ states of NCO [48]. For the $X^2\Pi_i$ state, a more complete description that accounts for rovibronic

Fig. 4.5 Theoretical absorption spectrum of NCO around 440 nm, computed for T=1500°K using an average Voigt parameter a=0.1. The abscissa shows frequencies in vacuo. The ordinate shows the relative absorption coefficient β/f_{00} (cm⁻¹ atm⁻¹), where f_{00} is the oscillator strength for the [A² Σ ⁺(00⁰0)+X² Π_{i} (00¹0)] band. Note the ⁰P₁₂ band head at 22676 cm⁻¹ and the P₂+^PQ₁₂ band head at 22703 cm⁻¹.

interactions was later derived by Hougen (see below) [49], but the simpler Hill and Van Vleck formulae (eq. 4.6) provide an excellent description of the rotational structure of low-lying vibrational states with no Renner-Teller interaction. Thus, for the $X^2 \Pi_i$ state

$$\mathbf{F}_{\beta}^{"}(J) = \mathbf{B}_{v}^{"}((J+1/2)^{2}-\mathbf{K}^{2}) \pm (\mathbf{B}_{v}^{"}(J+1/2)^{2}+1/4 \mathbf{A}_{v}^{"}(\mathbf{A}_{v}^{"}-4\mathbf{B}_{v}^{"})\mathbf{\Lambda}^{2})^{1/2}$$

$$-\mathbf{D}_{v}^{"}((J-1/2)(J+1/2)^{2}(J+3/2)+1) , \qquad (4.6)$$

where, in this this case, $\Lambda=1$ (Π -state) and $K=|\Lambda\pm 2|=1$. The + sign gives the level $F_2(J)$ ($\beta=2$, J=N-1/2) and the - sign $F_1(J)$ ($\beta=1$, J=N+1/2), where N is the quantum number of the total angular momentum apart from spin. Note that eq. (4.6) holds for the present inverted doublet (${}^{2}\Pi_{1}$, A<0), and that F_1 and F_2 form ${}^{2}\Pi_{3/2}$ and ${}^{2}\Pi_{1/2}$, respectively [50]. A small K-doubling of the lower $X^{2}\Pi_{1/2}$ state ($\beta=2$) was also considered to calculate rotational term energies. Using the selection rule for rotational symmetry (+ \leftrightarrow -), it can be shown that R_2 , ${}^{P}Q_{12}$ and P_2 branches originate from levels of energy $F_2^{"}(J)+0.5p(J+1/2)$, as ${}^{Q}R_{12}$, Q_2 and ${}^{O}P_{12}$ branches originate from levels of energy $F_2^{"}(J)-0.5p(J+1/2)$.

For the ${}^{2}\Sigma^{+}$ upper electronic state,

$$F_{\alpha}'(N) = B_{v}'(N(N+1)-\ell^{2}) - D_{v}'(N(N+1)-\ell^{2})^{2}, \qquad (4.7)$$

where, in this case, l=0 (Σ level, no excited v_2 bending). N is again the quantum number of the total angular momentum apart from spin and J=N+1/2 for $\alpha=1$ and J=N-1/2 for $\alpha=2$. Spin splitting was neglected in F'_ α (N), which Dixon did not observe for the $A^2\Sigma^+(00^00)$ level [48]. The line positions for the $A^2\Sigma^+(00^00) + X^2\Pi_1(00^{10})$ band were calculated using

$$v = v_{00} + F_{\alpha}(J') - F_{\beta}(J''),$$
 (4.8)

where v_{00} is the measured band origin [48]. A summary of spectroscopic constants is given in Table 4.2 [48].

Vibronic State	$B^2 \Pi_i (10^1 0)$	$A^{2}\Sigma^{+}(00^{0}0)$	$x^{2}\Pi_{i}(00^{1}0)$
B _v	0.3765	0.40211	0.38940
D _v	$0.15.10^{-6}$	0.177.10 ⁻⁶	0.149.10 ⁻⁶
Av	-30.8	-	-95.59
р	-	-	0.002
	$v_{10}[B+X]=3$	2781.13	
		v ₀₀ [A+X]=22]	753.98
	All quanti	ties in cm ⁻¹ .	

Table 4.2 - Summary of NCO Spectroscopic Constants

Since the NCO molecule maintains a linear configuration throughout its transition (the bending vibration v_2 is not excited), the electronic, vibrational and rotational energies can be considered separately, according to the Born-Oppenheimer approximation. Consequently, the rotational line strengths $S_{J'J''}$ are identical to those calculated for diatomic molecules in the appropriate electronic configuration.

By convention, the lower energy level of a given rotational transition was defined such that its degeneracy is equal to (2J"+1). For the Π -ground state of NCO, this assumption implies that each term of a Kdoubled component is regarded as a separate initial level, despite the small energy difference. As a consequence, the normalization rule for the rotational line strength $S_{J'J"}$ must read for a given J"

$$S({}^{S}R_{21})+S(Q_{1})+S({}^{Q}P_{21}) =$$

$$S(R_{1})+S({}^{R}Q_{21})+S(P_{1}) =$$

$$S(R_{2})+S({}^{P}Q_{12})+S(P_{2}) =$$

$$S({}^{Q}R_{12})+S(Q_{2})+S({}^{O}P_{12}) = 2J"+1, \qquad (4.9)$$

where, for example, $S({}^{S}R_{21})$ is the rotational line strength of the transition

60

Ł

$$[A^{2}\Sigma^{+}(J'=J'+1,\alpha=2)+X^{2}\Pi_{3/2}(J'',\beta=1)];$$

the present notation follows Mavrodineanu and Boiteaux [51]. The rotational line strengths were taken from Kovacs [26] and multiplied by a factor of two to be consistent with the above normalization rule. A listing of the computer model for the transition at 440 nm is given in Appendix 5.

In the calculation of the total partition function, the contribution of excited electronic states of NCO were neglected. For a linear XYZ molecule in a Π -configuration such as NCO in its ground state, Renner [52], Pople [53] and Hougen [49] have shown that it is generally not a good approximation to consider separately the electronic and vibrational energies, when the v_2 bending vibration of the molecule is excited. Consequently, the total partition function should not obey the factorization rule, and hence was computed as follows:

$$Q_{tot} = \left(\sum_{v_2^{\circ}, K^{\circ}, J^{\circ}, \pm \frac{1}{2}} g \exp\left[-\frac{hc}{kT} F_{\pm \frac{1}{2}}(v_2^{\circ}, K^{\circ}, J^{\circ})\right] \right) Q_{v_1} Q_{v_3}, \quad (4.10)$$

where v_2 " and J" are, respectively, the vibration and rotation quantum numbers, and

$$K'' = |A \pm l| = v_2'' + 1, v_2'' + 1 - 2, \dots, v_2'' + 1 - 2j, \dots, 0 \text{ or } 1.$$
 (4.11)

 $F_{\pm} l_{2} (v_{2}, K, J'')$ is the rovibronic energy of the $\chi^{2}\Pi_{i}(v_{2}, K, J'', \pm l_{2})$ level of NCO with $v_{1}=v_{3}=0$ (cm⁻¹). The appropriate formulae were derived by Hougen [49]; the zero-point energy follows Dixon's convention [48]. g is the K-doubling degeneracy and is equal to 1 for K=0 and 2 for K≠0. $Q_{v_{1}}$ and $Q_{v_{3}}$ are the contributions of the v_{1} and v_{3} stretching modes to the partition function, where

$$Q_{v_{j}} = \left[1 - \exp\left(-\frac{hc}{kT} \omega_{j}^{0}\right)\right]^{-1}$$
(4.12)

for j=1,3; the values of Milligan and Jacox [54] for ω_1° and ω_3° were used in the present model.

Despite this complicated rovibronic structure of NCO, it was found that the total partition function can be adequately approximated by assuming no interaction between the rotation and electronic energies, and by considering all vibronic states with a given v_2 " as a single level of degeneracy $2 \times 2(v_2$ "+1). (There are two levels arising from the possible orientations of the electronic orbital angular momentum, two levels arising from electronic spin, and $(v_2$ "+1) levels associated with the degenerate bending.) This simplified approach leads to the approximate expression

$$Q_{total} \simeq 4 Q_{rot} Q_{\nu_1} Q_{\nu_2}^2 Q_{\nu_3}$$
, (4.13)

where $Q_{rot} = (kT/hcB''_v)$ is the rotational partition function. A computer program incorporating Hougen's formulae was written to compare the complete summation with this approximate expression. The agreement between this approximation and the complete summation is better than 3% in the range 500<T<4000°K. A listing of the partition function program is given in Appendix 5.

4.3.2 Results

The reproducible NCO plateau absorption generated by the HCN mixtures (see chapter 5) was used for mapping the relative absorption coefficient as a function of wavelength. The measured absorption coefficient (corrected for slight variations in the initial conditions) was plotted along with the computer-predicted profile (Fig. 4.6). The Voigt a parameters were extracted by comparing the theoretical and measured relative absorption spectra (using the peak absorption coefficient as a reference). Reasonable agreement was found for Voigt a parameters in the range 0<a<0.4. This range corresponds to an uncertainty of [×0.80, ×1.06] in the peak absorption coefficient, which was found near 440.479 nm (in good agreement with Dixon [48].) This low value of the Voigt a parameter is expected at high temperatures, where UV absorption lines are typically dominated by Doppler broadening [55].

Fig. 4.6 NCO absorption spectrum at 440.479 nm. The abscissa shows wavelengths in vacuo, and the ordinate relative absorption coefficients $\beta/\beta^{\text{peak}}$. The horizontal error bars on the experimental data (•) corresponds to the wavemeter resolution; the vertical error bars correspond to uncertainties in the measured absorption. The solid line is a best fit to the spectrum using our spectroscopic model and an Voigt parameter a=0.1. The dashed lines are computer-generated spectra using a=0.4 (- -) and a=0 (···) (Doppler limit). The average conditions of these experiments were T=1430°K, p=0.60 atm and N₂0:0₂: HCN:Ar = 8:1:8:983.

Reactions	Uncertainty factors	effect	on β
1 N ₂ 0+M+N ₂ +0+M	1.2	-5%	
	0.6		+172
2 $C_2N_2+0+CN+NCO$	1.85	-41%	
	0.54		+46%
3 CN+O+CO+N	1.85	-1%	
	0.54		+1%
4 CN+02+NC0+0	1.60	-3%	
	0.63		+5%
5 NCO+O+CO+NO	1.60		+35%
	0.55	-36%	
6 NCO+M→N+CO+M	5.0		+30%
	0.2	-5%	
17 NCO+N+N ₂ +CO	10.		+4%
	0.1	-2%	
32 N ₂ 0+CN+NCN+NO	10.		+26%
	0.1	-4%	
Uncertainty in	2.0	0%	
K _f °(CN)	0.5		+20%
Voigt parameter	4.0	-22%	
	0.0		+6%
Experimental scat	ter	-6%	+6%
Total uncertainty	= $[\Sigma(uncert.)^2]^{1/2}$	-60%	+76%

Ņ

4 - F

j,

'n,

 Table 4.3 - Uncertainty Analysis for β

The three additional runs with C_2N_2 mixtures provided an absolute value for the absorption coefficient β at the peak wavelength. From the computer-predicted NCO plateau ($p_{\rm NCO}=0.012$ torr) and the corresponding experimental absorption (5%), it was inferred

$\beta(1450^{\circ}K, 0.60 \text{ atm}) \simeq 110(-50, +130) \text{ cm}^{-1}\text{atm}^{-1},$

at 440.479 nm with a=0.1. Uncertainties in β include experimental scatter [×0.94, ×1.06], uncertainty in the Voigt a parameter [×0.80, ×1.06], and the uncertain knowledge of some reaction rates [×0.57, ×2.15] including k₂ and k₅ (see Table 4.3). These three uncorrelated uncertainties combine to give the upper and lower bounds reported above, 60< β < 240. A significant reduction in the overall uncertainty could thus be achieved if a better technique for generating known levels of NCO were available.

Using the computer-predicted value of $\beta/f_{00} \approx 43000 \text{ cm}^{-1}\text{atm}^{-1}$, $f_{00}\approx0.0026$ is extracted. This value is in good agreement with Reisler, et al. [47] and Charlton et al. [56], who respectively reported $f_{e1}\approx0.0033\pm0.0001$ and $f_{e1}\approx0.0040\pm0.0005$ (see Appendix 4). Using the average value of $f_{e1}\approx0.0037$ and the present value for f_{00} , we find for q_{00} , the Franck-Condon factor of the $(00^{0}0)+(00^{1}0)$ transition,

q₀₀≈0.0026/0.0037=0.70.

This result is in agreement with a theoretical calculation based on the simplified approach of Smith and Warsop [57] and Sharp and Rosenstock [58]. Using this approach, $q_{00}=0.81$ was obtained (see Appendix 4).

The indicated experimental value of $\beta(1450^{\circ}K)$ can be extrapolated to other temperatures using the spectroscopic model. Figure 4.7 is a theoretical plot of β/f_{00} as a function of temperature. Owing mostly to the strong temperature dependence of the total partition function, the peak absorption coefficient decreases substantially as temperature increases. This effect translates into increased NCO detection limits at higher temperatures. At the temperature of our experiments (1450°K), a signalto-noise ratio (S/N) of 30 was achieved for an absorption of 5%. (The signal-to-noise ratio was limited by laser power fluctuations). Hence, the detection limit (S/N=1) was about 0.8 ppmv of NCO at 0.60 atm. The equivalent detection limits calculated at other temperatures and the same pressure are 11 ppmv at 2500°K and 0.2 ppmv at 1000°K.

Fig. 4.7 Computed relative NCO absorption coefficient β/f_{OO} at 440.479 nm (vac.) vs. temperature, with a Voigt parameter a=0 (solid line), and a=1.0 (dashed line).

4.4 NCO absorption at 305 nm - Analysis and Results

The spectrum of the $[B^2\Pi_1 + X^2\Pi_1]$ transition of NCO is more complicated than the $[A^2\Sigma^+ + X^2\Pi_1]$ spectrum discussed above. Dixon [59] made tentative assignments of the observed band heads and absorption maxima observed in the range $265 \leq \lambda \leq 320$ nm. Many bands were found to be diffuse, indicating a possible predissociation of the upper state. Only the $(10^{10}) + (00^{10})$ vibrational band could be analyzed, but uncertain perturbations made it difficult to determine accurate rotational constants. This band, however, is the least perturbed in rotation, and constitutes our best choice for a quantitative UV absorption diagnostic of NCO. Among the four branches available in the band, it is best to use the strong band head of the R_1 branch, which does not overlap with the neighboring R_2 , P_1 , and P_2 branches. All branches are degraded towards the red.

A computer program was written to calculate the relative absorption coefficient β/f_{10} for the $(10^{10})+(00^{10})$ band. For simplicity, we assumed that the rotational structure obeys the Hill and Van Vleck formula (eq. 4.6) and we used the spectroscopic constants inferred by Dixon [59]. The calculation of β/f_{10} is similar to the one presented above for the $[A^2\Sigma^+ X^2\Pi_1]$ transition. Rotational line strengths were taken directly from Kovacs [26]. No re-normalization to Kovacs' published line strengths was required. Figure 4.8 shows the computed absorption spectrum around the R₁ and R₂ band heads. A summary of spectroscopic constants is given in Table 4.2.

The plateau NCO absorption generated by the C_2N_2 mixtures (see Fig. 4.9) was used to map the relative NCO absorption profile as a function of UV wavelength. The time-resolved traces obtained with this diagnostic at 305 nm were similar to the traces recorded using the previous diagnostic at 440 nm; this indicates an absorption free from the interference of other molecular species present in the shock tube. Under the conditions of our experiments (T=1470°K, p=0.63 atm), a very broad spectrum was observed, which was fitted using a Voigt a parameter of 9 by matching the experimental and theoretical full widths at half maximum (see Fig. 4.10).

||

1.1

<u>Fig. 4.8</u> Computed NCO absorption spectrum around 305 nm using an average Voigt parameter a=9. The abscissa shows wavelengths in air. The ordinate shows the relative absorption coefficient β/f_{10} , where f_{10} is the oscillator strength of the $[B^2\Pi_i(10^{10})+X^2\Pi_i(00^{10})]$ band. Note the R_1 bandhead around 3046 Å (air) and the R_2 bandhead around 3051 Å (air).

t

Fig. 4.9 Best computer fit of a typical NCO profile in a $C_2N_2/O_2/N_2O/argon$ experiment using the absorption diagnostic at 305 nm. The conditions are $T_2=1460$ °K, $p_2=0.61$ atm and $N_2O:O_2:C_2N_2:Ar=4:1:8:987$. The absorption at 300 µsec is 1.3%. The solid line is a best computer fit using rates shown in Table 3.2.

Fig. 4.10 NCO absorption spectrum around 305.681 nm. The vertical error bars on the experimental data correspond to the uncertainties in the measured absorption. The solid line is a best fit to the spectrum using our spectroscopic model and an average Voigt parameter a=9. The dashed lines are computer-generated spectra using a=20 (- '-) and a=5 (''').

The peak absorption was found at 304.681 nm, in reasonable agreement with Dixon's measurement at 304.676 nm (vac). The poor quality of the fit in the wings is attributed to the possible interference of unassigned neighboring vibrational hot bands.

The observation of an exceedingly broad spectrum is consistent with the measurements of Sullivan, et al. [60], who reported a short lifetime and a radiationless decay of the $[B^2\Pi_i(10^{1}0)]$ level of NCO. Two of the three criteria for predissociation of the $(10^{1}0)$ level (Auger process [61]) have therefore been checked (observation of radiationless transitions and excessive natural broadening of discrete levels).

Four experiments were conducted at the measured peak absorption (304.681 nm). As before, a kinetics calculation of the NCO plateau enabled determination of the absolute absorption coefficient. At 304.681 nm,

$$\beta(1470^{\circ}K, 0.63 \text{ atm}) = 40 (-19,+48) \text{ cm}^{-1}\text{atm}^{-1}$$
.

with a=9. Sullivan <u>et al.</u> [60] measured a decay lifetime of 63 ± 3 nsec for the $[B^2\Pi_1(00^{1}0)]$ level of NCO using laser-induced fluorescence. (This lifetime is considerably longer than that of the $[B^2\Pi_1(10^{1}0)]$ level, indicating a dissociation limit lying between the $(00^{1}0)$ and the $(10^{1}0)$ levels of $[B^2\Pi_1]$.) Since this measurement (63 nsec) was carried out in the near absence of added collision partners (zero-pressure limit), the upper state population decayed through a purely radiative transition to all possible vibrational levels of the lower state with $\Delta J=0,\pm1$. Consequently, the total electronic oscillator strength can be estimated from the lifetime of the $[B^2\Pi_1(00^{1}0)]$ state reported by Sullivan, <u>et al</u>. Using a calculation presented in Appendix 4, $f_{el}=0.022$.

The complexity of this NCO transition at 305 nm may leave some doubts about the validity of the spectroscopic model. Nevertheless, from the computer-predicted value of β/f_{10} =12700 cm⁻¹atm⁻¹ at 1470°K with a=9, the oscillator strength of the (10¹0)+(00¹0) band f_{10} =0.0031 is extracted. Using the above estimate for f_{el} , a Franck-Condon factor for the (10¹0)+(00¹0) band is inferred in the range

$q_{10}=0.14(-0.06,+0.16).$

This result is again in agreement with the theoretical calculation described in Appendix 4 $(q_{10}=0.16)$.

4.5 Recommendation for the NCO Diagnostic

Quantitative and sensitive absorption measurements of NCO have been demonstrated in high temperature systems, using laser radiation at either 305 or 440 nm. However, the spectrum at 305 nm is highly broadened and cannot entirely be explained in terms of a simple spectroscopic model. By contrast, the spectrum at 440 nm provides a stronger peak absorption coefficient and can be more readily modeled. Therefore the use of the $[A^2\Sigma^+ X^2\Pi_i]$ transition is recommended for a reliable and sensitive high temperature absorption diagnostic of NCO.

4.6 High Temperature Rate of NCO Decomposition

As discussed in the previous paragraph, C_2N_2 mixtures were shockheated at low temperatures (1450 °K) to infer the rate of reaction (5)

$$NCO + O + CO + NO, \qquad (5)$$

and to predict absolute levels of NCO for quantifying the diagnostic at 440 nm. In this section, further use of the NCO diagnostic will be described to measure the ratio of the rate constants of reaction (5) and (6) at higher temperatures (2240°K)

$$NCO + M + N + CO + M.$$
(6)

The rate of reaction (6) is important in the data reduction of shock tube experiments at temperatures greater than 2000°K, where NCO decomposition may be faster than other NCO-removing reactions such as reactions (5) or (9). On the other hand, this NCO decomposition reaction is generally unimportant in flames, where free radicals and atoms such as H, O and OH are abundant.

72

4.6.1 Experimental Considerations

Mixtures of C_2N_2 and N_2O diluted in argon were shock heated to measure the ratio of the rate constants of reactions (5) and (6) at 2240°K, the rate constants for the other reactions significant at early times, reactions (1) and (2), being already well established,

$$N_{2}O + M + N_{2} + O + M,$$
 (1)

$$C_2N_2 + 0 + CN + NCO_1$$
 (2)

$$NCO + O + CO + NO, \qquad (5)$$

$$NCO + M + N + CO + M.$$
 (6)

Previous work to establish k_5 and k_6 is limited primarily to the present shock tube work in which the ratio k_5/k_6 was determined at 2150°K and 2400°K from measurements of NO and CN (see chapter 3), and k_5 by monitoring NCO using laser absorption.

Six runs were conducted behind incident shock waves with the following mixtures and conditions: $\chi_{C_2N_2}=0.41\%$, $0.10 < \chi_{N_20} < 0.42\%$, $T_2=2240$ °K, $p_2=0.65$ atm and $\rho_{21}=3.57$. (ρ_{21} is the density ratio across the shock and also the ratio of particle time to laboratory time.) Shock speeds varied between 1.48 and 1.50 mm/µsec, with a typical attenuation of 1%/m. Typical leak plus outgassing rates were $3-5\times10^{-5}$ torr/min. Gases were taken directly from commercial cylinders (Table 2.1), with C_{2N_2} (1.01%) dilute in argon. The temperature of the experiments was set by considerations of growing interferences on the NCO absorption system from spontaneous emission at higher temperatures and by insufficient rates of NCO removal from reaction (6) at lower temperatures.

4.6.2 NCO Decomposition in $N_2O/C_2N_2/Ar$ Mixtures

A complete mechanism that encompasses eighteen reactions in the C/N/O system was used in the data reduction (see Table 3.2), but a simplified description, useful in guiding the actual data interpretation, can be given as follows. At early times, N_2O decomposes to provide O-atoms, which rapidly reach a steady-state concentration; C_2N_2 then reacts to form NCO, which in turn is removed either by O-atoms or by

dissociation,

$$N_{2}O + M \rightarrow N_{2} + O + M,$$
 (1)

$$C_2N_2 + 0 + NCO + CN,$$
 (2)

$$NCO + O + CO + NO,$$
 (5)

$$NCO + M + N + CO + M.$$
 (6)

At the peak of the NCO concentration,

$$\frac{d[NCO]}{dt} \approx k_2 [C_2 N_2] [0] - k_5 [NCO] [0] - k_6 [NCO] [M] = 0 , \qquad (4.14)$$

and hence

$$\frac{[C_2N_2]}{[NCO]^{\text{peak}}} \approx \frac{k_5}{k_2} + \frac{k_6}{k_2} \times \frac{[M]}{[0]} .$$
(4.15)

The mole fraction of O-atoms at steady-state is proportional to the initial N_2O mole fraction,

$$\frac{[0]}{[M]} \propto \left(\begin{array}{c} \chi \\ N_2 0 \end{array} \right)_{t=0}$$
 (4.16)

If $[C_2N_2]$ is nearly constant throughout the time scale of interest, then measurements of the peak NCO concentration for different values of the initial N₂O mole fraction can be plotted as a straight line on a graph showing $[C_2N_2]/[NCO]^{\text{peak}}$ as a function of $1/(\chi_{N_2O})_{t=0}$. In the case of this simplified model, the intercept and the slope are respectively proportional to the ratios k_5/k_2 and k_6/k_2 . Furthermore, the ratio of the intercept and the slope yields k_5/k_6 .

A numerical routine incorporating the mechanism in Table 3.2 was used for the actual data interpretation. Figure 4.11 shows a typical experimental trace, converted to NCO mole fraction. The initial spike results from a Schlieren effect, which is useful in determining the shock arrival time. The NCO mole fraction at the peak (t=14µsec) was used in the data reduction. Values for k_5/k_2 and k_6/k_2 were inferred by varying these quantities in the detailed kinetic mechanism until least-squares agreement was found between the experimental and computer-generated results for $[C_2N_2]/[NCO]^{peak}$ vs. $1/(\chi_{N_2O})_{t=0}$ (see Fig. 4.12).

Finally, the ratio k_5/k_6 was computed from the ratio of the inferred values of k_5/k_2 and k_6/k_2 .

Fig. 4.11 A typical experimental trace in a $N_2O/C_2N_2/argon$ mixture with $T_2=2210$ °K, $p_2=0.64$ atm, $N_2O:C_2N_2:Ar=2:4:994$ and $\rho_{21}=3.56$. The initial spike corresponds to a shock-generated Schlieren effect. The dashed line is an estimate of the unperturbed NCO profile at early times. The peak absorption of 1.9% corresponds to $\chi_{NCO}=57$ ppmv, with $\beta(2210$ °K)=17 cm⁻¹ atm⁻¹ (extrapolated value using the spectroscopic model in ¶4.3.1).

75

I

Fig. 4.12 Experimental plot of the concentrations ratio $[C_{2N_2}]/[NC0]^{peak}$ vs. inverse initial N₂O mole fraction $1/(\chi_{N_2O})_{t=0}$ with $T_2=2240^{\circ}K$ and $p_2=0.65$ atm. The peak NCO concentrations are computed using extrapolated absorption coefficients β (see Fig. 4.7). The solid line is a least-squares fit of the experimental data and also a best computer correlation using the mechanism in Table 3.2, $k_5/k_2=10^{1.38}$ and $k_6/k_2=10^{-2.16}$. The dashed line (- -) corresponds to $k_6/k_2 \times 2.0$ and the dotted line (...) to $k_6/k_2 \times 0.5$ (with k_2 held at the Table 3.2 value). Clearly, neither excursion in k_6/k_2 can adequately fit the experimental slope. The (- · -) line shows insensitivity to the nominal value of k_2 by employing a value of k_2 twice that shown in Table 3.2, but identical values for the ratios $k_5/k_2=10^{1.38}$ and $k_6/k_2=10^{-2.16}$.

Fig. 4.13 Computer-generated profiles of C_2N_2 , N_2O , O, CN and NCO mole fractions using $k_5/k_2=10^{1.38}$ and $k_6/k_2=10^{-2.16}$ from Fig. 4.12, and the conditions of Fig. 4.11. The solid squares are taken from the NCO experimental trace of Fig. 4.11.

	Reactions	Uncertainty factors	effect or	n k5/k6
1	N ₂ 0+M+N ₂ +0+M	1.2	-15%	
		0.8		+19%
2	C ₂ N ₂ +0+CN+NCO	1.85		+39%
		0.54	-19%	
3	CN+O+CO+N	1.85		+8%
		0.54	-6%	
4	cn+0 ₂ +nco+0	1.58	-4%	
		0.63		+5%
7	C ₂ N ₂ +M+CN+CN+M	2.0		+12%
		0.5	-0%	
13	N20+0+N0+N0	1.5		+9%
		0.4	-2%	
14	N ₂ 0+0+N ₂ +0 ₂	1.5		+9%
		0.4	-2%	
15	^{N2+0→N+N0}	1.35		+12%
		0.65	-4%	
16	0+NO→N+O2	1.3		+5%
		0.7	-4%	
17	NCO+N+N2+CO	10.	-8%	
		0.1		+8%
18	NCO+N+CN+NO	10.	-13%	
		0.1		+8%
19	cn+n+c+n ₂	10.	-11%	
		0.1		+3%
32	N ₂ 0+CN+NCN+NO	10.		+6%
		0.1	-0%	
Und	certainty in the	e fit	-75%	+60%
Tot	al uncertainty=	$= [\Sigma(uncert.)^2]^{1/2}$	-82%	+79%

Table 4.4 - Uncertainty Analysis for k_5/k_6

Computer calculations confirmed that the ratio k_5/k_6 inferred by this procedure is reasonably insensitive to the value of k_2 employed in the detailed model (see Fig. 4.12); hence the value of k_5/k_6 reported is nearly independent of the substantial uncertainties associated with both k_2 and the absorption coefficient $\beta(T=2240^{\circ}K)$. Residual uncertainties in the ratio result primarily from the uncertain knowledge of other rate constants in the mechanism [×1.7, ×0.6], and the 95% confidence interval on the slope and intercept [62] [×1.8, ×0.5] (see Table 4.4). These two uncorrelated uncertainties can be combined to give an overall uncertainty in k_5/k_6 of [×2.2, ×0.43], which means that the ratio k_5/k_6 is bounded by values 2.2 times and 0.43 times the reported value. Figure 4.13 shows computer-generated profiles of reactants and intermediate species using the values of k_5/k_2 and k_6/k_2 inferred from Fig. 4.12 and other rates reported in the detailed mechanism of Table 3.2.

The result $k_5/k_6 = 10^{3.54(+0.34,-0.37)}$ at (2240°K, 0.65 atm) is plotted in Arrhenius form along with the earlier determinations at (2150°K, 0.65 atm) and (2400°K, 0.6 atm) (Fig. 4.14), which were obtained using two independent experiments based on measurements of NO and CN (see chapter 3). Reasonable agreement is found among the three independent measurements within the size of their individual error bars. Because of these error bars and the narrow range of temperatures studied, it is difficult to estimate a correct temperature dependence of the ratio. For the purpose of reporting a single expression, the activation energy of k_6 was set equal to the NCO dissociation energy, i.e., 47.3 kcal/mole [63], and a number of effective degrees of freedom s=2 was assumed [64]. (The latter assumption implies a temperature exponent in the pre-exponential factor of k₆ equal to $m = \frac{3}{2} - s = -\frac{1}{2}$.) In addition, k₅ was assumed independent of temperature in the range 2150 <T <2400°K. Using a least-squares-fit expression based on the three experimental data points, the result $k_5/k_6 = 10^{-3.1} T^{0.5} exp[+24000/T]$ [×2.0, ×0.5] was obtained for (2150<T<2400°K, p=0.65 atm).

No experimental measurement of k_5 has been performed above 1500°K. However, it is reasonable to assume that k_5 is nearly constant over a large temperature range. Using the earlier measurement of $k_5=10^{13.75}$

cm³/mole/sec [×1.60, ×0.55] at 1450°K and combining the corresponding uncertainties in k₅ and k₅/k₆, the value k₆ = $10^{16.8}T^{-0.5}exp[-24000/T]$ [×2.3, ×0.4] is recommended over the range 2150<T<2400°K and p=0.65 atm. There are no previous data for k₆ available for comparison.

Fig. 4.14 Arrhenius plot for the ratio k_5/k_6 . The abscissa shows reciprocal temperatures $10^4/T$ (K⁻¹). The square symbols correspond to experiments reported in chapter 3. Note that these experiments were performed using independent NO and CN measurements.

4.7 Conclusions

The detailed study of cyanogen oxidation kinetics resulted in the development of a novel laser absorption technique to measure NCO concentrations at high temperatures. Using this technique in other cyanogen mixtures, the rates of reactions (5) and (6) were inferred

$$NCO + O + CO + NO, \qquad (5)$$

$$NCO + M + N + CO + M.$$
 (6)

These results are essential for the reduction of further NCO data from shock tube experiments.

Chapter 5

The Kinetics of NCO Reactions

Chapter 3 reported studies of shock-heated cyanogen mixtures to investigate important fuel-nitrogen reactions involving CN at high temperatures. In chapter 4, a new laser absorption diagnostic of NCO was described for measuring NCO removal rates in an oxidizing medium. Thus far, mixtures of gases containing only three atoms have been shockheated (C, N and O), in order to simplify the interpretation of the experimental data. In this chapter, we report further use of the NCO diagnostic in four-atom mixtures to infer the rates of

$$HCN + 0 \rightarrow NCO + H, \qquad (8)$$

$$NCO + H \rightarrow CO + NH$$
, (9)

$$NCO + H_2 \Rightarrow HNCO + H.$$
 (10)

As discussed in Appendix 8, these reactions contribute to the oxidation of hydrogen cyanide, and thus are important for the fuel-nitrogen mechanism.

5.1 HCN Oxidation in HCN/N20/02/argon Mixtures

In the study of NCO spectroscopy (chapter 4), mixtures of C_2N_2 , N_2O and O_2 diluted in argon were shock-heated to determine the rate constant of reaction (5) at 1450°K, the rate constants for (1), (2) and (4) being already well established

$$N_2 O + M \to N_2 + O + M,$$
 (1)

$$C_2N_2 + 0 \rightarrow CN + NCO, \qquad (2)$$

$$cn + o_2 \rightarrow nco + o_1$$
 (4)

$$NCO + O \rightarrow CO + NO.$$
(5)

In this study, $C_{2}N_{2}$ was replaced by HCN and a comparison of the NCO time-histories in the $C_{2}N_{2}$ and HCN mixtures was used to establish a

value for the rate of reaction (8) at 1440°K

$$HCN + 0 + NCO + H, \tag{8}$$

5.1.1 Experimental Considerations

Three runs were conducted with C_2N_2 mixtures, $N_2O:O_2:C_2N_2:Ar=4:1:$ 4:991, $T_2=1450\pm10$ °K, $P_2=0.60$ atm, and $\rho_{21}=3.31$. Nine additional runs were conducted with HCN mixtures, $N_2O:O_2:HCN:Ar\approx8:1:8:983$, $T_2=1430\pm20$ °K, $P_2=0.60$ atm, and $\rho_{21}\approx3.32$. Shock speeds varied between 1.14 and 1.17 mm/µsec, with typical attenuation of 1.2%/m for the C_2N_2 mixtures and 2.5%/m for the HCN mixtures. Typical leak plus outgassing rates were 3- 5×10^{-5} torr/min. The mole fraction of HCN in the cylinder was checked against known C_2N_2 and HCN mixtures using high-temperature CN emission tests since HCN may slowly decompose in high pressure cylinders (see Appendix 7). The temperature of the experiments was set by considerations of growing interference due to NCO removal by reaction (6) at higher temperatures,

$$NCO + M \rightarrow N + CO + M, \tag{6}$$

and increasing uncertainty in the rate of reaction (1) at lower temperatures. In addition, a few tests were conducted with the laser blocked to monitor possible spontaneous emission interferences from the test gas. These emission levels were found to be insignificant.

5.1.2 Analysis and Results

Data from these experiments were reduced using the complete kinetic mechanism in Table 5.1, but a simplified model based on the following reactions is helpful in appreciating the similarity between the C_2N_2 and HCN experiments

$$N_{2}0 + M + N_{2} + 0 + M,$$
 (1)

$$HCN + 0 + NCO + H, \qquad (8)$$

$$NCO + O \rightarrow NO + CO, \tag{5}$$

$$NCO + H \rightarrow NH + CO.$$
 (9)

Reactions	∆H a	equil. const b	rat	te cons	tants ^C	Source
			log ₁₀ A		θ(°K)	_ (Mei #)
1 N ₂ O+M+N ₂ +O+M	+40	-3.8	23.89	-2.5	32710	
2 $C_2N_2+O+CN+NCO$	+4	0.3	12.66	0	4440	
3 CN+O→CO+N	-75	10.2	13.31	0	1440	Inis study
4 CN+02+NCO+0	-2	0.1	12.75	0	210	This study
5 NCO+O+NO+CO	-105	15.4	13.75	0	0	This study
6 NCO+M+N+CO+M	+48	-5.8	16.80	-0.5	24000	This study
8 HCN+O→NCO+H	0	-0.4	8.24	1 47	24000	This study
9 NCO+H+CO+NH	-39	6.0	14.02	1.47	3775	This study
10 NCO+H ₂ +(HNCO)+H	-10	1.0	13.23	0	1000	This study ^d
11 C ₂ N ₂ +H+CN+HCN	+4	0.7	14.50	0	4000	This study ^e
12 CN+H ₂ +HCN+H	-16	1.8	11.74	0 7	4030	This study
13 N ₂ 0+0+N0+N0	-38	7.1	13.84	0.7	2460	[6]
14 N ₂ 0+0+N ₂ +0 ₂	-81	12.1	14 00	0	13400	[22]
15 N ₂ +0+N+NO	+75	-10.3	14.00	0	14100	[22]
16 NO+O+N+O2	+32	-5.3	0 50	0	38370	[22]
$17 \text{ NCO+N} + N_2 + CO$	-180	25.7	13 30	1.0	20820	[22]
18 NCO+N+CN+NO	-30	5.2	1/ 66	0	0	[44]
20 N ₂ O+H+N ₂ +OH	-65	10.8	14.00	0	5530	[45] [±]
21 NH+NO+N ₂ O+H	-28	2 3	13.00	0	7600	[22]
22 NO+H+N+OH	+48	2•J _6 6	12.03	0	230	[22]
23 0 ₂ +H→OH+O	+16	-0.0	14.23	0	24560	[22]
24 H ₂ +0+H+0H	+2	-1.2	17.57	-1.0	8810	[94]
25 H ₂ 0+0→0H+0H	12 17	+U.I	10.26	1.0	4480	[94]
26 OH+Ha+H+HaO	-15	-1.5	9.66	1.3	8605	[94]
27 HCN+O+NH+CO	-20	1.6	9.07	1.3	1825	[95]
28 HCN+0+CN+0H		J. 0	8.73	1.2	3820	[16]
29 HCN+OH+H-O+CN	T10	-1.8	13.70	0	11000	[72] ^g
30 CN+OH+NCO+H	-19	-0.2	12.64	0	4530	[6]
	-10	1.4	13.75	0	0	[9]

Table 5.1 - Reaction Mechanism - H/C/N/O System

Reactions	∆H ^a	equil. const b	rate	consta	ants C	Source (Ref #)
			log ₁₀ A	n	θ(°K)	
31 Cono+OH+HNCO+CN	-8	1.3	11.27	0	1450	[96] ^h
36 HNCO+H+NH2+CO	-17	2.8	14.00	0	4280	[97]
37 NH+H+N+Ha	-20	2.7	13.70	0	1000	[22]
$38 \text{ NH}_{a} + \text{H}_{b} \text{NH}_{1}$	-11	2.2	13.28	0	0	[22]
39 NCO+OH+HNCO+O	-12	0.9	13.30	0	0	estimate

Table 5.1 (continued)

^a Heat of reaction at 1500°K (kcal/mole) [63], where ΔHf₀°(CN)=101.2 kcal/mole [24,63].

^b log₁₀(k_{forward}/k_{backward}) at 1500°K [63].

^c Using the notation $k=A T^m \exp[-\theta/T]$ (cm³/mole/sec).

^d An activation energy of 2 kcal/mole was estimated for this reaction.

^e An activation energy of 8 kcal/mole was estimated for this reaction.

- The form of the product (HNCO) is uncertain.
- ^f Colket measured $k_{backward} = 10^{14} exp[-21190/T]$ (cm³/mole/sec); the expression $k_f/k_b = 4.54 exp[15660/T]$ was assumed.

g Upper limit value of k28.

^h The products of this slow reaction are uncertain.

As with the $C_{2}N_{2}$ mixtures (see ¶4.2.1), the relative NCO trace depends on the rate of NCO removal $k_{5}[0]+k_{9}[H]$, and the plateau NCO concentration (normalized by the concentration of the NCO source i.e., [HCN]) is given approximately by the ratio of the rate constants for the formation and removal steps,

$$\frac{[\text{NCO}]^{\text{plateau}}}{[C_2N_2]} = 2 \frac{k_2}{k_5} \text{ for the } C_2N_2 \text{ mixtures (see $4.2.1$), (5.1)}$$

and
$$\frac{[NCO]^{plateau}}{[HCN]} \approx \frac{k_8}{k_5 + k_9 \frac{[H]}{[O]}}$$
 for the HCN mixtures. (5.2)

Values of the steady-state concentrations of H- and O-atoms can be computed using the complete mechanism in Table 5.1. Under typical conditions for the HCN mixtures, $[H]/[O]\approx 1.6$.

By conducting HCN and C_2N_2 experiments under similar conditions of temperature and pressure, it is therefore possible to infer the ratio k_8/k_2 by comparing the respective NCO absorption plateaus. In the case of the simplified model,

$$\frac{[\text{NCO}]^{\text{plateau}} / [\text{HCN}]}{[\text{NCO}]^{\text{plateau}} / [\text{C}_2\text{N}_2]} \approx \frac{\frac{\text{k}_8}{2 \text{ k}_2}}{1 + \frac{\text{k}_9}{\text{k}_5} \times \frac{[\text{H}]}{[0]}}$$
(5.3)

This approach makes the measurement of k_8/k_2 nearly independent of the uncertainties associated with the absorption coefficient β that was reported in chapter 4.

In the actual data reduction, the computer program incorporating the mechanism in Table 5.1 was used to compare the theoretical NCO plateau levels in the HCN and C_2N_2 mixtures. For a given set of rate parameters in the mechanism, a proportionality constant λ was computed to relate the ratio of the theoretical NCO plateau levels in the two mixtures to the corresponding ratio k_8/k_2 ,

$$\lambda = \frac{k_2(T_1)}{k_8(T_2)} \times \frac{(\chi_{\rm NCO}/\chi_{\rm HCN})^{\rm HCN \ mixt.}}{(\chi_{\rm NCO}/\chi_{\rm C_2N_2})^{\rm C_2N_2 \ mixt.}}$$
(5.4)

 T_1 and T_2 are the temperature of the C_2N_2 and HCN experiments, respectively $(T_1 \simeq T_2)$. In the case of the simplified model, note the approximate value of λ ,

$$\lambda = \frac{0.5}{1 + \frac{k_9}{k_5} \frac{[H]}{[0]}}$$
 (5.5)

Using the theoretical value of λ (eq. 5.4), an experimental ratio (k_8^*/k_2^*) was extracted from the observed transmission plateaus (1/10) using

$$\frac{k_{8}^{\star}}{k_{2}^{\star}}(\overline{T}) = \frac{\ln(i/i_{0})^{\text{HCN mixt.}}}{\frac{\beta(T_{1})}{f_{00}} p_{1} \chi_{\text{HCN}}} \times \frac{\frac{\beta(T_{2})}{f_{00}} p_{2} \chi_{C_{2}N_{2}}}{\ln(i/i_{0})^{C_{2}N_{2} \text{ mixt.}}} \times \frac{1}{\lambda}, \quad (5.6)$$

0/1-)

where T is the average temperature $T=(T_1+T_2)/2$. The resulting ratio k_8^*/k_2^* was then incorporated in the computer mechanism to calculate a new value of λ (eq. 5.4). Thus, a few iterative steps were required between eqs. (5.4) and (5.6) to extract the final value of k_8/k_2 .

A computer analysis was performed to estimate the uncertainties in k_8/k_2 resulting from uncertain reaction rates in the mechanism. To this end, individual rates were adjusted by reasonable factors (Table 5.2), and new estimates of λ were computed that led to new values of k_8/k_2 . According to this analysis, the uncertain knowledge of other rates in the mechanism (including k_5 and k_9) introduces an uncertainty of [×0.6, ×2.0] in the ratio k_8/k_2 . (Note that the rate of reaction (9) was determined at 1490°K, see ¶5.2.) A reduction of the overall uncertainty in k_8/k_2 could be achieved with further optimization of reactant mixtures. In particular, an increased dilution of the HCN mixtures should result in an easier interpretation of the experiments. Further, oxygen addition should be avoided to prevent excessive OH formation from reaction (23),

$$O_2 + H + OH + O_1$$
 (23)

and to limit the substantial uncertainties associated with the rate of reaction (39),

$$NCO + OH + HNCO + O.$$
(39)

Reactions	Uncertainty factors	effect or	1 k ₈ /k ₂
1 N ₂ 0+M→N ₂ +O+M	1.3	-3%	
	0.6	2.0	+5%
3 CN+O+CO+N	1.86	-2%	1 2 78
	0.54		+0%
4 CN+0 ₂ +NCO+0	1.58	-7%	.074
	0.71		+32
5 NCO+O+CO+NO	1.58	-20%	
	0.54		+30%
6 NCO+M+N+CO+M	5.0	-2%	
	0.4		+3%
9 NCO+H+CO+NH	2.6		+32%
	0.54	-17%	
10 NCO+H ₂ +HNCO+O	2.5		+32
	0.2	-3%	
11 C_2N_2 +H+CN+HCN	3.2		+10%
	0.32	-20%	
12 $CN+H_2 \rightarrow HCN+H$	2.0	-4%	
	0.5		+1%
20 N ₂ 0+H+N ₂ +OH	1.6	-5%	
	0.6		+3%
23 0 ₂ +н+он+о	2.0	-7%	
	0.5		+3%
27 HCN+0→NH+CO	3.0		+22%
	0.3	-10%	
29 нсn+он+н ₂ 0+сn	10.	-16%	
	0.1		+10%
37 NH+H+N+H ₂	10.	-20%	
	0.1		+7%
39 №О+ОН→НМСО+О	10.		+40%
	0.1	-13%	
	_		

Table 5.2 - Uncertainty Analysis for k_8/k_2

Reactions	Uncertainty factors	effect or	n k ₈ /k ₂
48 NH+OH+N+H ₂ 0	10.	-14%	
-	0.1		+2%
49 NH+O→NO+H	10.		+23%
	0.1	-7%	
Total uncertain	ty= $[\Sigma(uncert.)^2]^{1/2}$	-49%	+70%

Table 5.2 (continued)

At temperatures near 1440°K, $k_8/k_2=2.4(-0.9,+2.4)$. Using the recommended value for $k_2=10^{12.66}\exp[-4440/T]$ cm³/mole/sec [×0.54, ×1.86], $k_8=10^{11.70(-0.35,+0.40)}$ cm³/mole/sec at 1440°K. Figure 5.1 shows the fit to a typical experimental trace using the recommended value of k_8 and other rates in Table 5.1. This determination of k_8 is plotted in Fig. 5.2 along with the earlier results of Roth, <u>et al.</u> [14], Davies and Thrush [15], and the recent data of Perry and Melius [16].

5.1.3 Discussion

Melius and Binkley [65] recently showed that the reaction of HCN with 0 atoms follows two major paths,

HCN + 0 + $\binom{H}{NCO}^{\dagger}$ + $\binom{NCO + H}{(HNCO)^{\dagger}}$ (8) (HNCO)^{\ddagger} + NH + CO. (27)

A computed activation energy of E_0^{\mp} =11 kcal/mole at 0°K was also reported. Using transition state theory (TST), the temperature dependence of k_8 can be estimated as follows:

$$k_8 = \frac{kT}{h} \frac{Q_{\pm}}{Q_0 Q_{HCN}} \exp[-E_0^{\pm}/RT]$$
, (5.7)

where k, h and R are respectively the Boltzman, Planck and universal gas constants. Q_{\pm} is the activated complex partition function (excluding the vibrational mode along the reaction coordinate); Q_0 and Q_{HCN} are the partition functions of O-atoms and HCN, respectively. E_0^{\pm} is the energy barrier at 0°K. Using $Q_0^{tr} \propto Q_{HCN}^{tr} \propto Q_{\pm}^{tr} \propto T^{3/2}$, $Q_{HCN}^{rot} \propto T^{2/2}$ and $Q_{\pm}^{rot} \propto T^{3/2}$ for the translational and rotational partition functions,

$$k_{8} = \frac{Q_{\pm}^{\text{vib}}}{Q_{\text{HCN}}^{\text{vib}}} \exp[-E_{0}^{\pm}/RT] . \qquad (5.8)$$

	Frequencies (cm^{-1})		
Vibrational modes	(^H _F C _O)	(^H _N ^C _O) [‡]	
۰ <u>۱</u>	2981	2090	
v ₂	1837	-	
ν3	1343	940	
V4	1065	750	
٧5	663	460	
۷6	1175	820	

<u>Table 5.3 - Estimated Normal Frequencies of</u> $\begin{pmatrix} H \\ NC_0 \end{pmatrix}^{\ddagger}$

A reasonable estimate of Q_{\pm}^{vib} can be obtained by modeling the activated complex $\binom{H}{N^{C}_{O}}^{\pm}$ using the normal frequencies of the $\binom{F}{F^{C}_{O}}$ molecule [66,67]. Table 5.3 summarizes the estimates of the normal frequencies v_{1}^{\pm} of the activated complex [67]. Note that v_{2} is the normal mode along the reaction coordinate [66]. $\binom{H}{N^{C}_{O}}^{\pm}$ is assumed a tight complex with $v_{1}^{\pm} \approx 0.7 v_{1}$. Using the expression of Varghese for Q_{HCN}^{vib} [38], the temperature dependence of k_{8} is calculated,

$$Q_{\pm}^{vib}/Q_{HCN}^{vib} \propto T and k_8 \propto T exp[-5540/T].$$

Fig. 5.1 Best computer fit to a typical NCO profile in a $HCN/O_2/N_2O/argon$ experiment. The conditions are $T_2=1425$ °K, $p_2=0.60$ atm, $HCN:O_2:N_2O:Ar=7:1:8:984$ and $\rho_{21}=3.32$. The plateau absorption of 4.2% corresponds to $\chi_{NCO}=20$ ppmv. The solid line is a best computer fit using the rates shown in Table 5.1.

Fig. 5.2 Arrhenius plot for kg. The abscissa shows reciprocal temperatures $10^4/T$ (K⁻¹).

ł

The effective activation energy, $E=E_0^{\ddagger}+RT$, is therefore about 15.2 kcal/mole at 2100°K. This theoretical estimate agrees well with the reported activation energy of Roth, <u>et al</u>. (14.8 kcal/mole) [14].

Using transition state theory, and the results of Melius and Binkley [65], Perry and Melius [16] calculated the temperature dependence of k_o

$$k_8 \propto T^{1.47} \exp[-3775/T].$$

The corresponding temperature exponent m=1.47 is larger than the present estimate m=1, indicating smaller vibrational frequencies and a looser $\binom{H}{NC_0}^{+}$ complex. More importantly, Perry and Melius have assumed an activation energy $E_0^{+}=7.5$ kcal/mole to insure agreement with their experimental work in the range 540<T<900°K, a substantially lower value than the calculated $E_0^{+}=11$ kcal/mole. Nevertheless, the temperature dependence suggested by Perry and Melius is in excellent agreement with the three independent studies of Roth, <u>et al</u>. [14], Perry and Melius [16], and this study. For the purpose of providing a single expression for use over the temperature range 540<T<2500°K, the temperature dependence sugares fit expression was computed using the two end points of Roth, <u>et al</u>., the two end points of Perry and Melius, and one point from this study. On the basis of this analysis, the expression k₈=10^{8.24} T^{1.47} exp[-3775/T] cm³/mole/sec (±30%) is recommended in the range 540<T<2500°K.

It should be noted that this expression does not extrapolate well into the temperature range studied by Davies and Thrush [15]. The present recommended expression is lower than their value by about 50%. However, the value reported by Davies and Thrush should be interpreted as a total reaction rate (k_8+k_{27}) (despite their assumption that NCO and H are the most likely products of this reaction), since they did not treat reaction (8) as a specific path for the (HCN+O) reaction. Thus, the results of Davies and Thrush are in excellent agreement with the total rate (k_8+k_{27}) of Perry and Melius, who found $k_{27}/k_8=0.5$.
5.2 NCO reduction in $N_2O/O_2/H_2/C_2N_2/argon mixtures$

A mixture containing C_2N_2 , O_2 , H_2 and N_2O diluted in argon was shock heated at 1490 °K to measure the rate constant of

and the ratio k_{11}/k_{12}

$$C_2 N_2 + H + CN + HCN, \qquad (11)$$

$$CN + H_2 \rightarrow H + HCN.$$
 (11)

In addition, this mixture led to an estimate for the rate constant of

$$NCO + H_2 \rightarrow HNCO + H.$$
(10)

5.2.1 Experimental Considerations

The mixture of H₂, O₂, N₂O, C₂N₂ and argon was shock heated with $\chi_{H_2} \simeq 0.58\chi$, $\chi_{O_2} \simeq 0.09\%$, $\chi_{N_2O} \simeq 0.41\%$, $\chi_{C_2N_2} \simeq 0.40\%$, T₂ $\simeq 1490$ °K, p₂ $\simeq 0.63$ atm, and $\rho_{21}\simeq 3.34$. The shock speed was 1.18 mm/µsec, with attenuation of 1.5%/m. The temperature was set by considerations of growing interferences due to NCO removal by reaction (6) at higher temperatures

$$MCO + M + N + CO + M, \tag{6}$$

and increasing uncertainty in the rate of reaction (1) at lower tempera-

$$N_{2}O + M + N_{2} + O + M.$$
 (1)

Vibrational equilibrium of NCO was assumed in this experiment.

5.2.2 Reaction Mechanism, Results and Discussion

The mechanism shown in Table 5.1 was used in the data reduction, but a simplified model based on the following reactions is helpful in understanding the influence of k_9 and k_{11}/k_{12} on the measured NCO profile. As

before, N_2O decomposes first to provide O-atoms. The influx of O-atoms is sufficient to trigger reactions in the O/H system that lead to partial equilibrium concentrations of H, O and OH. Because of the relative proportions of O₂ and H₂ in the initial mixture, H is the dominant species in the O/H system [68] and reaction (11) becomes the major sink of C_2N_2

$$C_{2}N_{2} + H + CN + HCN. \tag{11}$$

....

The CN radicals formed by reaction (11) can in turn react with H_2 via reaction (12)

$$CN + H_2 \rightarrow HCN + H_1$$
, (12)

or react with 0_2 to form NCO via reaction (4)

$$CN + O_2 \rightarrow NCO + O_{\bullet}$$
(4)

Finally, NCO is removed by H-atoms via reaction (9)

$$NCO + H \rightarrow NH + CO$$
. (9)

For the purpose of this simplified mechanism, it is assumed that CN has reached steady-state between reactions (11) and (12), and hence

$$\frac{[CN]^{\text{steady-state}}}{[C_2N_2]} \xrightarrow{\simeq} \frac{k_{11}}{k_{12}} \times \frac{[H]^{\text{part.equil.}}}{[H_2]} \cdot (5.9)$$

Further, the rate of change of NCO concentration is given by

$$\frac{d[NCO]}{dt} \approx k_4[CN][O_2] - k_9[NCO][H] .$$
 (5.10)

If C_2N_2 , O_2 and H_2 are nearly constant throughout the period of interest, the NCO profile peaks at a value (d[NCO]/dt=0) where, after substituting the above relation for [CN]^{steady-state},

$$\frac{[\text{NCO}]^{\text{peak}}}{[C_2N_2]} = \frac{k_4}{k_9} \times \frac{k_{11}}{k_{12}} \times \frac{[O_2]}{[H_2]} .$$
(5.11)

For this simplified model, the relative NCO profile (using the peak as a reference) depends primarily on the rate of reaction (9), since (after substituting the relation for [CN]^{steady-state} in eq. 5.10)

$$\frac{d[NCO]/[NCO]^{peak}}{dt} \approx k_9[H][1 - [NCO]/[NCO]^{peak}] . \qquad (5.12)$$

The NCO peak concentration thus depends primarily on

$$\frac{k_4}{k_9} \times \frac{k_{11}}{k_{12}}$$
,

and the relative time behavior depends on kg. A record of NCO is therefore sufficient to infer kg; using the present recommandation for k4 and the measured NCO peak concentration, the ratio k_{11}/k_{12} can also be inferred.

Table 5.4 - NCO Profile Sensitivity

	_	Characteristic Features					
Rates		Relative Slope	Peak Concentration	Relative Decay			
kg + (x2)		†	+ (×0.64)	↔			
$(k_{11}/k_{12}) + (\times 2)$		†	+ (×1.42)	+			
k ₁₀ + (×2)		+	+ (×0.82)	↔			
Legend	†	increasi	.ng value				
	ŧ	decreasi	ng value				
	↔	no varia	tion.				

Despite the apparent simplicity of this model, it was necessary to use a computer fitting technique to further explain the influence of key rate parameters on the NCO profile. In particular, despite the small value of k_{10} , the experimental time histories cannot be adequately fitted without accounting for reaction (10)

$$NCO + H_2 \rightarrow HNCO + H, \qquad (10)$$

because of the large quantities of H_2 present in the mixture. It was assumed that the products of reaction (10) are HNCO+H (Δ H=-10 kcal/mole at 1500°K), rather than the thermodynamically favored NH₂+CO (Δ H=-27 kcal/mole at 1500°K), because the path to NH₂+CO requires a complex rearrangement of the molecular bonds. Using the computer, three features of the NCO profile were identified which could be simultaneously fitted to yield the three rate parameters of interest, namely k₉, k₁₁/k₁₂ and k₁₀. These three features are the absolute peak NCO concentration, the relative initial slope and the relative decay of the NCO profile (using the peak as a reference). Figure 5.3 shows a best computer fit to the experimental trace. The computed effects of variations in k₉, k₁₁/k₁₂ and k₁₀ on the three features are illustrated in Table 5.4. For example, this table shows that an increase (+) in k₁₁/k₁₂ would result in increases (+) in relative initial slope and absolute peak concentration, and to a faster relative decay of the NCO profile.

Figure 5.4 illustrates the effect of k_{11}/k_{12} on the relative NCO profile. Note from Table 5.4 that k_9 and k_{10} both have similar effects on the absolute peak concentration, but opposite effects on the relative initial slope; further, k_9 and k_{10} do not substantially influence the relative decay. It therefore appears possible to determine k_9 , k_{11}/k_{12} and k_{10} by fitting the NCO trace alone. A unique value for k_{11}/k_{12} can fit the relative decay and a unique set of values for k_9 and k_{10} can simultaneously fit the relative initial slope and the absolute peak concentration. Figure 5.5 illustrates the effect of k_9 on the relative NCO profile. Additional considerations on the data reduction procedure can be found in Appendix 6.

Fig. 5.3

Best computer fit to an NCO profile in a $C_2N_2/O_2/H_2/N_2O/argon$ experiment. The conditions are $T_2=1490$ °K, $p_2=0.63$ atm, N_2O : $O_2:H_2:C_2N_2:Ar=4:1:6:4:985$ and $\rho_{21}=3.34$. The peak absorption of 3.3% corresponds to $\chi_{NCO}\approx17$ ppmv with $\beta\approx103$ cm⁻¹ atm⁻¹. The solid line is a best computer fit to the data using $k_9=10^{13.73}$ cm³/mole/sec, $k_{11}/k_{12}=0.81$, $k_{10}=10^{12.1}$ cm³/mole/sec and other rates in Table 5.1.

Fig. 5.4 Sensitivity of the relative NCO time-history to excursions in the ratio k_{11}/k_{12} . The conditions are similar to Fig. 5.3. The dotted line (***) corresponds to $k_{11}/k_{12} \times 2.0$ and the dashed line (--) to $k_{11}/k_{12} \times 0.5$.

<u>Fig. 5.5</u> Sensitivity of the relative NCO time-history to excursions in kg. The conditions are similar to Fig. 5.3. The dotted line (***) corresponds to $k_9 \times 0.5$ and the dashed line (--) to kg $\times 2.0$.

Reactions	Uncert. factors		effect	on	
	_	kg	k ₁₍) k	11/k ₁₂
1 NoO+M+No+O+M	1.3	-11%		-26	2
1 11/2010 11/2	0.6		+16%		+25%
2 CaNa+O+CN+NCO	1.86		+10%		
2 02.12	0.54	-7 %			
3 CN+O+CO+N	1.86	-3%			
	0.54		+2%		
4 CN+02+NC0+0	1.58		+2%	-5	1 %
2	0.71	-2%			+39%
5 NCO+O+CO+NO	1.55	-17%			
	0.54		+13%		
6 NCO+M→N+CO+M	5.0	-2%			
8 HCN+0→NCO+H	2.5		+9%		
	0.44	-5%			
11 C ₂ N ₂ +H+HCN+C	N 0.48 ^a		+15%		+39%
$12 \text{ CN+H}_2 \rightarrow \text{HCN+H}$	6.0 ^b	-36%		-4	5%
- 20 N ₂ 0+H+N ₂ +OH	1.6	-5%			
	0.6		+4%		
23 0 ₂ +н+0+0н	2.0	-9%		-1	18%
-	0.5		+10%		+18%
24 H ₂ +0→H+0Н	2.0	-13%		-:	27%
-	0.5		+14%		+28%

Table 5.5 - Uncertainty Analysis for k_9 , k_{10} and k_{11}/k_{12}

Reactions	Uncert. factors	effect on					
		kg		k ₁₀		k ₁₁ /k ₁₂	
26 0H+H ₂ →H+H ₂ 0	2.0	-13%				-11%	
	0.5		+14%				+11%
30 С№+ОН→NCO+Н	10.		+34%				
	0.1	-26%				-18%	
Absorption coeff.	2.1		+73%		+91%		· · · · · · · · · · · · · · · · · · ·
·β	0.55	-29%		-133%			
Total unc.=[Σ (unc.) ² ¹ /2	-61%	+89%	-133%	+91%	-82%	+70%
^a Lower bound from ^b Upper bound in H	the expe Baulch, <u>et</u>	rimental al. [13	value	of Smith	, <u>et al</u>	. [98].	

Table 5.5 (continued)

On the basis of this analysis, $k_9 = 10^{13.73(+0.42,-0.27)}$ cm³/mole/ sec, $k_{11}/k_{12} = 0.81$ (+0.89,-0.47) and $k_{10} = 10^{12.1(+0.4,-0.7)}$ cm³/mole/ sec at 1490°K. Table 5.5 summarizes the uncertainty analysis. Uncertainties in k_9 result from the uncertain knowledge of other reactions in the mechanism [×1.7, ×0.57] and the uncertainty in the measured NCO peak concentration resulting in uncertainty factors in k_9 of [×2.1, ×0.75]. Uncertainties in k_{11}/k_{12} are attributed primarily to the uncertain knowledge of other rates [×2.1, ×0.42], because no absolute knowledge of the NCO concentration was required to fit the relative decay slope to k_{11}/k_{12} . Uncertainties in k_{10} are fairly large [×2.5, ×0.2] and can be attributed mostly to the uncertainty in the absolute peak NCO concentration. A significant reduction in the overall uncertainty on k_9 and k_{10} could be achieved if a more precise value of $\beta(1490°K)$ were available.

Fig. 5.6 Arrhenius plot for k_{11} . The abscissa shows reciprocal temperatures $10^4/T$ (K⁻¹). The high-temperature data point (solid triangle) was calculated from the measurement of Szekely, <u>et</u> <u>al.</u> [71,72].

There are no previous data of k_9 and k_{10} available for comparison. The Theoretical Chemistry Group at Argonne National Laboratory has recently performed calculations of the temperature dependence of k₁₂, which will be published in the near future. In addition, Miller, et al. [6] proposed the following expression for k_{12} based on the measurements of Szekely, Hanson and Bowman [69] in the range 2700<T<3500°K and Albers, et al. [70] at lower temperatures: $k_{12} = 10^{11.74} T^{0.7} exp[-2460/T]$ $cm^3/mole/sec.$ Judging from the error bars attached to the high- and lowtemperature data, the above expression should be valid within a factor of two at 1490°K. Using the present measurement of k_{11}/k_{12} , this expression leads to $k_{11} = 10^{13.15(\pm 0.5)}$ cm³/mole/sec at 1490°K. Another estimate of k₁₁ can be obtained from the reverse rate k₋₁₁ measured by Szekely, Hanson and Bowman [71] at high temperatures, with the result $k_{11} = 10^{14.1(\pm 0.5)}$ cm³/mole/sec at the average temperature of 2900°K [72]. Figure 5.6 is an Arrhenius plot of k_{11} . Using the two values of k_{11} at 2900°K and 1490°K, a straight Arrhenius fit would lead to k_{11} = $10^{15.1}$ exp[-6700/T] cm³/mole/sec. However, the corresponding activation energy and pre-exponential factor of the fit appear too high for this mildly endothermic reaction ($\Delta H_R < 5.3$ kcal/mole at 2000°K [24,63]). A more realistic activation energy of 8 kcal/mole leads to the expression $k_{11} \simeq 10^{14.5} exp[-4030/T] cm^3/mole/sec.$ This straight Arrhenius fit is somewhat arbitrary, since reaction (11) may exhibit a non-Arrhenius behavior. However, the size of the experimental error bars and the uncertainties arising from an unknown $(HC_2N_2)^{\ddagger}$ complex makes a more sophisticated TST calculation superfluous. Further experimental work is clearly needed for this reaction. Until better values are found, the expression $k_{11}=10^{14.5}exp[-4030/T]$ cm³/mole/sec is recommended within factors of [×3.2, ×0.32] over the range 1490<T<3070°K.

5.3 Conclusions

A comparison of the plateau levels of NCO resulting from the oxidation of hydrogen cyanide and cyanogen provided a high temperature measurement of the rate of

$$HCN + 0 \rightarrow NCO + H.$$
(8)

By adding molecular hydrogen to the $C_2N_2/N_2O/O_2/argon$ mixtures studied in chapters 2 and 3, other experiments were conducted at 1490°K to infer the rates of

$$NCO + H + CO + NH$$
, (9)

$$NCO + H_2 + HNCO + H, \tag{10}$$

and the ratio k_{11}/k_{12}

$$C_{2N_{2}} + H \rightarrow CN + HCN, \qquad (11)$$

$$CN + H_2 \rightarrow H + HCN.$$
(12)

- -

Reactions (8), (9), (10) and (12) are important in the fuel-nitrogen mechanism (see Appendix 8).

Chapter 6

Conclusions

In an effort to elucidate nitric oxide formation in the combustion of nitrogen-containing fuels, the present study has focused on the measurement of elementary reaction rate constants in the conversion of hydrogen cyanide to amine species. To this end, spectroscopic absorption diagnostics have been developed to measure CN and NCO concentrations in the shock tube. Using these diagnostics, the following reactions have been studied:

$$C_{2}N_{2} + 0 + CN + NCO_{2}$$

- $CN + 0 \rightarrow CO(v) + N,$ (2)
- $CN + O_2 \rightarrow NCO + O_{,}$ (3)
- $NCO + O + CO + NO, \qquad (4)$
- NCO + M + N + CO + M,(5)
- $HCN + 0 \rightarrow NCO + H,$ (6)
- $NCO + H \rightarrow NH + CO$ (8)
- $NCO + H_2 \rightarrow HNCO + H_1$ (9)
- $C_2 N_2 + H + CN + HCN.$ (10)

(11)

Table 6.1 is a summary of the kinetics results and recommended rate

A computer model incorporating the experimental rate measurements and the best kinetic data available was used to discuss the overall fuel-nitrogen mechanism and formulate recommendations for future research (see Appendix 8). According to the model, a few reactions with little or no available rate data may be important in the HCN to NH_i conversion,

 $HCN + OH \rightarrow CN + H_{2}O$, (20)

CN + OH + HNCO + O (29)

- NCO + OH + HNCO + O, (30)
 - HCN + OH + HOCN + H. (39)
 - (56)

and possibly

107

ł

Reactions	Experiments		Recommendation		
	Те≖р.	Result 4	Rate Expression	Uncert. b	T-range
			1012.66 and -4440/T	±60%	300+2100
C-N++O+CN+NCO	2000	11.70(+0.25,-0.19)	10	±60%	300+2100
CN+0+C0(v=1)+H	2000	13.26(±0.26)	10 exp(110/-)	±452	300+2400
CN+0 ++NC0+0	2400	12.68(+0.27,-0.19)	13.75	±60X	300+2000
NC0+0+C0+80	1450	13.75(+0.20,-0.26)	10 ⁻²⁰¹⁷	+90 I	21 50+2400
5 NC010+C010+	2150	3.36(±0.27) ^c	1010-01-0-3exp[-24000/1]		
S ACCTATION CONT	2240	3,54(+0,34,-0,37) ^c			
	2400	2.69(±0.28) c	6 9/ 1 6 7 - 6996/91	+107	500+2500
a nonto ancotti	1440	0.38(+0.30,-0.20) ^d 13.73(+0.42,-0.27) 12.1(+0.4,-0.7)	10 ⁸⁺²⁴ T ¹⁺⁴ axp[-]//5/T]	±30×	=1.500
	1490		$10^{13.02} exp[-1000/T]$ $10^{13.23} exp[-4000/T]$	1007	-1500
9 NCO+H+CO+HH	1490			1104	1490-300
1 C2N2+H+CN+HCN	1490	-0.09(+0.32,-0.38) e	10 ^{14.5} exp[-4030/T]	±1104	14304300

Table 6.1 - Summary of Results and Recommended Rate Constants

^c log₁₀(k₅/k₆); experiments were carried out at p₂=0.65 atm.

d log10(kg/k2).

e log10(k11/k12).

The NCO laser absorption diagnostic should be useful to investigate these reactions. Other unknown reactions control nitric oxide production and thus deserve further experimental work,

							(37	1)
NH	+	Н	÷	Ν	+	H ₂ ,		

NH + OH + HNO + H,(47)

$$NH + OH \rightarrow N + H_2^{O}.$$
 (48)

In Appendix 8, it was suggested that the formation of HCN in the reaction zone should also contribute to the overall production of nitric oxide. Thus, reactions to form the CEN triple bond might receive additional attention in an attempt to understand the production of HCN from fuel-nitrogen in the reaction zone.

Further experimental challenges will be encountered on the way to a complete understanding of the fuel-nitrogen mechanism. The shock tube should again prove a valuable tool for studying elementary reactions involved in this important environmental question.

108

Appendix 1

Experimental Conditions in the Shock Tube

The experimental post-shock pressure and temperature are computed from measurements of the shock velocities using time-interval counters. Control of these conditions can be achieved with reasonable reproducibility by choosing the proper diaphragm thickness and adjusting the initial test gas pressure p_1 . In section Al.1 of this appendix, a semiempirical correlation to determine the value of p_1 that corresponds to the desired post-shock conditions is presented. In section Al.2, an estimate of the uncertainties in T_2 and p_2 that result from the observed attenuation of the shock velocity is provided.

Al.l Semi-Empirical Correlation for the Post-Shock Conditions

A sketch of a typical incident shock experiment is given in Fig. Al.l. For a one-dimensional shock, the instantaneous ratios of pressure and temperature across the shock wave can be expressed as a function of Mach number using normal shock relations [76]

$$\frac{P_2}{P_1} = P_{21} = \frac{2\gamma_1}{\gamma_1 + 1} \times M^2 - \frac{\gamma_1 - 1}{\gamma_1 + 1} , \qquad (A1.1)$$

$$\frac{T_2}{T_1} = T_{21} = \frac{\left(1 + \frac{\gamma_1^{-1}}{2} M^2\right) \left(\frac{2\gamma_1}{\gamma_1^{-1}} M^2 - 1\right)}{\frac{(\gamma_1^{+1})^2}{2(\gamma_1^{-1})} M^2}.$$
 (A1.2)

For an ideal shock wave without attenuation or boundary layer effects, the pressure ratio p_{41} across the diaphragm is related to p_{21} using [77]

$$\frac{P_{41}}{P_{21}} = \left(1 - \frac{a_1}{a_4} (\gamma_4^{-1}) \frac{P_{21} - 1}{\sqrt{2\gamma_1} \sqrt{((\gamma_1^{+1}) P_{21} + (\gamma_1^{-1}))}} - \frac{2\gamma_4}{\gamma_4^{-1}}\right)$$
(A1.3)

109

I

Fig. Al.2 Operating characteristic curve for the shock tube. Plot of the temperature ratio across the incident shock T_{21} vs. pressure ratio across the diaphragm P_{41} . Natural logs have been used on both axes. The Mach numbers M and average slopes $\Delta lnp_{41}/\Delta lnT_{21}$ are indicated on the theoretical curve. Note that the experimental points (•) fall on a curve nearly parallel to the theoretical prediction.

Fig. Al.3 Operating characteristic curve for the shock tube. Plot of the pressure ratio across the incident shock p_{21} vs. pressure ratio across the diaphragm p_{41} . Note the Mach numbers M and the average slopes $\Delta lnp_{41}/\Delta lnp_{21}$.

The speed of sound is $a_i = (\gamma_i R_i T_i)^{1/2}$, where $R_i = R/MW_i$ and $T_i = T_4 = T_4$ Tambient; R is the universal gas constant, MW_i the mixture averaged molecular weight $(MW_i = \sum_j MW_j)$ and γ_i the ratio of specific heats.

For simplicity, it is assumed that helium is the driver gas and argon is the test gas $(\gamma_4=\gamma_1=5/3, MW_1=40 \text{ g/mole} \text{ and } MW_2=4 \text{ g/mole})$. The resulting theoretical curves for $\ln T_{21}=f(\ln p_{41})$ and $\ln p_{21}=f(\ln p_{41})$ are shown in Fig. Al.2 and Al.3. Each point corresponds to increments of 0.25 in the shock Mach number. Note that individual values for the average slopes $\Delta \ln p_{41}/\Delta \ln T_{21}$ and $\Delta \ln p_{41}/\Delta \ln p_{21}$ are also indicated.

Diaphragm Thickness (1/1000")	Typical bursting pressure p ₄ (psia)
10	35+40
20	65→75
30	105+120
40	120+145
60	230→250
80	~260
40+10	160→180
60+10	=270
20+20	≈140
40+30	≈230

Table Al.1 - Typical Diaphragm Bursting Pressures

To check the validity of this simple correlation, typical experimental conditions are also shown in Figs. Al.2 and Al.3. Note that p_4 was measured on the driver gauge at the burst of the diaphragm; p_1 was calculated from the relative volumes of the mixing tank and the shock

tube $[p_1 (Torr) \approx 0.309 \ p_{mix.tank} ("Hg)]; T_1$ was measured on a thermometer attached to the test section; p_2 and T_2 were computed using a comprehensive software package that accounts for the initial test gas composition. Despite the great variety of test gas mixtures, the experimental points in Figs. Al.2 and Al.3 consistently fall on curves nearly parallel to the simple correlation of eqs. (Al.1) to (Al.3). The theoretical slopes can therefore be used to adjust p_{41} for better experimental conditions. For example, if a 2% increase in T_{21} ($\Delta lnT_{21} \approx 0.02$) is required to adjust the temperature of an experiment with M=4, we need $\Delta lnp_{41} \approx 2.62 \times 0.02$ or a 5% increase in p_{41} . Note that the bursting pressures p_4 depend on the precise location of the knife-edge and on the diaphragm thickness. For the current knife-edge configuration, typical bursting pressures are shown in Table Al.1. Together with Figs Al.2 and Al.3, these pressures can be used to adjust p_1 .

Al.2 Uncertainties Associated with the Shock Attenuation

Shock attenuation has been observed in nearly all experiments. The weaker the shock, the stronger the attenuation. The average shock speed recorded in consecutive cross-sections bracketed by two thin-film gauges was found to decrease linearly with centerline position of the section, as shown in Fig. Al.4. Theoretical estimates of the uncertainties associated with boundary layer and attenuation effects have been reported by Mirels [20] and De Boer and Miller [21]. However, the following description can provide simple estimates of the effect of attenuation on postshock temperature and pressure. In this description, the fate of a small collection of molecules is examined from the time it is hit by the shock to the time it traverses the optical diagnostic port (see Fig. Al.5).

The molecules in question are heated by the shock at time t_0 . At time $t_1 = t_0 + x/v_s$, the experiment begins as the shock traverses the measurement station. At time $t_2 = t_0 + x/u_2$, the molecules are probed at the diagnostic port. (v_s and u_2 are the average velocities of the shock and the post-shock gases, respectively.) With t_1 as the reference time, the collection of molecules is probed at $t=t_2-t_1=x(1/u_2-1/v_s)$ after the shock traverses the optical port.

Fig. Al.5 A schematic of the effect of shock attenuation on a collection of molecules.

Nominal experimental conditions (T_2 and p_2) are computed using the measured shock velocity at t_1 . However, the collection of molecules were heated at t_0 by a stronger shock that resulted in greater values of T_2 and p_2 . Using the measured shock velocities at different locations, the resulting systematic error in p_2 and T_2 can be estimated using the observed shock attenuation. For a linear attenuation, the absolute velocity change Δv_s over the distance x can be written $\Delta v_s = ax$, where a is the slope of the graph shown in Fig. Al.4. Therefore, the shock velocity at t_0 is greater than the nominal velocity by the amount $\Delta v_s / v_s$

$$\frac{\Delta \mathbf{v}_{s}}{\mathbf{v}_{s}} = \frac{ax}{\mathbf{v}_{s}} = \frac{at}{\frac{\mathbf{v}_{s}}{\mathbf{v}_{s}}} = \frac{\Delta M}{M}, \qquad (A1.4)$$

where M is the shock Mach number. Using mass conservation,

$$\rho_{21} = v_s / (v_s = u_2),$$
 (A1.5)

where ρ_{21} is the ratio of densities across the shock. Therefore, a collection of molecules probed at t (post-shock laboratory time) has experienced a stronger shock wave with

$$\frac{\Delta M}{M} = a t (\rho_{21} - 1) .$$
 (A1.6)

By differentiating eqs. (Al.1) and (Al.2), an estimate of the relative increase in temperature and pressure corresponding to $\Delta M/M$ is obtained

$$\frac{d\ln T_{21}}{d\ln M} = \frac{(\gamma_1 - 1) M^2}{1 + \frac{\gamma_1 - 1}{2} M^2} + \frac{\frac{4 \gamma_1}{\gamma_1 - 1} M^2}{\frac{2\gamma_1}{\gamma_1 - 1} M^2 - 2}, \qquad (A1.7)$$

$$\frac{d \ln p_{21}}{d \ln M} = \frac{\frac{4\gamma_1}{\gamma_1 + 1} M^2}{\frac{2\gamma_1}{\gamma_1 + 1} M^2 - \frac{\gamma_1 - 1}{\gamma_1 + 1}} .$$
(A1.8)

For most experiments, M² is large and eqs. (Al.7) and (Al.8) can be simplified to read

$$(\Delta T_{21}/T_{21})/(\Delta M/M) = dlnT_{21}/dlnM \approx 2,$$

and

$$(\Delta p_{21}/p_{21})/(\Delta M/M) \simeq dlnp_{21}/dlnM \simeq 2.$$

Finally, the relative temperature and pressure attenuations are approximately

$$\frac{\Delta T_2}{T_2} \approx \frac{\Delta P_2}{P_2} \approx 2 \text{ at } (\rho_{21}^{-1}) . \tag{A1.9}$$

The largest uncertainties in T_2 and p_2 are therefore associated with long lasting experiments and large values of the attenuation, which are both typical of low temperature experiments. For example, experiments to determine k₉ were conducted at 1490°K, with the attenuation rate a=1.8 $10^{-5} (\mu sec)^{-1}$, a total experimental time t=250 µsec and ρ_{21} =3.3. In this case, molecules probed at 250 µsec (lab. time) might have experienced temperatures as high as 1520°K ($\Delta T_2/T_2$ =2%). Other experiments to determine k₂ and k₃ were such that T_2 =2000°K, a=1.4 $10^{-5} (\mu sec)^{-1}$, t=100 µsec, ρ_{21} =3.5 and $\Delta T_2/T_2$ =0.7%. In general, the corresponding uncertainties in the rate measurements were small compared to other uncertainties in the experiments (see Appendix 6).

By failing to address the cause of shock attenuation, and by omitting other simultaneous effects such as boundary layer growth, the above analysis can only provide qualitative estimates of the magnitude of temperature and pressure attenuation. For a more complete description of the comprehensive gas dynamics in the shock tube, the reader is directed to the studies of Mirels [20] and De Boer and Miller [21].

Appendix 2

The CN Broadband Absorption Diagnostic

A2.1 CN Quantitative Absorption Spectroscopy at 388 nm

The broadband absorption from the P_1+P_2 band head of the $[B^2\Sigma^+(v=0)+X^2\Sigma^+(v=0)]$ band of CN at 388 nm (air) was used to monitor CN. Under typical experimental conditions, the P_1+P_2 band head is the strongest absorption feature of this electronic system and does not overlap with neighboring branches or other vibrational band [78]. A computer program was written to predict the absorption spectrum of the (v'=0+v''=0) band under specified conditions. The position, strength and shape of each line were computed to generate an absorption coefficient profile $\beta(v)$ as

$$\beta(\nu) = \sum_{\substack{n \in 2 \\ n \in C^2}} \frac{(2J''+1)\exp\left[-\frac{hc}{kT}\left(T_e(n'')+G(\nu'')+F(J'')\right)\right]}{Q_e Q_v Q_r} \times \frac{N}{RT} f_{e1} q_{v'v''} \frac{S_{J'J''}}{(2J''+1)} \phi(\nu-\nu_0) \quad (cm^{-1}atm^{-1}), \qquad (3.1)$$

where $T_e(n^*)$, $G(v^*)$ and $F(J^*)$ are the electronic, vibrational and rotational energies of the lower state (cm^{-1}) ; R is the universal gas constant (atm cc/mole/°K); N is Avogadro's number; f_{el} , $q_{v'v''}$ and $S_{J'J''}$ are the oscillator strength, the Franck-Condon factor and the rotational line strength, respectively; Q_e , Q_v and Q_r are the electronic, vibrational and rotational partition functions; $\phi(v-v_0)$ is the lineshape factor (cm). (The quantity $\pi e^2/m_e c^2 = 8.826 \ 10^{-13}$ cm.) A recent review of CN spectroscopy was compiled by Colket [24]. The spectroscopic constants used in the program are summarized in Table A2.1. Note that the results of the present spectroscopic program have been checked against the earlier model of Colket [24] in a private communication with the author. Excellent agreement has been found for a variety of typical shock tube conditions and monochromator slit functions.

Electronic State	$B^2\Sigma^+$	$A^2\Pi_i$	x²Σ+	Ref.
Т.,	25751.8	9241.66	0	[101]
ω_	2164.13		2068.705	[101]
~e w.X.	20.25		13.144	[101]
е В_	1.9701		1.8996	[101]
-e a_	0.02215		0.01735	[101]
Bo	1.95892		1.89118	[24]
-0 Do	6.599.10 ⁻⁶		6.361.10 ⁻⁶	[24]
Υ	0.015		0.007	[24]
	ν ₀₀ [B+X]=2	5797.85		[101]
	$q_{00}[B+X]=0$.9204		[27]

Table A2.1 - Summary of CN Spectroscopic Constants

All units: cm^{-1} except for q_{00} (no units).

A2.1.1 Line positions

Useful details on ${}^{2}\Sigma + {}^{2}\Sigma$ electronic transitions can be found in Herzberg [25]. ${}^{2}\Sigma$ states belong to Hund's case (b) and the selection rule $\Delta K=\pm 1$ holds, $\Delta K=0$ being forbidden. Each line in the rotational band is split in two components with J=K±1/2, but the separation of the two sublevels is small compared with the rotational line spacing. The term components having J=K+1/2 are distinguished with the subscript 1 and J=K-1/2 with the subscript 2. This subscript is called α for the upper state and β for the lower state. In principle, six rotational branches are possible in any vibrational band,

$$\begin{split} & R_{1}(\alpha = 1 + \beta = 1, \ \Delta J = J' - J'' = +1), \\ & R_{2}(\alpha = 2 + \beta = 2, \ \Delta J = +1), \\ & P_{1}(\alpha = 1 + \beta = 1, \ \Delta J = -1), \\ & P_{2}(\alpha = 2 + \beta = 2, \ \Delta J = -1), \\ & R_{Q_{21}}(\alpha = 2 + \beta = 1, \ \Delta J = 0, \ \Delta K = +1), \end{split}$$

$$^{PQ}_{12}(\alpha = 1 + \beta = 2, \Delta J = 0, \Delta K = -1),$$
 (A2.1)

but only the R and P branches are sufficiently strong. Line positions are given by the general formula

$$v = T_{e}(n') - T_{e}(n') + G(v') - G(v') + F_{\alpha}(J') - F_{\beta}(J'') \quad (cm^{-1}), \quad (A2.2)$$

where $T_e(n')=25751.8 \text{ cm}^{-1}$, $T_e(n'')=0 \text{ cm}^{-1}$ and

$$G(v) \simeq \omega_e(v+1/2) - \omega_e x_e(v+1/2)^2 \text{ (cm}^{-1}).$$
 (A2.3)

To make the individual line positions independent of the uncertainties associated with the vibrational constants ω_e and $\omega_e x_e$, it is helpful to consider each individual band separately. For the (v'=0+v''=0) band [79],

$$v = v_{00} + F_{\alpha}(J') - F_{\beta}(J''),$$
 (A2.4)

where

$$F_{1}(J) = B_{v}(K+1)K - D_{v}(K+1)^{2}K^{2} + 1/2 \gamma K$$
(A2.5)

and

$$F_2(J) = B_v(K+1)K - D_v(K+1)^2 K^2 - 1/2 \gamma(K+1) (cm^{-1}),$$
 (A2.6)

where J=K+1/2 for F_1 and J=K-1/2 for F_2 . K is the quantum number of the total angular momentum apart from spin. Values for v_{00} , B_0 and D_0 are given in Table A2.1. Rotational constants for other bands can be calculated using: $B_v = \beta_e - \alpha_e (v+1/2)$ [25].

A2.1.2 Line strengths

The individual line strengths $f_n'v'J' \leftarrow n''v''J''$ of a diatomic molecule are normalization factors which give the relative strengths of transitions to different final levels from a given initial level,

$$f_{n'v'J' \leftarrow n''v''J'} \stackrel{f}{=} f_{v'v''} \frac{S_{J'J''}}{2J''+1},$$
 (A2.7)

where $f_{y'y''}$ is the band oscillator strength and $S_{J'J''}$ the rotational

line strength. For a diatomic molecule such as CN, the electronic, vibrational and rotational energies can be considered separately, according to the Born-Oppenheimer approximation. Further, if the transition frequencies are nearly constant over the whole band system, an electronic oscillator strength f_{el} can be defined such that

$$f_{\mathbf{v}'\mathbf{v}''} = q_{\mathbf{v}'\mathbf{v}''} + f_{el}, \qquad (A2.8)$$

where $q_{v'v''}$ is the Franck-Condon factor of the $(v' \leftarrow v'')$ band. In this case, the sum of the oscillator strengths originating from a given lower state is equal to f_{el}

$$\sum_{v',J'} f_{n'v'J' \neq n''v''J''} = \sum_{v',J'} f_{el} q_{v'v''} \frac{S_{J'J''}}{2J''+1} =$$
$$= f_{el} \sum_{v'} q_{v'v''} \sum_{J'} \frac{S_{J'J''}}{2J''+1} = f_{el},$$

since Franck-Condon factors and rotational line strengths are normalized according to

$$\sum_{\mathbf{v}'} q_{\mathbf{v}'\mathbf{v}''} = 1 \text{ and } \sum_{\mathbf{J}'} \frac{S_{\mathbf{J}'\mathbf{J}''}}{2\mathbf{J}''+1} = 1 .$$
 (A2.9)

Note that the sum of $S_{J'J''}$ for all possible transitions from a given level equals the degeneracy of that level. The initial level (specific J", K" combination) was consistently defined such that its degeneracy equals the rotational degeneracy (2J"+1). Therefore, for a given J",

$$S(R_1)+S(R_{Q_{21}})+S(P_1)=S(R_2)+S(P_{Q_{12}})+S(P_2)=2J''+1$$
, (A2.10)

and [80],

$$S(R) = \frac{(J''+1)^2 - \frac{1}{4}}{(J''+1)}$$

$$S(Q)' = \frac{2J''+I}{4J''(J''+1)}$$

$$S(P) = \frac{J''^2 - \frac{1}{4}}{J''}$$
 (A2.11)

As expected, the Q-branches are weak and can be neglected even for small values of J".

A2.1.3 Partition functions

The ground state $(X^2\Sigma^+$, spin multiplicity=2) and the first excited state $(A^2\Pi_i$, spin multiplicity=2, Λ -doubling) contribute to the electronic partition function,

$$Q_e = 2 + 4 \exp[-\frac{hc}{kT} \times 9241.7 \text{ cm}^{-1}]$$
 (A2.12)

The vibration partition function can be calculated using

$$Q_v = \sum_{v''} \exp[-\frac{hc}{kT} G(v'')],$$
 (A2.13)

where

$$G(v) = \omega_e(v+1/2) - \omega_e x_e(v+1/2)^2 (cm^{-1}),$$

and the rotation partition function using

$$Q_{r} = \frac{kT}{hc} \times \frac{1}{B_{v}}$$
 (A2.14)

A2.1.4 Line shapes

CN spectral lines are nearly Doppler-broadened for typical shock tube conditions. More generally, Voigt profiles can be used to estimate the spectral line shapes,

$$\phi(v-v_0) = 2 \frac{\sqrt{1n2}}{\sqrt{\pi}} \frac{V(a,x)}{\Delta v_D},$$
where $V(a,x) = \frac{a}{\pi} \int_{-\infty}^{+\infty} \frac{e^{-y^2}dy}{a^2+(x-y)^2},$
(A2.15)

.

with
$$a = \frac{\Delta v_C}{\Delta v_D} / \ln 2$$
 and $x = 2 / \ln 2 \frac{(v - v_0)}{\Delta v_D}$. (A2.16)

 $\Delta v_{\rm D}$ is the Doppler width (FWHM),

$$\Delta v_{\rm D} = 7.1623 \ 10^{-7} \ \bar{v}_0 \ \left(\frac{\rm T}{\rm MW_{\rm CN}}\right)^{\frac{1}{2}} \ (\rm cm^{-1}) \ , \qquad (A2.17)$$

where $\bar{\nu}_0$ =25800 cm⁻¹ and MW_{CN}=26 gmole. $\Delta \nu_C$ is the dephasing collision width,

$$\Delta v_{\rm C} = \frac{1}{\pi c} \left(\frac{Z' + Z''}{2} \right) = \frac{1}{\pi c} N_{\rm Ar} \left(\frac{8\pi k T}{\mu} \right)^{\frac{1}{2}} \sigma^2 = 0.356 \ p \ \sigma^2 (T\mu)^{-\frac{1}{2}} \ (cm^{-1}), \quad (A2.18)$$

where Z' and Z" are the collision frequencies of the lower and upper states, respectively; N_{Ar} is the argon number density, p the pressure (atm), μ =16 g/mole the CN-argon reduced mass and σ =4 Å the optical collision cross-section diameter [24]. The uncertainty resulting from the lack of collision broadening data is negligible, since our technique relies on broad-band absorption and most lines are fully integrated by the monochromator.

A2.2 Sensitivity of the CN broad-band Absorption Diagnostic

Broad-band absorption is inherently more complicated than monochromatic absorption, because a spectral integration must be performed to relate the number density of the absorber to the transmission through the system. The "curves of growth" method [81] can be used to perform this integration for a single absorption line. In the present case, one must rely on the computer to integrate the spectrum over a wide range of frequencies

$$\frac{i}{i_0} = \frac{\int P(v) M(v) \exp[-\beta(v) P_{CN} L] dv}{\int P(v) M(v) dv} . \qquad (A2.19)$$

Fig. A2.1 Spectral transmission of CN around 388 nm. The abscissa shows vacuum frequencies in cm⁻¹. The monochromatic spectral transmission $(i/i_0)_v \equiv \exp[-\beta(v)p_{CN}L]$ is plotted for typical experimental conditions: $T_2 \equiv 2000^{\circ}K$, $p_2 \equiv 0.7$ atm, $\chi_{CN} \equiv 30$ ppmv, and L=15.24 cm.

Figure A2.1 is a spectral plot of the monochromator transmission function $(i/i_0)_{\nu} = \exp[-\beta(\nu)p_{CN}L]$ calculated for typical shock tube conditions. Note that this function is nearly saturated at the band head $(i/i_0)_{\nu} \approx 1$. Figure A2.2 shows the computed absorption $(1-i/i_0)$ as a function of CN mole fraction for typical shock tube conditions, and with the monochromator set at the position that provides maximum absorption (i.e., 3882.6 Å, vac.). For small CN mole fractions, the gas is optically thin over the entire spectrum and the broad-band absorption $(1-i/i_0)$ is proportional to χ_{CN} . For increasing mole fractions, the curve rolls off as the absorption of a few spectral lines becomes saturated. In the linear region of Fig A2.2, a relative change in mole fraction corresponds to an identical change in absorption. In the roll-off region, larger relative variations in $\chi_{\rm CN}$ are necessary for similar changes in $(1-i/i_0)$. Expressed in mathematical terms, the "sensitivity" $S(\chi_{CN}) \equiv$ $dln(1-i/i_0)/dln\chi_{CN}$ is equal to 1 in the linear region and 0 in the rolloff region.

The purpose of this analysis is to design a measurement technique most sensitive to the mole fraction χ_{CN} . Thus, the relative uncertainty $\Delta^{\chi}_{CN}/\chi_{CN}$ must be minimized. In the absence of noise, it would clearly be advantageous to operate in the linear region of Fig. A2.2. Unfortunately, the absorption system is limited by the noise created by the lamp. As a result, the absorption levels in the linear region can fall below the detection limit.

To a good approximation, one can assume a constant relative rms noise $\Delta i/i_0$ independent of the transmission i/i_0 . Using the definition of the sensitivity S,

$$\frac{\Delta \chi_{\rm CN}}{\chi_{\rm CN}} = \frac{\frac{\Delta (1-i/i_0)}{(1-i/i_0)}}{S(\chi_{\rm CN})} = \frac{\frac{\Delta i}{i_0}}{(1-i/i_0) S(\chi_{\rm CN})} .$$
(A2.20)

Fig. A2.2 Computed absorption $(1-i/i_0)$ vs. CN mole fraction χ_{CN} for typical experimental conditions: $T_2=2000$ °K, $p_2=0.7$ atm, L=15.24 cm. The monochromator is set at the position that provides maximum absorption (λ =3882.6 Å, vac.), with the slit widths $\Delta x=190 \ \mu m$ and $\Delta y=103 \ \mu m$. In addition, a value $f_{e1}=0.03$ is assumed.

Fig. A2.3 Computed "accuracy" A vs. CN mole fraction X_{CN}. The conditions are identical to Fig. A2.2.

For a given value of the rms noise $\Delta i/i_0$, minimizing $\Delta^{\chi}_{CN}/\chi_{CN}$ corresponds to maximizing the "accuracy" A, defined as

$$A(\chi_{CN}) \equiv (1 - i/i_0) \times S(\chi_{CN}).$$
 (A2.21)

To illustrate the systematic limitations of an absorption diagnostic, we can briefly derive the "sensitivity" S and the "accuracy" A of a simple monochromatic system. Using Beer's law,

$$i/i_0 = \exp(-x)$$
, with $x \equiv \beta(T) p^{\chi} L$, (A2.22)

the "sensitivity" S can be found,

$$S(x) = d\ln(1-i/i_0)/d\ln x = xe^{-x}/(1-e^{-x}).$$
 (A2.23)

Assuming an rms noise level independent of i/i_0 , it follows that the "accuracy" A is a simple function of x,

$$A(x)=(1-i/i_0)S(x)=xe^{-x}$$
. (A2.24)

Therefore, maximum accuracy of a monochromatic absorption system is achieved for an optically thick sample, with x=1 and $1/1_0=37\%$, and the minimum uncertainty on x is $\Delta x/x=2.72\Delta i/i_0$. For the CN broad-band system, the "sensitivity" and the "accuracy" must be evaluated numerically. A computer plot of the accuracy is given in Fig A2.3 for T=2000°K and p=0.7 atm. Maximum accuracy A=0.15 is obtained for $\chi_{CN}=37$ ppmv. For a typical rms signal-to-noise ratio of 100 ($\Delta i/i_0 = 0.01$), the lowest uncertainty in χ_{CN} is 6% for these conditions, and the accuracy is acceptable for χ_{CN} in the range $15<\chi_{CN}<90$ ppmv. Note that the present experiments were performed under conditions that nearly maximize the accuracy.

A2.3 Calibration uncertainties

Calibration runs aimed at characterizing the CN absorption system

were performed by shock heating mixtures of cyanogen diluted in argon and recording the partial equilibrium level of CN from the reaction

$$C_{2}N_{2} + M + CN + CN + M_{*}$$
 (7)

If x_e represents the degree of advancement of reaction (7) at equilibrium, then

$$\chi_{C_2N_2}^{(\chi_{C_2N_2})_0} (1-x_e), \qquad (A2.25)$$

$$\chi_{CN^{=2}(\chi_{C_{2}N_{2}})_{0}}$$
 (A2.26)

$$K_{p} = \frac{\chi_{CN}^{*}}{\chi_{C_{2}N_{2}}^{*}} \times p$$
 (A2.27)

and

The asterisk (*) refers to equilibrium conditions. Rearranging eqs. (A2.25) and (A2.27),

$$\frac{x_e^2}{1-x_e} = \frac{K_p}{p} \times \frac{1}{4 (\chi_{C_2 N_2})_0} \equiv \alpha , \qquad (A2.28)$$

$$x_e = \frac{-\alpha + (\alpha^2 + 4\alpha)^{1/2}}{2}$$
 (A2.29)

A significant uncertainty is associated with the heat of formation of CN. In the JANAF tables [63], $\Delta H_{f}^{\circ}=103.2\pm2.5$ kcal/mole. Recently, Colket inferred $\Delta H_{f}^{\circ}=99.2\pm1.5$ kcal/mole [24]. In this study, $\Delta H_{f}^{\circ}=101.2\pm2$ kcal/mole is assumed. Uncertainties in ΔH_{f}° can affect the equilibrium constant K_{p} , since

$$K_{p} = \frac{K_{f}(CN)^{2}}{K_{f}(C_{2}N_{2})} \text{ and } K_{f}(CN) = \exp\left[\frac{\Delta S_{f}^{0}}{R}\right] \times \exp\left[-\frac{\Delta H_{f}^{0}}{RT}\right]. \quad (A2.30)$$

 $\Delta H_{\rm f}^{~}(\rm CN)$ is known within $\delta=\pm 2$ kcal/mole. Therefore, the relative uncertainty in $K_{\rm p}$ can be written
$$\frac{dK}{K_{p}} = 2 \frac{\delta}{RT} = \frac{2010}{T} = \frac{d\alpha}{\alpha} . \qquad (A2.31)$$

Using $\Delta H_{f}^{\circ}=101.2$ kcal/mole and other thermochemical data in the JANAF tables, we find $K_{p} = 10^{7.74} \exp[-63280/T]$ in the range 2300<T<3500°K. Differentiating equation (A2.29) with α leads to

$$\frac{dx_{e}}{x_{e}} = \frac{d\alpha_{x} - \alpha}{\alpha} \frac{\alpha}{(\alpha^{2} + 4\alpha)^{1/2}} \times (\frac{2}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} - 1) = \frac{d^{\chi} - \alpha}{\alpha} \frac{d^{\chi} + \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{\alpha} \frac{d^{\chi} + \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{\alpha} \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{\alpha} \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2} - \alpha} + 1) = \frac{d^{\chi} - \alpha}{(\alpha^{2} + 4\alpha)^{1/2}$$

Calibration uncertainties associated with ΔH_{f}° thus go down with increasing temperature or with increasing α . Therefore, the CN system should be calibrated at high temperatures and/or low initial cyanogen mole fraction (i.e., at high values of α).

High temperatures are also desirable to limit the duration of calibration experiments. It can be shown that the time to reach half the CN equilibrium concentration is given by [82]

$$t_{1/2} = \frac{x_e \ln(3-x_e)}{(2-x_e)} \tau, \text{ where } \tau = \frac{1}{k_7[M]} \text{ (particle time). (A2.33)}$$

For T=2400°K and p=0.5 atm, t $1/2^{\pm 5}$ msec; these conditions clearly result in an excessive duration of the experiment. By contrast, t $1/2^{\pm 110}$ µsec for T=3000°K and p=0.33 atm. Therefore, typical calibration experiments were performed at T=3000°K, p=0.33 atm and $(\chi_{C2N_2})_0=80$ ppmv, with $\alpha=700$, $(1-x_e)=10^{-3}$ and $\Delta\chi_{CN} / \chi_{CN} = 0.1\%$. Thus, calibration uncertainties associated with ΔH_f° were negligible under these conditions.

Appendix 3

The CO(v=1) IR Laser Absorption Diagnostic

The following additional details concerning the CO(v=1) system are discussed in this appendix: Theoretical aspects of the CO(v=1) absorption, calibration procedures and uncertainties in the broadening parameter $2\gamma^{\circ}$, vibrational relaxation of the CO(v=1) level, and interference from the N₂O absorption background.

A3.1 Laser Absorption by CO(v=1)

The absorption of monochromatic laser radiation by CO(v=1) is given by Beer's law

$$\frac{1}{i_0} = \exp[-\beta P_{CO}(v=1)^{L}], \qquad (3.4)$$

where β is the absorption coefficient (cm^{-l}atm⁻¹), PCO(v=1) is the partial pressure of CO in the first excited vibrational level and L is the path length (15.24 cm). The absorption coefficient can be expressed as a product of the line strength and the line shape factor

$$8=S_{CO}(v=1)^{\phi}$$
 (3.5)

The line shape factor can be described using a Voigt profile (see Appendix 2)

đ

$$p = 2 \frac{\sqrt{\ln 2}}{\sqrt{\pi}} \frac{V(a,x)}{\Delta v_D}, \qquad (A2.15)$$

where
$$a = \sqrt{1n2} \frac{\Delta v_C}{\Delta v_D}$$
 (Voigt parameter),
 $\Delta v_D = 7.1623 \ 10^{-7} (\frac{T}{MW_{CO}})^{1/2} \overline{v_0} \ (cm^{-1}) \ (Doppler \ width),$
(A3.1)

In this system, $x = 2\sqrt{\ln 2} \delta/\Delta v_D$, where δ is the spacing between the laser line and the CO absorption line center. The collision width Δv_C

133

.

can be written in the form

$$\Delta v_{\rm C} = 2 \gamma p \ ({\rm cm}^{-1}),$$
 (A3.2)

where the collision broadening parameter 2γ depends on temperature. Using the results of Hanson [32] for the P(11) line, the following temperature dependence of 2γ is assumed:

$$2\gamma(300^{0}K) = 2\gamma(T) \left(\frac{T}{300}\right)^{0.73} (cm^{-1}atm^{-1})$$
 (A3.3)

The line strength S at temperature T for a transition $[v+1+v, J\pm l+J]$ centered at frequency v can be expressed in terms of the fundamental band strength S₀ at reference temperature T₀ [38],

$$S(v,T) = S_0 \frac{T_0}{T} \frac{v}{\overline{v}_0} \frac{(2J+1) \exp[-\frac{hc}{kT} E(v,J)]}{Q(T)} (1 - \exp[-\frac{hc}{kT} v]) \times (v+1) (1 + x_e v) (\frac{|m|}{2J+1} (1 + Cm + Dm^2)) (cm^{-2}atm^{-1}) .$$
(A3.4)

 $S_0=282 \text{ cm}^{-2}\text{atm}^{-1}$ is the band strength at $T_0=273.2^{\circ}\text{K}$; $\overline{v}_0=2147.36 \text{ cm}^{-1}$ is the reference band center frequency. The energy of the lower state can be written in a form suggested by Dunham [83], using the coefficients Y_{ik} measured by Todd, <u>et al.</u> [30],

$$E(\mathbf{v},J) = \sum_{i k} \sum_{k} Y_{ik} (\mathbf{v} + \frac{1}{2})^{i} (J(J+1))^{k}.$$
(A3.5)

The partition function can be calculated using

$$Q(T) = \sum_{v \in J} \sum_{v \in J} (2J+1) \exp\left[-\frac{hc}{kT} E(v,J)\right]. \qquad (A3.6)$$

Note that $x_e=6.124 \ 10^{-3}$ is a correction for anharmonicity of the vibrational matrix element (v+1); m=-J for P branch lines (ΔJ =-1) and m=J+1 for R branch lines (ΔJ =+1); C=1.73 10⁻⁴ and D=7.3 10⁻⁶ are the Herman-Wallis constants for vibration-rotation interaction [38].

<u>Fig. A3.1</u> Temperature dependence of the equilibrium CO line strength S_{CO} for the transition CO[v(2+1),J(37+38)].

The expression for S(v,T) (eq. A3.4) is convenient to calculate the absorption from a sample of CO at equilibrium,

$$\frac{i}{i_0} = \exp[-S p_{CO} \phi L] . \qquad (A3.7)$$

A plot of S(v,T) vs. temperature is given in Fig. A3.1 for the transition used in this study [v(2+1), J(37+38)]. In the present case, however, vibrational relaxation is not instantaneous and it is more useful to express Beer's law in terms of the partial pressure of CO(v=1). Combining eqs. (3.4) and (3.5),

$$\frac{i}{i_0} = \exp[-S_{CO(v=1)} p_{CO(v=1)} \phi L] .$$
 (A3.8)

Comparing eqs. (A3.7) and (A3.8),

$$S_{CO(v=1)} = S \times \frac{N_{CO}}{N_{CO(v=1)}}, \qquad (A3.9)$$

$$\frac{N_{CO(v=1)}}{N_{CO}} = \frac{\sum_{J} (2J+1) \exp[-\frac{hc}{kT} E(v,J)]}{Q(T)}$$

$$= \exp[-\frac{hc}{kT} \omega_{e}] (1 - \exp[-\frac{hc}{kT} \omega_{e}]). \qquad (A3.10)$$

where

Note that $\omega_e^{=2169.52 \text{ cm}^{-1}}$ [63], and $hc\omega_e/k=3121^{\circ}K$. A plot of $S_{CO(v=1)}$ vs. temperature is given in chapter 3 (Fig. 3.3) for the transition used in this study $\{v(2+1), J(37+38)\}$.

A3.2 Calibration uncertainties

As mentioned in the previous paragraph, the knowledge of $2\gamma(300^{\circ}K)$ and the CO(v=1) line strength is sufficient to calculate the concentration of CO(v=1) from a transmission measurement at known pressure and temperature. Values of $S_{CO(v=1)}$ can be computed at any temperature using eqs. (A3.4), (A3.9) and (A3.10). However, calibration experiments are necessary to determine the broadening parameter $2\gamma(300^{\circ}K)$. To this end, mixtures of CO and argon were shock-heated to infer $2\gamma(300^{\circ}K)$ from the transmissions plateaus of CO(v=1) at vibrational equilibrium. In this paragraph, the uncertainties in $2\gamma(300^{\circ}K)$ introduced by a noisy calibration signal will be discussed.

The transmission of a known CO sample at vibrational equilibrium is given by Beer's law,

$$\frac{i}{i_0} = \exp[-S p \chi_{CO} L \phi], \qquad (A3.11)$$

where S is the line strength of CO at equilibrium (eq. A3.7). Assuming an rms noise level independent of i/i_0 ,

$$\Delta(\frac{i}{i_0}) \simeq \frac{\Delta i}{i_0} \equiv \frac{1}{S/N \text{ ratio}} . \tag{A3.12}$$

The corresponding uncertainty in $2\gamma(300^{\circ}K)\equiv 2\gamma^{\circ}$ can be estimated using

$$\Delta(2\gamma^0) = \frac{\frac{\partial(2\gamma^0)}{\partial(1/i_0)}}{\frac{S/N \text{ ratio}}{S/N \text{ ratio}}} .$$
(A3.13)

In addition,

$$\frac{\partial(i/i_0)}{\partial 2\gamma^0} = S p \chi_{CO} L \frac{\partial \phi}{\partial 2\gamma^0} \frac{i}{i_0}, \qquad (A3.14)$$

and, using eq. (A2.15),

$$\frac{\partial \phi}{\partial 2\gamma^{0}} = \frac{\partial \phi}{\partial a} \frac{\partial a}{\partial 2\gamma^{0}} = 2 \frac{\sqrt{\ln 2}}{\sqrt{\pi}} \frac{1}{\Delta v_{D}} \frac{\partial V(a,x)}{\partial a} \frac{\partial a}{\partial 2\gamma^{0}}.$$
 (A3.15)

According to Abramovitz and Stegun [84], the Voigt function can be expressed in terms of the real part of a complex function w(z), with z=x+ia, V(x,a) = Re[w(x+ia)], and

$$\frac{\mathrm{d}\mathbf{w}}{\mathrm{d}z} = -2 \ z \ \mathbf{w}(z) + \frac{2\mathrm{i}}{\sqrt{\pi}} = \frac{\partial V}{\partial x} - \mathrm{i}\frac{\partial V}{\partial a} \ . \tag{A3.16}$$

It follows that

$$\frac{\partial V}{\partial a} = 2 \left(aR + xI - \frac{1}{\sqrt{\pi}} \right)$$
, where $R \equiv Re(w)$ and $I \equiv Im(w)$.

<u>Fig. A3.2</u> Determination of the optimum calibration temperature for measuring $2\gamma^{\circ}(300^{\circ}K)$, the pressure broadening parameter of the CO absorption line [v(2+1),J(37+38)]. Plot of the ratio $T^{1.73}/S_{CO}(T)$ (arbitrary units) vs. temperature. Using

$$\frac{\partial a}{\partial 2\gamma^0} = \frac{\sqrt{\ln 2}}{\Delta v_D} p \left(\frac{T_0}{T}\right)^{0.73},$$

one obtains

$$\frac{\partial(2\gamma^{0})}{\partial(1/i_{0})} = \frac{\sqrt{\pi}}{4 \ln 2} \frac{\Delta v_{D}^{2}}{s_{P}^{2} \chi_{L}} \left(\frac{T}{T_{0}}\right)^{0.73} \frac{1}{aR + xI - 1/\sqrt{\pi}} \frac{i_{0}}{i}.$$
 (A3.17)

The quantity $(aR+xI-1/\pi)$ is a weak function of p and T. Thus, in the limit of small absorptions $(i/i_0 \approx 1)$,

$$\frac{\partial(2\gamma^{0})}{\partial(i/i_{0})} = \frac{T^{1.73}}{S(T)} \times \frac{1}{\frac{1}{p}} .$$
(A3.18)

For a given noise level, the uncertainty in $2\gamma(300^{\circ}K)$ is then inversely proportional to p^2 and χ and depends on the ratio $T^{1.73}/S(T)$. A plot of this ratio is given in Fig. A3.2. The minimum uncertainty corresponds to $T=1600^{\circ}K$. Unfortunately, the relaxation time for CO is too long at this temperature (for T=1600°K, $p\tau\simeq0.001$ atm sec, particle time). Thus, calibration runs were performed in the range $2040<T<2430^{\circ}K$, where 120< $p\tau<315$ atm µsec. Using eqs. (A3.13) and (A3.17), we estimated $\Delta(2\gamma^{\circ})=$ 0.03 cm⁻¹atm⁻¹. This value is consistent with the experimental scatter in $2\gamma^{\circ}$. Note that the results of this analysis can be helpful to design optimum calibration experiments for a variety of other molecules.

A3.3 Vibrational non-equilibrium and relaxation of CO

As mentioned, the vibrational relaxation time of CO places a lower bound on the temperature range of our calibration experiments. However, if CO is the product of an elementary reaction, then this slow relaxation process can be useful to keep CO in its original vibrational state, thus providing further experimental insight on the detailed products of the reaction.

In the interpretation of CO(v=1) time histories, vibrational relaxation must be taken into account; to this end, it is convenient to include reaction (3.7) in the reaction mechanism

$$CO(v=1) + M \xrightarrow{k_{de}}_{k_{e}} CO(v\neq 1) + M . \qquad (3.7)$$

Fig. A3.3 Experimental (•) and recommended (___) vibrational relaxation times of CO(v=1) vs. temperature. The abscissa shows temperatures to the -1/3 power ($K^{-1/3}$), and the ordinate pt, where p is the gas pressure (atm) and t is the vibrational relaxation time (µsec, particle time).

Data for the relaxation of $CO(v=l + v \neq l)$ has been compiled by Millikan and White [33], who recommended

$$p\tau = 10^{-10.80} \exp[+213 T]$$
 (atm sec), (A3.19)

in the range 1700 < T < 5000 °K. Using the infrared detection system described by Flower [85], experiments were conducted with mixtures of CO and argon and temperatures in the range 1800 < T < 2900K; these measurements of pt agreed within 16% with the expression of Millikan and White, which was adopted for further data reduction (see Fig. A3.3).

In order to integrate the vibrational relaxation of CO in the reaction mechanism, expressions for k_e and k_{de} were evaluated from eq. (A3.19) using the simplified two-level model of reaction (3.7) and the following analysis,

$$[CC]_{total}^{a}[CO(v=1)]+[CO(v\neq 1)]=[CO(v=1)]^{*}+[CO(v\neq 1)]^{*}, \quad (A3.20)$$

$$\frac{[CO(v=1)]}{[CO(v\neq 1)]}^{*} = \frac{k_{e}}{k_{de}}, \qquad (A3.21)$$

where $[CO(v \neq 1)]$ is the concentration of CO in all vibrational states but (v=1). Asterisks (*) indicate concentrations at Boltzman equilibrium. The rate of change of CO(v=1) concentrations in a CO/argon mixture is

$$\frac{d[CO(v=1)]}{dt} = -k_{de}[CO(v=1)][M] + k_{e}[CO(v\neq1)][M] , \qquad (A3.22)$$

Using eqs. (A3.20) and (A3.21), eq. (A3.22) can be rearranged to obtain

$$\frac{d}{dt} ([CO(v=1)] - [CO(v=1)]^*) = -(k_{de} + k_e) [M] ([CO(v=1)] - [CO(v=1)]^*).$$
(A3.23)

The l/e vibrational relaxation time is therefore $\tau = 1/(k_e + k_{de})[M]$, or $p\tau = RT/(k_e + k_{de})$, where R is the fundamental gas constant. Using the Boltzman relations,

141

$$\frac{[CO(v=1)]^{*}}{[CO]_{total}} = \frac{\exp[-\Theta_{vib}/T]}{Q_{vib}} = 1 - \frac{[CO(v\neq 1)]^{*}}{[CO]_{total}}, \quad (A3.24)$$

and

where $\theta_{vib}=\omega_e \times hc/k$ is the vibrational temperature and $Q_{vib}=[1-exp(-\theta_{vib}/T)]^{-1}$ is the vibrational partition function of CO. At vibrational equilibrium,

$$\frac{k_{e}}{k_{de}} = \frac{[CO(v\neq1)]^{*}}{[CO(v=1)]^{*}} = \frac{\exp[-\Theta_{vib}/T]}{Q_{vib} - \exp[-\Theta_{vib}/T]},$$
 (A3.25)

and finally

 $k_{de} = RT/p\tau [1 - e^{-\theta} vib^{T}(1 - e^{-\theta} vib^{T})].$ (A3.26)

In the chemical kinetics code, rate and equilibrium constants must be input in Arrhenius form. Complicated temperature-dependent expressions such as k_e and k_{de}/k_e can be approximated using generalized Arrhenius expressions as suggested by Gardiner [86]. In order to fit the function f(T) to an Arrhenius expression $AT^mexp[-\theta/T]$ in the temperature range $T_1 < T < T_2$, one first calculates an equivalent activation energy E(T) at the two end temperatures T_1 and T_2

$$\theta(T) = \frac{E(T)}{R} = \frac{d\ln f(T)}{d(1/T)}$$
, (A3.27)

This expression can be approximated using

$$\theta(T_{i}) \approx \frac{\ln f(T_{i}+\delta) - \ln f(T_{i}-\delta)}{1/(T_{i}-\delta) - 1/(T_{i}+\delta)}, \text{ with } i=1,2.$$
 (A3.28)

Then, one determines an average value for the temperature exponent m

$$m \approx \frac{\theta(T_2) - \theta(T_1)}{T_2 - T_1}, \qquad (A3.29)$$

and the average activation energy

$$\theta = \frac{E}{R} = \frac{\theta(T_2) + \theta(T_1)}{2} - m \left(\frac{T_2 + T_1}{2}\right) .$$
 (A3.30)

Finally, an approximation of the average pre-exponential A can be found using a series of discrete temperature points,

$$A = \frac{1}{T_2 - T_1} \int_{T_1}^{T_2} \frac{f(T)}{T_1} dT , \qquad (A3.31)$$

and

$$A \approx \frac{1}{n} \sum_{i=1}^{n} \frac{f(T_i)}{T_i^m \exp(-\frac{\theta}{T_i})} .$$
 (A3.32)

For CO, we calculated $k_{de} \approx 10^{-5.81} T^{4.6} \exp[-3610/T] cm^3/mole/sec and <math>k_{de}/k_e \approx 10^{-2.49} T^{+0.70} \exp[+4130/T]$.

A3.4 N_2O Absorption Background

In all experiments, a background absorption was observed which we attributed to N₂O. In this section, spectroscopic arguments will be presented to justify this assumption. At the high temperatures of our experiments, a polyatomic molecule such as N₂O can be significantly populated in many vibrational levels $(v_1v_2^{\ell}v_3)$ and numerous v_3 sub-bands can appear around the $(00^{O}1)+(00^{O}0)$ fundamental. For example, 125 lower vibrational levels have a population of at least 1% of the ground level $(00^{O}0)$ at 2000°K.

Estimates of the strength and position of significant lines were computed after Gray-Young [34,35], Pliva [36,37] and Varghese [38] to estimate the magnitude of the N_2O absorption spectrum around the v_3 fundamental. Lines positions are given by

$$v = E(v_1, v_2, l', v_3+1, J') - E(v_1, v_2, l'', v_3, J'') (cm^{-1}),$$
 (A3.33)

and the energy level of the $(v_1v_2^{l}v_3J)$ level above the lowest vibration-al state is

$$E(v_{1}, v_{2}, \ell, v_{3}, J) = B_{v_{1}v_{2}v_{3}}[J(J+1) - \ell^{2}] - D_{v_{1}v_{2}v_{3}}[J(J+1) - \ell^{2}]^{2}$$

+ $\omega_{1}^{\circ}v_{1} + \omega_{2}^{\circ}v_{2} + \omega_{3}^{\circ}v_{3} + g_{22}\ell^{2}$ (A3.34)

$$+x_{11}^{\circ}v_{1}^{2}+x_{22}^{\circ}v_{2}^{2}+x_{33}^{\circ}v_{3}^{2}+x_{12}^{\circ}v_{1}v_{2}+x_{13}^{\circ}v_{1}v_{3}+x_{23}^{\circ}v_{2}v_{3} \quad (cm^{-1}),$$

$${}^{B}v_{1}v_{2}v_{3} {}^{=B}o^{-\alpha_{1}}v_{1} {}^{-\alpha_{2}}v_{2} {}^{-\alpha_{3}}v_{3} \quad (cm^{-1}). \quad (A3.35)$$

143

where

Rotational Constants		Vibrational	Constants
 В _О	0.41901	ωι°	1276.88
D _O	1.792.10 ⁻⁷	ω ₂ °	588.77
۵ï°	1.965.10 ⁻³	ພ3 ຶ	2223.76
α ₂ °	$-0.569.10^{-3}$	g ₂₂	3.0 ^a
ແລິ	3.449.10 ⁻³	×11°	-4.195
5		x ₁₂ °	0.165
		×22°	-0.279
All units: cm ⁻¹		×13°	-27.177
		×23°	-14.330
		×33°	-15.068

Table A3.1 - Spectroscopic Constants for the IR v_3 Sub-bands of N₂O

a Value in Herzberg [66], p.278.

The molecular constants used in the calculations (Pliva [36,37]) are shown in Table A3.1. For simplicity, it was assumed that all levels with identical values of v_2 but different values of ℓ have the same energy and are unresolved. This assumption implies that the (v_2+1) bands with identical $(v_1v_2v_3)$ but different values of ℓ all collapse into a single band, with the following rotational lines strengths

$$S(v,T) = S_0 \frac{T_0}{T} \frac{v}{v_0} (v_2^{+1}) \times$$

$$\frac{(2J+1) \exp[-\frac{hc}{kT} E(v_1, v_2, v_3)]}{Q(T)} \times (v_3^{+1}) \Phi,$$

$$\Phi = \frac{J^2 - R^2}{J(2J+1)}, \frac{R^2}{J(J+1)}, \frac{(J+1)^2 - R^2}{(J+1)(2J+1)},$$
(A3.36)

where

for the P, Q and R branches, respectively [38]. For simplicity, only two

values of l were used, namely: l=0 for even values of v_2 and l=1 for odd values of v_2 . $S_0=1600 \text{ cm}^{-1}\text{ atm}^{-1}$ is the N_20 band strength at 300° K [81]. The term (v_3+1) arises from the vibrational matrix element of the v_3 transition. Q(T) is the total partition function, approximated using

$$Q(T) = \frac{T}{\theta_{rot}} \times Q_{\nu_1} Q_{\nu_2}^2 Q_{\nu_3}$$
, (A3.37)

where $Q_{v_i} = \left(1 - \exp\left(-\frac{\theta^{v_i b}}{T}\right)\right)^{-1}$, $\theta_{rot} = \frac{hc}{k} B_0$, and $\theta^{v_i b}_i = \frac{hc}{k} \omega_i^0$.

For each band, the position of the band gap was used as an approximation for the reference band center frequency $\overline{v_0}$.

A computer program was written to calculate the line strengths and positions in the various v_3 sub-bands. Figure A3.4 shows significant CO and N₂O lines in the vicinity of the laser frequency (1948<v<1950 cm⁻¹). CO lines are indicated using the two quantum numbers (v", J") of the ground level. From Fig. A3.4, it is clear that many lines of strength up to 0.001 cm⁻²atm⁻¹ can potentially interfere with the measurement of CO.

Unfortunately, uncertainties in the spectroscopic parameters prohibit any prediction of precise positions for high-lying N₂O lines. It is therefore meaningless to introduce a realistic broadening function, and to compute precisely the N₂O absorption coefficient at the laser frequency. In order to estimate the magnitude of the N₂O background spectrum, it was assumed that each rotational line centered at v₀ is broadened by a rectangular line shape factor ϕ^* of full width at half maximum $2 \times B_v$, the average rotational line spacing,

$$\phi^{*} = \frac{1}{2B_{v}} \text{ for } v_{0} - B_{v} \leq v \leq v_{0} + B_{v},$$

$$\phi^{*} = 0 \text{ otherwise.}$$
(A3.38)

Note that ϕ^* is properly normalized,

$$\int_{-\infty}^{+\infty} \phi^{*}(v) dv = 1. \qquad (A3.39)$$

Fig. A3.4 Computed CO and N₂O IR absorption lines around the laser frequency (1948 cm⁻¹) at T=2000°K. The CO absorption lines are indicated using the ground state quantum numbers (v,J). The line used in this study is labeled (v=1,J=38). The abscissa shows vacuum frequencies in cm⁻¹ and the ordinate line strengths in cm⁻² atm⁻¹.

ł

The simplicity of this broadening function results in a significant reduction of the computing time. The inherent breadth of the function ϕ^* results in the overlap of numerous adjacent lines (see Fig. A3.4). The corresponding absorption coefficient β^* thus provides a crude estimate of the actual absorption spectrum,

$$\beta^* = \Sigma \quad S \quad (\nu, T) \quad \phi^* \quad (cm^{-1}atm^{-1}) \quad . \tag{A3.40}$$
 lines

Figure A3.5 shows a comparison of the CO, NO and N₂O absorption spectra β^* for T=2000°K. The N₂O absorption coefficient β^* at the laser frequency v=1948 cm⁻¹ is $\beta^*(N_2O)=0.14$ cm⁻¹atm⁻¹. Thus, the N₂O background absorption can be as high as 1.5% for typical shock tube experiments (T= 2000°K, p=0.7 atm, $\chi_{N_2O}=1\%$). In fact, interference levels of about 0.6% have been observed. Therefore, N₂O is a probable cause of the observed absorption background. Moreover, this effect could be discerned immediately after the shock arrival. This indicates that the interference can only result from a species present in the initial mixture. C₂N₂ exhibits vibrational bands in the same vicinity, but can be ruled out because of its weak band strength (S₀=30 cm⁻¹atm⁻¹) [81]. Therefore, N₂O is certainly responsible for the observed background interference.

The computed CO(v=1) transmission profiles were corrected for the N_2O background prior to comparison with the experimental traces. The recorded absorption at time zero provided an empirical measurement of the N_2O absorption coefficient β_{N_2O}

$$\left(\frac{i}{i_0}\right)_{t=0} = \exp[-\beta_{N_20} p_{N_20} L]$$
, (A3.41)

and the computed transmission was corrected using

$$\frac{(\mathbf{i}_{10})}{(\mathbf{i}_{10})} = \exp[-(\beta_{N_{2}0} p_{N_{2}0}^{\dagger} \beta_{CO(v=1)} p_{CO(v=1)}) L]$$

$$= (\frac{\mathbf{i}_{10}}{\mathbf{i}_{0}})_{CO=1} \times (\frac{\mathbf{i}_{10}}{\mathbf{i}_{0}})_{t=0}^{\chi_{N_{2}0}} / (\chi_{N_{2}0})_{t=0} ,$$
(A3.42)

where $(i/i_0)_{CO(v=1)}$ is the transmission of CO(v=1), $(i/i_0)_{t=0}$ the observed transmission at t=0 and χ_{N_20} the computed mole fraction of N_20 .

Appendix 4

Additional Considerations on NCO Spectroscopy

Computational details on NCO spectroscopy, which were previously omitted for clarity, are presented in this appendix. These details include a systematic correction for the wavemeter measurements, a calculation of the electronic oscillator strength f_{el} using observed zero pressure radiative lifetimes, and theoretical estimates of the Franck-Condon factors of a polyatomic XYZ molecule.

A4.1 Systematic Wavemeter Correction

The wavemeter is an automatic interferometer which compares the number of interference fringes N₀ created by a reference wavelength λ_0 to the number of fringes N created by an unknown laser wavelength λ . The number of fringes per unit displacement of the interferometer mirrors is inversely proportional to the wavelength, and

$$\frac{\lambda}{\lambda_0} = \frac{N_0}{N} . \tag{A4.1}$$

The quantity displayed on the digital readout is automatically computed using

$$\lambda^{\text{meas}} = \left(\frac{N_0}{N}\right) \times \lambda_0^{\text{vac}}. \tag{A4.2}$$

For a vacuum wavemeter,

$$\frac{N_0}{N} = \frac{\lambda^{vac}}{\lambda_0^{vac}}, \text{ thus } \lambda^{meas} = \lambda^{vac}.$$
(A4.3)

By contrast, if the wavemeter is held at atmospheric pressure,

$$\frac{N_0}{N} = \frac{\lambda^{air}}{\lambda_0^{air}}, \text{ and } \lambda^{meas} = \frac{\lambda^{air}}{\lambda_0^{air}} \times \lambda_0^{vac}.$$
(A4.4)

Using the index of refraction of air $n(\lambda)$, $\lambda^{vac} = \lambda^{air} \times n(\lambda)$, and

149

.

$$\lambda^{\text{meas}} = \lambda_0^{\text{vac}} \times \frac{\lambda^{\text{vac}}}{\lambda_0^{\text{vac}}} \times \frac{n(\lambda_0)}{n(\lambda)} = \lambda^{\text{vac}} \times \frac{n(\lambda_0)}{n(\lambda)} . \qquad (A4.5)$$

To infer the true vacuum wavelength λ^{vac} from the measured quantity λ^{meas} , a correction

$$\frac{\Delta\lambda}{\lambda} = \frac{\lambda^{\text{meas}} - \lambda^{\text{vac}}}{\lambda^{\text{vac}}} = \varepsilon(\lambda_0) - \varepsilon(\lambda) , \qquad (A4.6)$$

where $\varepsilon(\lambda)=n(\lambda)-1$, is computed. This correction is negligible for wavelengths near the reference λ_0 (e.g., for most wavelengths accessible with the R6G dye). However, the correction can be substantial for values of λ further away from λ_0 . Using Cauchy's formula for $n(\lambda)$ (with λ in λ) [87],

$$\varepsilon(\lambda) \times 10^7 = 2726.43 + \frac{12.288 \ 10^8}{\lambda^2} + \frac{3.555 \ 10^{15}}{\lambda^4}$$
 (A4.7)

It follows that

$$\frac{\Delta\lambda}{\lambda} = 122.88 \left(\frac{1}{\lambda_0^2} - \frac{1}{\lambda^2}\right) + 3.555 \ 10^8 \left(\frac{1}{\lambda_0^4} - \frac{1}{\lambda^4}\right) . \tag{A4.8}$$

For $\lambda_0=6329.91$ Å (He-Ne wavelength, vac.) and $\lambda=4404.79$ Å (NCO band head), $\Delta\lambda/\lambda=-4$ 10⁻⁶, which corresponds to about two increments of the last wavemeter digit. Note that the peak absorption of the P₂+^PQ₁₂ bandhead of NCO was observed at $\lambda^{meas}=440.477_5$. The resulting correction indicates that the true peak lies at $\lambda^{vac}=440.479_3$ nm; this value agrees well with the prediction of the spectroscopic model (see Fig. 4.6).

In principle, an additional correction should be introduced to account for the temperature dependence of $n(\lambda)$. Using a correlation available in the CRC handbook [87],

$$\frac{\varepsilon(\lambda,T)}{\varepsilon(\lambda,T_0)} = \frac{1}{\left[1+\alpha(T-T_0)\right]} = \frac{(\Delta\lambda/\lambda)_T}{(\Delta\lambda/\lambda)_{T_0}} .$$
 (A4.9)

Using the average value $\bar{\alpha}$ =3690.10⁻⁶ K⁻¹ in the range 4400< λ <6350 Å and T₀=15°K, the additional temperature correction corresponding to an

excursion of ± 50 °C in the room temperature is less than $2/10^{th}$ of the last wavemeter digit and can therefore be neglected.

A4.2 Electronic Oscillator Strength and Lifetime Measurements

Laser-induced fluorescence experiments (LIF) can provide measurements of excited state lifetimes, if the duration of the laser pulse is much shorter than the decay of the fluorescence signal. Such measurements have been performed for both electronic transitions of NCO at 305 and 440 nm. In this paragraph, the extraction of electronic oscillator strengths f_{el} from these lifetime measurements will be examined.

Laser-induced fluorescence can be regarded as a two-step process consisting of a fast pumping of the molecule to an upper state, followed by a spontaneous fluorescence decay of finite lifetime τ . A plot of τ vs. pressure can be extrapolated to provide a zero pressure radiative lifetime of the upper state. At zero pressure, and in the absence of predissociation or curve-crossing, fluorescence can only occur from the spontaneous decay of the original upper state, since collisions are otherwise required to redistribute the energy among the various upper levels. On the other hand, transitions to the lower electronic state are restricted by selection rules (eg: $\Delta J=J'-J'=0,\pm 1$). An example of zero pressure LIF has been sketched in Fig. A4.1. In general, the inverse lifetime τ^{-1} can be written as a function of the Einstein A-coefficients for the allowed transitions ($l\equiv$ lower state, u \equiv upper state),

$$\tau^{-1} = \sum_{\substack{u \neq \ell}} A_{u+\ell}$$
 (A4.10)

The Einstein A-coefficients are related to the absorption oscillator strength using

$$A_{u+l} = \frac{g_l}{g_u} \frac{2\Pi e^2}{\varepsilon_0 mc} v_{ul}^2 f_{u+l} = 0.667 \frac{g_l}{g_u} v_{ul}^2 f_{u+l}, \qquad (A4.11)$$

where g is the population degeneracy, $v_{u\ell}$ is the transition frequency (cm^{-1}) , $f_{u\ell\ell}$ is the absorption oscillator strength and $A_{u\ell}$ is the Einstein A-coefficient (sec⁻¹). For NCO, a particular rovibronic state has

151

a degeneracy $g=2(v_2+1)(2J+1)$; there are two levels arising from the possible orientation of the electronic angular momentum, (v_2+1) degenerate bendings and (2J+1) degenerate rotational levels. In this case, the absorption oscillator strength can be written $f_{u+l}=f_{v''+v''}, J'+J''$, where v is a short hand notation for $(v_1v_2Kv_3)$. Assuming that the transition frequencies are nearly constant over the whole band system $(v_{ul} = \overline{v})$, and that the electronic transition moments R_e are independent of the vibrational state [88], the oscillator strength of a vibrational progression can be related to a common "electronic oscillator strength" f_{el} using

$$f_{v'v''J'J''} \approx f_{el} \frac{q_{v'v''}}{(v''_{2}+1)} \frac{S_{J'J''}}{(2J''+1)},$$
 (A4.12)

where $q_{v'v''}$ is the Franck-Condon factor for the $(v'_1v'_2^{K'}v'_3)$ + $(v''_1v''_2^{K''}v''_3)$ band and $S_{J'J''}$ the rotational line strength. Substituting eqs. (A4.11) and (A4.12) in eq. (A4.10),

$$\tau^{-1} \approx 0.667 \qquad \Sigma \qquad \frac{2(v_2^{+1})(2J^{+1})}{2(v_2^{+1})(2J^{+1})} \qquad \overline{v}^2 \qquad f_{el} \qquad \frac{q_{v'v''}}{v_2^{+1}} \frac{S_{J'J''}}{2J^{+1}} \qquad (A4.13)$$

Note that an average transition frequency \overline{v} was used to ensure consistency with the corresponding assumption on f_{el}. Factorizing eq. (A4.13),

$$\tau^{-1} \simeq 0.667 \, \overline{\nu}^2 \, f_{el} \, \frac{\sum_{v''}^{\Gamma} q_{v'v''}}{v_2' + 1} \, \frac{\sum_{J''}^{\Gamma} S_{J'J''}}{(2J'+1)} \, . \tag{A4.14}$$

By convention, Franck-Condon factors and rotational line strengths are normalized according to

$$\sum_{v'} q_{v'v''} = v'_{2} + 1, \text{ or } \sum_{v''} q_{v'v''} = v'_{2} + 1, \quad (A4.15)$$

$$\sum_{J'} S_{J'J''} = 2J''+1, \text{ or } \sum_{J'} S_{J'J''} = 2J'+1.$$
 (A4.16)

and

Fig. A4.1 A schematic of a zero pressure laser-induced-fluorescence (LIF) experiment, in the absence of predissociation or curvecrossing effects.

ł

It follows that eq. (A4.14) can be simplified to read

$$\tau^{-1} \simeq 0.667 \, \overline{\nu}^2 \, f_{el} \, .$$
 (A4.17)

This expression is valid at zero pressure for any upper level pumped, as long as it is meaningful to define an electronic oscillator strength f_{el} . Thus, the measured lifetimes of different excited upper states are expected to be inversely proportional to the average fluorescence frequency squared $\overline{\nu}^2$ and to be independent of vibrational progressions and Franck-Condon factors. This unintuitive fact has been confirmed by experimental observation. For example, note the measurements of Charlton, <u>et al</u>. [56] for the lifetimes of the $A^2\Sigma^+$ state of NCO (Table A4.1).

Using eq. (A4.17) and the fluorescence measurements of Sullivan, <u>et</u> <u>al.</u> [60] for the $B^2\Pi_1$ state of NCO (τ =63±3 nsec), the oscillator strength for the [$B^2\Pi_1 \leftrightarrow X^2\Pi_1$] transition at 305 nm is

$$f_{e1} = \frac{\tau^{-1}}{0.667 \sqrt{2}} = 1/(0.667 \times 32822^2 \times 63 \ 10^{-9}) = 0.022 .$$

This value was utilized in chapter 4 to extract an experimental Franck-Condon factor q_{10} for the $(10^{10})+(00^{10})$ band of NCO $(q_{10}\approx 0.14)$.

Vibronic	level	$\overline{v}(cm^{-1})$	Lifetimes (nsec)
0000	² _Σ +	22700	361
01 ¹ 0	² П	23380	357
10 ⁰ 0	² _Σ +	23990	322
02 ⁰ 0	² _Σ +	24090	328
00 ⁰ 1	² _Σ +	25040	351

Table A4.1 - Lifetimes of the $A^2\Sigma^+$ State of NCO

A4.3 Theoretical Estimates of NCO Franck-Condon Factors

In the Born-Oppenheimer approximation, the intensity of an electric dipole transition is proportional to the square of the vibrational overlap integral

$$\left| \int \Psi_{vib}^{*} \Psi_{vib}^{*} dR \right|^{2} = \left| \langle v' | v'' \rangle \right|^{2},$$
 (A4.18)

which is also known as the Franck-Condon factor for the v'+v" band [89]. Franck-Condon factors have been extensively studied both theoretically and experimentally for a variety of diatomic molecules, but limited attention has been devoted to the more complex polyatomic molecules. Smith and Warsop [57] provided formulae for estimating Franck-Condon factors of vibrational progressions originating from the vibrationless ground state of polyatomic molecules. Assuming no interaction among normal modes of vibration, Smith and Warsop reported overlap integrals for non-degenerate vibrational transitions [e.g., NCO(v'_1+v"_1=0)],

$$\langle \mathbf{v} | \mathbf{0} \rangle = \mathbf{R}(\mathbf{v}, \mathbf{0}) = \frac{(-\mathbf{i})^{\mathbf{v}} 2^{-(\mathbf{v}-1)/2}}{(\mathbf{v}!)^{1/2}} \left(\frac{\beta}{1+\beta^2}\right)^{1/2} \left(\frac{1-\beta^2}{1+\beta^2}\right)^{\mathbf{v}/2} \times \\ \exp\left(-\frac{1}{2} \frac{\gamma^2 \beta^2}{1+\beta^2}\right) \times \mathbf{H}_{\mathbf{v}}\left(\mathbf{i}\beta^2 \gamma (1-\beta^4)^{-1/2}\right)$$
(A4.19)

where H_v is the Hermite polynomial of degree v, $\beta = \alpha'' / \alpha' = (\nu_i'' / \nu_i')^{1/2}$, $\gamma = \alpha' d_i$ and $\alpha^2 = 4\pi^2 \nu_i c/h$, ν_i is the vibration frequency (cm^{-1}) , d_i is the projection of vector d along the vibrational coordinate of interest (see below). Using eq. (A4.18), the Franck-Condon factors for the (v+0) band can be written

$$q_{v0} = R(v,0) R(v,0)$$
, (A4.20)

where R^* is the complex conjugate of R. Calculation of the overlap integrals of eq. (A4.19) require an evaluation of d, the vectorial separation of the origins of normal coordinates in the upper and lower levels. From Sharp and Rosenstock [58],

155

$$d = (L)^{-1}R$$
, (A4.21)

where L is a matrix of rank (3N-6) and R is the vector of changes in equilibrium positions from the initial to the final states,

$$R = S''-S';$$
 (A4.22)

S is the vector of internal displacement coordinates. The matrix L satisfies the general relation [58]

$$\mathbf{L}^{\dagger} \mathbf{G}^{-1} \mathbf{L} = \mathbf{E} , \qquad (A4.23)$$

where L^{\dagger} is the Hermitian conjugate of L, E is the identity matrix, and G is the kinetic energy matrix (see below). Following the choice of Sharp and Rosenstock [58], S represents the set of internal symmetry coordinates in the calculation of G and R.

For a linear molecule such as NCO, these coordinates can be written as a function of Δr_1 and Δr_2 , the linear displacements from the equilibrium position, and $\Delta \phi$, the angular displacement (see Fig. A4.2),

Fig. A4.2 A schematic of the three internal symmetry coordinates of a linear XYZ molecule.

$$S = \begin{vmatrix} \frac{\sqrt{2}}{2} (\Delta r_1 + \Delta r_2) \\ (r_1 r_2)^{1/2} \Delta \phi \\ \frac{\sqrt{2}}{2} (\Delta r_1 - \Delta r_2) \end{vmatrix} . \qquad (A4.24)$$

The matrix G and the normal vibration modes of the XYZ molecule can be found using the "effectiveness vectors" [89] $\mathbf{s}_{t\alpha}$ (α is the atom index and t is the index of the normal vibration). Note that \mathbf{s}_t are the three coordinates of the vector S. The vectors $\mathbf{s}_{t\alpha}$ are defined such that

- $s_{t\alpha}$ points in the direction in which moving atom α causes the largest increase in the internal coordinate s_t . (In this case, only atom α is moving.)
- the magnitude of $s_{t\alpha}$ equals the maximum change in s_t produced by moving atom α a unit distance.

Figure A4.3 illustrates the calculation of $s_{t\alpha}$. Note the cartesian coordinates (e_1, e_2) . The vertical bars attached to an atom indicate that the atom is "frozen" in its equilibrium position for the purpose of estimating $s_{t\alpha}$. Using the "effectiveness vectors" $s_{t\alpha}$, the normal modes of vibration of an XYZ molecule are sketched in Fig. A4.4. The matrix G can be calculated using [89]

$$G_{tt'} = \sum_{\alpha} \mu_{\alpha} s_{t\alpha} s_{t'\alpha}, \qquad (A4.25)$$

where $\mu_{\alpha} = 1/m_{\alpha}$ is the inverse mass of atom α (amu⁻¹),

$$\mathbf{G} = \begin{bmatrix} (\mu_1 + \mu_3)/2 & 0 & (\mu_1 - \mu_3)/2 \\ 0 & \mu_1 & \frac{\mathbf{r}_2}{\mathbf{r}_1} + \mu_2 (\frac{\mathbf{r}_2}{\mathbf{r}_1}) & (1 + \frac{\mathbf{r}_1}{\mathbf{r}_2})^2 + \mu_3 & \frac{\mathbf{r}_1}{\mathbf{r}_2} & 0 \\ (\mu_1 - \mu_3)/2 & 0 & 2\mu_2 + (\mu_1 + \mu_3)/2 \end{bmatrix}$$
(A4.26)

Maximum change in Δr_1 is obtained by moving atom 1 in the $-e_1$ direction; displacement of atom 1 over a unit distance results in a $\sqrt{2}/2$ change in s_1 .

With atoms 1 and 2 "frozen" in their equilibrium position, no change in atom 2 can affect the sum $\Delta r_1 + \Delta r_2$.

Fig. A4.3 Calculation of the effectiveness vectors $\mathbf{s}_{t\alpha}$ of a linear XYZ molecule.

Maximum change in $\Delta \phi$ is obtained by moving atom 1 in the \mathbf{e}_2 direction. Displacement of atom 1 over a unit distance corresponds to $\Delta \phi = 1/r_1$.

Fig. A4.3 Calculation of the effectiveness vectors $s_{t\alpha}$ of a linear XYZ molecule (continued).

ł

Maximum change in Δr_1 is obtained by moving atom 1 in the e_1 direction.

Maximum change in $\Delta r_1 - \Delta r_2$ is obtained by moving atom 2 in the e₁ direction. Displacement of atom 2 over a unit distance corresponds to a $2 \times \sqrt{2/2}$ change of s₃.

Fig. A4.3 Calculation of the effectiveness vectors $\mathbf{s}_{t\alpha}$ of a linear XYZ molecule (continued).

Fig. A4.4 A schematic of the three normal modes of vibration of a linear XYZ molecule.

To find L, the matrix eq. (A4.23) $\mathbf{L}^{\dagger} \mathbf{G}^{-1} \mathbf{L} = \mathbf{E}$ must be solved. Since G is a real matrix, L is real and eq. (A4.23) is equivalent to ^LL G^{-1} L= E, where ^tL is the transpose of L. To solve for L, G is diagonalized by looking for a matrix U such that $G = U G_d U^{-1}$ with G_d a diagonal matrix. Since G is symmetric, U can be chosen orthonormal, with $t_{U} = U^{-1}$. In this case, the matrix $L = U G_d^{1/2} t U$ satisfies the equation $L G^{-1} L =$ E, since:

To find ${f G}_{d}$ and ${f U},$ the secular equation in the ${f G}$ eigenvalues is solved

$$\left(\frac{\mu_{1}+\mu_{3}}{2}-\lambda\right)\left(\frac{\mu_{1}+\mu_{3}}{2}+2\mu_{2}-\lambda\right)-\left(\frac{\mu_{1}-\mu_{3}}{2}\right)^{2}\left(G_{22}-\lambda\right)=0.$$
 (A4.28)

Thus, the eigenvalues of G are

$$\lambda_1 = \lambda_0 + \delta, \ \lambda_2 = G_{22} \text{ and } \lambda_3 = \lambda_0 - \delta,$$
 (A4.29)

here
$$\lambda_0 = \mu_2 + (\mu_1 + \mu_3)/2$$
 and $\delta^2 = \mu_2^2 + (\mu_1 - \mu_3)^2/4$. (A4.30)

A set of eigenvectors is chosen, and

$$\mathbf{U} = \begin{pmatrix} \frac{\mu_1 - \mu_3}{2\Delta_1} & 0 & \frac{\mu_1 - \mu_3}{2\Delta_2} \\ 0 & 1 & 0 \\ \frac{\mu_2 + \delta}{\Delta_1} & 0 & \frac{\mu_2 - \delta}{\Delta_2} \end{pmatrix}$$
(A4.31)

where

w)

 $\Delta_{1}^{2} = \left(\frac{\mu_{1} - \mu_{3}}{2}\right)^{2} + \left(\mu_{2} + \delta\right)^{2} \text{ and } \Delta_{2}^{2} = \left(\frac{\mu_{1} - \mu_{3}}{2}\right)^{2} + \left(\mu_{2} - \delta\right)^{2}.$ (A4.32)

The matrix L is given by

$$\mathbf{L} = \begin{vmatrix} \mathbf{L}_{11} & 0 & \mathbf{L}_{13} \\ 0 & \mathbf{L}_{22} & 0 \\ \mathbf{L}_{31} & 0 & \mathbf{L}_{33} \end{vmatrix} , \qquad (A4.33)$$

where

$$L_{11} = \left(\frac{\mu_1 - \mu_3}{2}\right)^2 \left(\frac{\lambda_1^{1/2}}{\Delta_1^2} + \frac{\lambda_3^{1/2}}{\Delta_2^2}\right) , \qquad (A4.34)$$

$$L_{31} = L_{13} = \left(\frac{\mu_1 - \mu_3}{2}\right) \left(\frac{\lambda_1^{1/2}}{\Delta_1^2} (\mu_2 + \delta) + \frac{\lambda_3^{1/2}}{\Delta_2^2} (\mu_2 - \delta)\right), \quad (A4.35)$$

$$L_{33}^{=} \frac{\lambda_{1}^{1/2}}{\Delta_{1}^{2}} (\mu_{2} + \delta)^{2} + \frac{\lambda_{3}^{1/2}}{\Delta_{2}^{2}} (\mu_{2} - \delta)^{2}, \qquad (A4.36)$$

$$L_{22} = \sqrt{G_{22}}$$

Finally,

and

$$\mathbf{L}^{-1} = \begin{vmatrix} \frac{L_{33}}{\Theta} & 0 & -\frac{L_{31}}{\Theta} \\ 0 & \frac{1}{\sqrt{G_{22}}} & 0 \\ -\frac{L_{13}}{\Theta} & 0 & \frac{L_{11}}{\Theta} \end{vmatrix} .$$
 (A4.38)

where

$$\theta^2 = (L_{11}L_{33}-L_{13}L_{31})^2 = \mu_2(\mu_1+\mu_3)+\mu_1\mu_3$$

To evaluate the vector \mathbf{d} , one calculates \mathbf{R} , the change in equilibrium positions from the initial to the final states. Since NCO maintains a linear configuration in its electronic transition,

$$\mathbf{R} = \frac{\sqrt{2}}{2} \begin{vmatrix} (\mathbf{r}_1^* + \mathbf{r}_2^*) - (\mathbf{r}_1^* + \mathbf{r}_2^*) \\ 0 \\ (\mathbf{r}_1^* - \mathbf{r}_2^*) - (\mathbf{r}_1^* - \mathbf{r}_2^*) \end{vmatrix} .$$
 (A4.39)

Using $\rho \equiv r_1 + r_2$ and assuming that the ratio (r_1/r_2) is conserved in the electronic transition,

$$\mathbf{R} = \frac{\sqrt{2}}{2} \left(\rho'' - \rho' \right) \begin{vmatrix} 1 \\ 0 \\ c \end{vmatrix}, \text{ with } c = \frac{(r_1/r_2) - 1}{(r_1/r_2) + 1}. \quad (A4.40)$$

Finally,

$$\mathbf{d} = \mathbf{L}^{-1} \mathbf{R} = \frac{\sqrt{2}}{2} (\rho^{"} - \rho^{"}) \begin{vmatrix} \frac{\mathbf{L}_{33} - \mathbf{L}_{31} \mathbf{c}}{\Theta} \\ 0 \\ \frac{-\mathbf{L}_{13} + \mathbf{L}_{11} \mathbf{c}}{\Theta} \end{vmatrix}$$
 (A4.41)

Note the dimensions of the following variables:

vector R	L
matrix L	$M^{-1/2}$
matrix G	M^{-1}
vector d	$M^{1/2}L$
scalar α	$M^{-1/2}L^{-1}$
γ, β, R(v,O)	no units

If d_i is evaluated in A.amu^{1/2}, and v_i ' is the vibrational frequency of the upper state (cm⁻¹), then

$$\gamma = 0.1722 v'_{i}^{1/2} (cm^{-1/2}) d_{i} (Å.amu^{1/2}). \qquad (A4.42)$$

To calculate the Franck-Condon factor of the transition $[B^2\Pi_1(10^{1}0)+X^2\Pi_1(00^{1}0)]$, the quantities $d_1 = \sqrt{2/2} (\rho^{-}-\rho^{+}) (L_{33}-L_{31}c)/\theta$, which corresponds to the symmetric stretch v_1 , are evaluated. Assigning the indices 1,2 and 3 to the N, C and O atoms, respectively, $\mu_1=1/14$, $\mu_2=1/12$ and $\mu_3=1/16$ (amu⁻¹), $L_{33}=0.4833$ amu^{-1/2}, $L_{31}=0.0060$ amu^{-1/2}, and $\theta=0.125$ amu⁻¹. Dixon [59] calculated upper bounds of (r_1+r_2) for the X, A and B states of NCO: $\rho^{+}(B^2\Pi_1)<2.45$ Å, $\rho^{-}(X^2\Pi_1)<2.408$ Å. Since d_1 depends only on the difference $(\rho^{-}-\rho^{+})$, these upper bounds can provide reasonable estimates of $(\rho^{-}-\rho^{+}) = 2.408-2.45 = -0.042$ Å. Note that Milligan and Jacox [54] found $r_1^{-}=1.23$ Å and $r_2^{-}=1.18$ Å for the lower state. Assuming that the ratio r_1/r_2 is conserved in the transition,

164

$$c = \frac{(r_1/r_2)-1}{(r_1/r_2)+1} \approx 0.0207 \text{ and } d_1 \approx -0.1148 \text{ Å} \cdot \text{amu}^{1/2}$$
 (A4.43)

Using $v''_1 = 1047 \text{ cm}^{-1}$ [59] and $v_1' = 1275 \text{ cm}^{-1}$ [54], it follows that $\gamma = -0.7059$, $\beta = 0.9062$, and

$$R(1,0) = -i \left(\frac{\beta}{1+\beta^2}\right)^{1/2} \left(\frac{1-\beta^2}{1+\beta^2}\right)^{1/2} \exp\left(-\frac{1}{2}\frac{\gamma^2\beta^2}{1+\beta^2}\right) \times 2i \beta^2 \gamma (1-\beta^4)^{-1/2} = -0.4013.$$
(A4.44)

Finally,

$$q_{10}=R(1,0)^2=0.1611.$$

This theoretical estimate agrees within 15% with the present experimental value $q_{10} \approx 0.14(-0.06, +0.16)$.

A similar calculation can be performed for the $[A^2\Sigma^+(00^00)+X^2\Pi_1(00^10)]$ transition of NCO. With v_1 '=1324 cm⁻¹ [48], ρ "- ρ '=2.408-2.369=0.039 Å, it follows that d_1 =0.1066 Å.amu^{1/2}, β =0.8893 and γ =0.6679. Using

$$R(0,0) = \sqrt{2} \left(\frac{\beta}{1+\beta^2}\right)^{1/2} \exp\left(-\frac{1}{2} \frac{\gamma^2 \beta^2}{1+\beta^2}\right) , \qquad (A4.45)$$

then

and

q₀₀≈0.81.

R(0,0)≃0.90

This estimate is again in good agreement with the experimental determination in chapter 4,

Appendix 5

Spectroscopic Programs

This appendix contains four computer programs written in Fortran. The input/output calls are compatible with the Hewlett-Packard 1000 MX series computers. The reader is directed to the program comments for computational details.

Program LCN calculates the broad-band absorption of CN around 388 nm. Program PART computes the partition function of NCO using the complete formulation of Hougen [49] (see eq. 4.10). Programs LNCOA and LNCOB calculate the semi-quantitative spectroscopy of NCO around 440 and 305 nm, respectively.

Program LCN

THU., 2 AUG. 1984 2:59 PM T≠ØØØØ4 IS ON CR GØ USING ØØØ24 BLKS R=ØØØØ LSLCN FTN4.L **aaa**1 SEMA (XYZ,Ø) ØØØ2 ØØØ3 PROGRAM LCN ØØØ4 ØØØ5 C This program calculates the broad band absorption of the CN transition ØØØ6 C B2sigma+ <-- X2sigma+. It takes into account the v"=Ø to v'=Ø ØØØ7 C and v"=1 to v'=1 vibrational bands. 0008 С The optical setup includes a high pressure mercury lamp, the shock ØØØ9 C tube and a monochromator. ØØ1Ø ØØ11 ØØ12 ØØ13 С MICHEL LOUGE 1982 ØØ14 С ØØ15 ØØ16 ØØ17 The following data is currently incorporated in the program: ØØ18 ¢ ØØ19 C MWCN..... CN molecular weight (gmole) ØØ2Ø С MWCP..... Collision partner mol.weight (gmole) ØØ21 С С SIG..... diameter (Angstroms) ØØ22 ØØ23 С TE..... B2sigma+ electronic energy (cm-1) LØ..... Monochromator dial setting in air (Angstroms) 8824 С ØØ25 С DX.....Entrance slit wioth (mm) ØØ26 С DY.....Exit slit width (mm) С ØØ27 LShock tube diameter (cm) ØØ28 С NREFAir index of refraction ØØ29 С ØØ3Ø ØØ31 ØØ32 DIMENSION S(5000), VO(200), NA1(3), NA2(3), NA3(3), IDCB(144) ØØ33 *, IPRAM(5) REAL L, INC, MWCN, MWCP, LØ, INCØ, JP, KJJ, KMAX, NREF, MONO, INCI ØØ34 COMMON LØ, DX, DY, ALPHA ØØ35 COMMON /XYZ/ AMON (5000) ØØ36 CALL RMPAR (IPRAM) ØØ37 CALL LUERR (ITERM) ØØ38 ØØ39 ITERW=ITERM IF (IPRAM(1).EQ.5) ITERM=5 IF (IPRAM(1).EQ.5) ITERW=9 ØØ4Ø 0041 ØØ42 ØØ43 С ØØ44 C The following set of lines can be included to plot the ØØ45 C transmission spectrum of CN. ØØ46 8847 ØØ48 NA1(1)=2HLCØØ49 NA1(2)=2HNС ØØ5Ø С NA1(3)=2H CALL CREAT (IDCB, IER, NA1(1), 59Ø,4) CALL CLOSE (IDCB) ØØ51 ØØ52 С ØØ53 ØØ54 NFLAG=Ø WRITE (ITERW, 184) FORMAT (//,5X,"If you want to calculate:",//, ØØ55 ØØ56 1Ø4 ØØ57 *10X, "the transmission resulting from",/, ØØ58 *10X, "a given CN mole fraction enter Ø", ØØ59 *// ØØ6Ø *10X, "the effective oscillator strength fel"./, ØØ61 *10X, "resulting from a calibration run ... enter 1",
```
ØØ62
                *//.
                *10X, "the CN mole fraction corresponding",/,
 ØØ63
                *10X, "to a given transmission I/10 ..... enter 2",
 ØØ64
                *//)
 ØØ65
 ØØ66
                 READ (ITERM. *) NADINE
 ØØ67
                 IF (NADINE.NE.Ø) GO TO 2Ø
 ØØ68
                 WRITE (ITERW, 100)
               WRITE (IIERW, 100)
FORMAT (10X, "Please input:",/,
*15X, "Pressure.....atm",/,
*15X, "Temperature.....Kelvins",//)
         100
 ØØ69
 ØØ7Ø
 ØØ71
                 READ (ITERM. *) P.T
 ØØ72
 ØØ73
                 WRITE (ITERW, 112)
                FORMAT (//,5X,"Individual calculation ... enter Ø",/,
5X,"Conversion of a mole fraction file",/
5X,"to a transmission file ... enter 1",//)
 ØØ74
         112
 ØØ75
 ØØ76
 ØØ77
                 READ (ITERM, *) NAD
 ØØ78
                 IF (NAD.NE.1) WRITE (ITERW, 116)
                FORMAT (//.5X, "Enter the CN mole fraction....ppm",//)
IF (NAD.NE.1) READ (ITERM.*) CHI
 0079
         116
 ØØ8Ø
 0081
                 IF (NAD.NE.1) WRITE (ITERW, 118)
 ØØ82
                 IF
                    (NAD.NE.1) READ (ITERM,*) NAD1
 ØØ83
                 IF (NAD1.EQ.1) NFLAG=3
                FORMAT (//,5X,"Do you want an uncertainty analysis ?",/,
 ØØ84
        118
               *1ØX,"yes...enter 1",/,
*1ØX,"no....enter Ø",//)
 ØØ85
 ØØ86
                IF (NAD.NE.1) GO TO 23
 ØØ87
 ØØ88
                WRITE (ITERW, 113)
                FORMAT (//,5X,"Enter kinetics file name...",//)
FORMAT (//,5X,"Output file name?...",//)
 ØØ89
         113
 ØØ9Ø
        115
                READ (ITERM, 114) (NA2(I), I=1,3)
 ØØ91
                FORMAT (3A2)
 ØØ92
        114
 8893
                WRITE (ITERW, 115)
                READ (ITERM, 114) (NA3(I), I=1,3)
 ØØ94
 ØØ95
                CALL CREAT (IDCB, IER, NA3(1), 48, 4)
 8896
                CALL CLOSE (IDCB)
 ØØ97
                GO TO 23
ØØ98
        2Ø
                IF (NADINE.NE.1) GO TO 21
                WRITE (ITERW, 108)
FORMAT (10X, "Please input:",/,
0099
0100
        1Ø8
              *15X, "Pressure.....atm",/,
*15X, "Temperature.....Kelvins",/,
*15X, "Mole fraction.....ppm",/,
*15X, "Experimental I/IØ ....per cent",//)
Ø1Ø1
Ø1Ø2
Ø1Ø3
Ø1Ø4
Ø1Ø5
                READ (ITERM, *) P.T.CHI.TRØ
Ø1Ø6
                GO TO 23
Ø1Ø7
                IF (NADINE.NE.2) GO TO 22
        21
Ø1Ø8
               WRITE (ITERW, 109)
               FORMAT (1ØX, "Please input:",/,
Ø1Ø9
        1Ø9
Ø11Ø
              *15X, "Pressure.....atm",/,
*15X, "Temperature.....Xelvins",/,
Ø111
              *15X, "Experimental I/IØ .....per cent",//>
Ø112
Ø113
               READ (ITERM,*) P.T.TRØ
Ø114
               GO TO 23
Ø115
       22
               STOP
Ø116
       23
               CONTINUE
Ø117
               TRØ=TRØ*1.E-2
Ø118
               HC=1.438789/T
Ø119
               MWCN=26.Ø177
Ø12.Ø
               MWCP=39.948Ø
Ø121
               SIG=4.Ø
$122
               TE=25751.8
Ø123
               WRITE (ITERW, 12Ø)
Ø124
               FORMAT (5X, "Do you wish to enter the monochromator",
       120
Ø125
              *" characteristics ?",/,
```

16.

3

Ъğ,

۱

a126	*107 "ves enter 1"./.
Ø120 Ø127	*10%, "no enter Ø",//)
Ø128	READ (ITERM, *) NAD2
ø129	IF (NAD2.NE.1) GO TO 121
Ø13Ø	29 WRITE (ITERW, 122)
Ø131	122 FORMAT (5X, "Please input :",/,
Ø132	*15X, "Monochromator dial settingAngstroms ",/,
Ø133	*15X,"Entrance Silt Widthmicrons",/,
0134	157, Exit Silt width
Ø135 Ø136	READ (ITERM.*) LØ.DY.ALPHA
<i>ø</i> 137	DX=OX*1E-3
Ø138	DY=DY*1E-3
Ø139	GO TO 123
Ø14Ø	121 CONTINUE
Ø141	LØ=3882.62
Ø142 Ø142	
Ø143 Ø144	A = P + 125
Ø145	123 L=15.24
Ø146	NREF=1.0002817
Ø147	RMASS=MWCN*MWCP/(MWCN+MWCP)
Ø148	CO=Ø.35621*P*SIG**2/SORT(T*RMASS)
Ø149	D0=7.1623E-7*TE*SQRT(T/MWCN)
0150	A=0.832555*CU/DU
Ø151 Ø152	1NCB = MIDV(A, 1) = A DV(1, 0) = DV(1, 0)
Ø153	OMINAL F B/(LØ+ALPHA*(DX+DY)/2.)/NREF
ø154	227222222222222222222222222222222222222
Ø155	C
Ø156	C The program divides the frequency range viewed by the monochromator
Ø157	C in 5000 intervals, and issues a warning if the grid does not allow for
Ø158 Ø150	C at least 10 intervals in one full line width.
Ø159 Ø16Ø	
Ø161	INC=(OMAX-OMIN)/FLOAT(4999)
Ø162	IF (INC.GT.INCØ) WRITE (ITERW,1Ø1) INC,INCØ
Ø163	1Ø1 FORMAT (//,5X,"Warning! The increment wavenumber is: ",F8.6,
Ø164	*" cm-1",/,
Ø165 Ø165	<pre>- 5X, "but 1/19-th of the full line width is: ",F8.6," cm-1",//) Y=INC#1 651/DO</pre>
Ø167	
Ø168	VOI=VOIGT(Ø,A)*Ø.939437/DO
Ø169	$1 \qquad I \mathscr{D} = I \mathscr{D} + 1$
Ø17Ø	VO(IØ)=VOIGT(X*(IØ-1),A)*Ø.939437/DO
Ø171	TEST=V0(IØ)/V01
0172	1F (1ES1.G), 1.E=Z.AND.10.E(2.200) GO (O 1) 0E=2 +4 #SVP(-HC#924) 7)+2 #EVP(-HC#7E)
Ø174	
Ø175	$\hat{\mathbf{Q}}\mathbf{V}=\boldsymbol{\beta},\boldsymbol{\beta}$
Ø176	12 NV=NV+1
Ø177	GV=GX(NV)*HC
Ø178	IF (GV.GT.5ØOR.NV.GE.75) GO TO 13
Ø1/9 Ø1/9	dv = dv + Exp(-Gv)
Ø181	
Ø182	
Ø183	C
Ø184	C The following spectroscopic constants for CN are taken from:
01166 0192	L C Hommbone (Creature of Distance Malassi)==1
Ø187	C Colket LL Quant, Spectrosc, Radist Transfor 21 7 (1994)3
Ø188	C Engleman [J. Mol. Spec., 49, 106 (1974)]
Ø189	C Spindler [J. Quant. Spectrosc. Radiat. Transfer, 5, 165 (1967)]

Ø19Ø	C			•	
Ø191	C				
0192	č	prgm nam	e varlable	value	reference
Ø194	č	TF	Те		
Ø195	ē		Nu <i>ØØ</i>	25751.8 cm-1	Herzberg
Ø196	С	MWCN	CN mol.weight	25/97.35 cm-1	Herzberg
Ø197	С	MWCP	Col.partner m.w.	20.91// gm 39.9492	
Ø198	C	SIG	Col.cross-section	4.9 angstrong	0-11-4
Ø199	C	NREF	Air index of ref.	1.0002917	CPC bandb
0200 a2a)	Č	•	Omega e(X)	2Ø71.1 cm-1	Engleman
0201 0202	č		OmegaeXe (X)	13.8 cm-1	ang reman
ø2ø3	č		Omega e(B) OmegaeXe (B)	2144.3 cm-1	"
Ø2Ø4	č	BEX	Be(X2sigma+)	12.2 cm-1	11
Ø2Ø5	С	AEX	alpha e (X2s+)	1.8985 cm-1	Herzberg
Ø2Ø6	С	BEB	Be(B2sigma+)	1./350-2 cm-1	19 6P
Ø2Ø7	ç	AEB	alpha e (82s+)	2.2150=2 amount	4 G
Ø2Ø8	C	MVER	m(vertex) for v"=Ø	27)	Honebore
0209	Č	NUV /	m(vertex) for v"=1	29)	nerzberg
Ø210 Ø211	ĉ		Dv for v°=Ø	6.414e-6 cm-1	Fogleman
Ø212	č	GAV (Dv for v"=1	6.42 e-5 cm-1	a a
Ø213	č		gamma for v°≂ø	6.16 e-3 cm-1	10 DB
Ø214	č	•	gamma for V =1	5.96 e-3 cm-1	14 11
Ø215	Ċ	DVB (Dv for v'≅Ø	6 50 6	
Ø216	С	(Dv for v'=1	5.58 e-6 cm-1	49 4 9
Ø217	С	GAB (gamma for v'=Ø	15 650-2 1	
Ø218	ç	(gamma for v'=1	15.05e-3 cm-1	
Ø219	C			10:50e-3 Cm-1	
8228	C	avv	Franck-Condon factor		
Ø221 Ø222	ĉ		v"=v'=Ø	Ø.92Ø4	Spindler
Ø222	č		v"=v'= <u>1</u>	0.79 <i>9</i> 0	
Ø224	č	FFL			
Ø225	č		oscillator strenght	Ø.328	
Ø 225	ccc	20000000	000000000000000000000000000000000000000		
Ø227		BEX=1.8	8996		222222222222222
Ø228		AEX=1.3	735E-2		
Ø229 Ø229		BEB=1.9	97ø1		
DC3灯 G221		AEB=2.2	215E-2		
Ø232	220	IF (NAU)	INE.NE.1) WRITE (ITERW,22Ø)		
Ø233	~~~	*107 Pus	(5%, "Do you input the value	of fel?",/,	
Ø234		*10X."no	enter I",/,		
Ø235		IF (NAD	JINE NE 1) READ (ITERM #) NAD		
Ø236		IF (NAD	DINE.NE.1.AND.NAD5 NE 1) 551-		
Ø237		IF (NAD	INE.NE.1.AND.NADS.EO.1) WIT	9.02239 5 (ITTEN 201)	
Ø238		IF (NAD	INE.NE.1.AND.NAD5.EQ.1) READ	(ITERW,221) (ITERN *) FCI	
10239 19210	221	FORMAT	(5X, "Please input fel:",/,)	····	
Ø241			=1,2		
8242			Ø		
Ø243					
Ø244		IF (NV.	EQ.1) MVER=29		
8245		IF (NV.	$EQ. \vartheta$ DVX=6.414F-6		
Ø246		IF (NV.	EQ.1) DVX=6.42 5-6		
10247 10242		IF (NV.	EQ.Ø) GAX=6.16 E-3		
#248 #240		IF (NV.	EQ.1) GAX=5.96 E-3		
825a		IF (NV.	EQ.Ø) DVB=6.58 E-6		
8251		TE CNV.	EU.I) DVB=6.69 E-5		
Ø252		TE (NV.)	EU.0/ GAB=15.55E+3		
Ø253		BVX=RFY	-AFX*(NV+0 5)		

ί.

Ŧ

Ī

ł

171

ł

BVB=BEB-AEB*(NV+Ø.5) Ø254 GB=2144.8*(NV+Ø.5)-12.2*(NV+Ø.5)**2 Ø255 IF (NV.EQ.Ø) QVV=Ø.92Ø4 Ø256 IF (NV.EQ.1) QVV=Ø.79ØØ ø257 OR=1./HC/BVX Ø258 DO 10 ND=1,2 Ø259 NDJ = -2*ND+3Ø26Ø DO 10 NA=1,2 Ø261 K=−1 Ø262 K = K + 1Ø263 11 Ø264 Ø265 Only R and P branches are considered in this program. Doublet splitting Ø266 С is taken into account. Rotational line strengths are twice the values Ø267 С reported by Schadee [Bull. Astron. Inst. Netherlands, 17, 311 (1964)], Ø268 C The factor of two results from our normalization convention: Ø269 C Ø27Ø $S(R1)+S(P1)=S(R2)+S(P2)=2J^{+1}$ Ø271 C Ø272 C Ø273 C The program first computes line strengths and positions for the two Ø274 bands $(\bar{y}-\bar{y})$ and 1-1) until it encounters a line that either falls out Ø275 С of the monochromator spectral range or is 188 times weaker than the Ø276 С strongest line so far. If the first line out of the monochromator Ø277 range belongs to a P-branch and has an index m smaller than the Ø278 С band head vertex. the program jumps to the first observable line Ø279 after the band head, and resumes its calculation until the lines Ø28Ø С Ø281 С are too weak. Ø282 Ø283 IF((NDJ.EQ.-1.AND.NA.EQ.1.AND.K.EQ.Ø).OR. Ø284 Ø285 (NDJ.EQ.-1.AND.NA.EQ.2.AND.K.EQ.Ø).OR. * (NDJ.EQ.-1.AND.NA.EQ.2.AND.K.EQ.1).03. Ø286 (NDJ.EQ.+1.AND.NA.EQ.2.AND.K.EQ.Ø)) 50 TO 11 Ø287 IF (NV.EQ.Ø) OM=25797.85+F(BV3,DVB,GAB,X+NDJ,NA)-Ø288 Ø289 *F(BVX,DVX,GAX,K,NA) IF (NV.EQ.1) Ø29Ø *OM=TE+GB-GX(NV)+F(BVB,DVB,GAB,K+NDJ,NA)-F(3VX,DVX,GAX,K,NA) Ø291 IF (OM.GT.OMAX.AND.NDJ.EQ.+1) GO TO 13 Ø292 (OM.LT.OMIN.AND.NDJ.EQ.+1) GO TO 16 Ø293 IF IF (OM.GT.OMAX.AND.NDJ.EQ.-1.AND.K.GT.MVER) GO TO 13 Ø294 IF (OM.LT.OMIN.AND.NDJ.EO.-1.AND.K.GT.MVER) GO TO 16 Ø295 (OM.GT.OMAX.AND.NDJ.EQ.-1.AND.K.LE.MVER) GO TO 16 Ø296 IF (OM.LT.OMIN.AND.NDJ.EQ.-1.AND.K.LE.MVER) K=2*MVER-K Ø297 IF (OM.LT.OMIN.AND.NDJ.EQ.-1.AND.K.LE.MVER) GO TO 11 Ø298 IF IF (NA.EQ.1) JP=FLOAT (K) + 9.5 IF (NA.EQ.2) JP=FLOAT (K) - 9.5 Ø299 16 Ø3ØØ (NDJ.EQ.-1) STR=(JP**2-.25)/JP Ø3Ø1 IF IF (NDJ.EQ.+1) STR=(JP+.5)*(JP+1.5)/(JP+1) Ø3Ø2 (NADINE.EQ.Ø.OR.NADINE.EQ.2) Ø3Ø3 TF *STR=STR/(2.*JP+1.)*QVV*FEL Ø3Ø4 Ø3Ø5 IF (NADINE.EQ.1) *STR=STR/(2.*JP+1.)*QVV Ø3Ø6 Ø3Ø7 EX=HC*(GX(NV)+F(BVX,DVX,GAX,K,NA)) Ø3Ø8 IF (EX.GT.5 \mathscr{D} .) EX= \mathscr{D} . \mathscr{D} Ø3Ø9 IF (EX.LE.50.) EX=EXP(-EX) IF ((NADINE.EQ.Ø.AND.NAD.EQ.Ø).OR.NADINE.EQ.1) Ø31Ø *KJJ=CHI*1E-6*P/T*6.476353E9*(2.*JP+1.)/QE/QV/QR*EX*STR Ø311 Ø312 IF (NADINE.EQ.2.OR. (NADINE.EQ.Ø.AND.NAD.EQ.1)) 1E-6*P/T*6.476353E9*(2.*JP+1.)/0E/QV/QR*EX*STR Ø313 *KJJ≃ Ø314 IF (KJJ.GT.KMAX) KMAX=KJJ Ø315 IF (KMAX.NE.Ø.9) TEST=KJJ/KMAX IF (KMAX.NE.Ø.Ø.AND.TEST.LE.1E-3) GO TO 13 Ø316 IF (OM.LT.OMIN.OR.OM.GT.OMAX) GO TO 11 Ø317

```
TEST=OM-INC*INT((OM-OMIN)/INC)-OMIN-INC/2.
Ø318
           IF (TEST.LE.Ø.Ø) INDEX=INT((OM-OMIN)/INC)+1
IF (TEST.GT.Ø.Ø) INDEX=INT((OM-OMIN)/INC)+2
Ø319
Ø32Ø
           S(INDEX)=S(INDEX)+KJJ*VO(1)*L
Ø321
     Ø322
Ø323
        Once a line is accepted, its center is assigned to the closest
Ø324
     С
Ø325
        grid point. 200 adjacent points on each side of the center line
     С
     С
        are then affected by the broadened line shape.
Ø326
Ø327
Ø328
     Ø329
           DO 14 I=1, IØ-1
Ø33Ø
           J=INDEX+I
           IF (J.LE. 5000) S(J)=S(J)+KJJ*VO(I+1)*L
Ø331
           J=INDEX-I
Ø332
Ø333
           IF (J.GE.1) S(J)=S(J)+KJJ*VO(I+1)*L
           CONTINUE
Ø334
     14
Ø335
           GO TO 11
           CONTINUE
Ø336
     10
     Ø337
Ø338
     C
Ø339
     C
        The following set of instructions can be used to plot the monochromatic
        transmission spectrum of CN as a function of vacuum frequency (see Fig.
Ø34Ø
     С
Ø341
     С
        A2.1). The spectral range is limited by the monochromator slit function.
Ø342
Ø343
     Ø344
Ø345
       The user is encouraged to purge the output file "LCN" after use,
     С
       because it uses in excess of 598 blocks of disk space...
Ø346
     C
Ø347
     Ø348
Ø349
Ø35Ø
     С
           IF (NADINE.NE.Ø) GO TO 99
Ø351
          CALL LFOUT (NA1, LUOUT)
     С
Ø352
          WRITE (LUOUT, 103)
     Ć
       1Ø3 FORMAT (4H1ØØØ)
Ø353
     С
          DO 97 I=1, 5000
Ø354
     C
     С
Ø355
          OM=OMIN+(I-1)*INC
Ø356
     С
          TRANS=EXP(-S(I))
Ø357
     C
          IF (I.EQ.1001.OR.
Ø358
     ¢
              I.EQ.2001.OR.
Ø359
     C
         *
              I.EQ.3001.OR.
Ø36Ø
     С
              I.EQ.4001) WRITE (LUOUT,103)
Ø361
     С
          WRITE (LUOUT, 96) OM, TRANS
Ø362
     C
      97
          CONTINUE
Ø363
     C
          CALL LFCLS (LUOUT)
          CONTINUE
Ø364
     C 99
Ø365
     С
Ø366
     $367
     96
          FORMAT (E14.9,1H,,E12.7)
Ø368
          ITER=Ø
Ø369
          IF (NAD.EQ.1) CALL LFIN (NA2,LUIN)
Ø37Ø
          IF
            (NAD.EQ.1) CALL LFOUT(NA3,LUO )
$371
          IF
            (NAD.EQ.1) READ (LUIN,*) NUM
$372
          IF (NAD.EQ.1) WRITE (LUO .117 ) NUM
Ø373
    117
          FORMAT (14)
Ø374
          UNK=Ø.Ø
Ø375
          IF (NADINE.EQ.Ø) UNK=1.Ø
$376
          IF (NADINE.EQ.1) UNK=Ø.Ø2239
$377
          IF (NADINE.EQ.2) WRITE (ITERW,111)
         FORMAT (//,5X,"Do you have an initial guess?...",/,
*5X,"If not, enter \mathscr{B}",//)
IF (NADINE.EQ.2) READ (ITERM,*) UNK
Ø378
    111
$379
Ø38ø
Ø381
          SUMØ=Ø.Ø
```

÷Ť

Į Ē

173

FAC=1.Ø Ø382 DO 32 I=1,5000 ø383 IF (1.EQ.1.OR.I.EQ.5000) FAC=2.0 Ø384 OM=OMIN+(I-1)*INC Ø385 WLØ=1.E8/OM/NREF Ø386 SUMØ=SUMØ+MONO(WLØ)/FAC Ø387 AMON(I)=MONO(WLØ) Ø388 CONTINUE Ø389 32 SUMØ=SUMØ*INC Ø39Ø (NAD.NE.1) GO TO 25 Ø391 IF DO 17 J=1,NUM Ø392 READ (LUIN, *) TIME, UNK Ø393 UNK=UNK*1E6 Ø394 CONTINUE 25 Ø395 SUM=Ø.Ø Ø396 IF (NADINE.NE.Ø) SUMD=Ø.Ø Ø397 Ø398 Ø399 To solve for the effective oscillator strength or for the mole fraction Ø4ØØ C Ø4Ø1 corresponding to a given experimental transmission, the program computes С C the first derivative of the transmission in respect to the unknown Ø4Ø2 quantity and uses a Newton-Raphson Iteration scheme. Ø4Ø3 С Ø4Ø4 C The program allows for $1\mathscr{G}$ iterations, and the criterion for convergence is a relative error of $1e-1\emptyset$. Ø4Ø5 С Ø4Ø6 С The initial guess for the unknown value is zero. Ø4Ø7 Ø4Ø8 FAC=1.Ø Ø4Ø9 Ø41Ø DO 15 I=1,5000 IF (I.EQ.1.OR.I.EQ.5000) FAC=2.0 Ø411 OM=OMIN+INC*(I-1) Ø412 Ø413 SØ=S(I)*UNK IF (SØ $.GT.5\emptyset.$ $EX\emptyset = \emptyset.\emptyset$ Ø414 IF (SØ $.LE.5\emptyset$.) $EX\emptyset = EXP (-S\emptyset$ Ø415 SUM=SUM+AMON(I)*EXØ/FAC Ø416 Ø417 IF (NADINE.NE.Ø) SUMD=SUMD+AMON(I)*EXØ*S(I)/FAC CONTINUE Ø418 15 Ø419 SUM=SUM*INC Ø42Ø IF (NADINE.EQ.Ø) GO TO 24 SUMD=SUMD*INC Ø421 UNK=UNK+(SUM-TRØ*SUMØ)/SUMD Ø422 TEST=ABS(SUM-TRØ*SUMØ)/ABS(SUMØ-SUM) Ø423 Ø424 (TEST.LT..ØØ1) GO TO 24 IF Ø425 ITER=ITER+1 Ø426 IF (ITER.GT.10) WRITE (ITERW,105) FORMAT (5X."WARNING! No convergence after 15 iterations.",//) IF (ITER.GT.18) STOP Ø427 1Ø5 Ø428 Ø429 GO TO 25 Ø43Ø 24 CONTINUE Ø431 TRANS=SUM/SUMØ*1ØØ. Ø432 (NAD.EQ.1) TRANS=TRANS*1.E-2 IF Ø433 IF (NAD.EQ.1) WRITE (LUO,96) TIME, TRANS (NAD.EQ.1) WRITE (ITERW, 223) J Ø434 IF FORMAT (5X, "J= ", I3) Ø435 223 Ø436 17 CONTINUE IF (NADINE.NE.Ø) WRITE (ITERW.11Ø) ITER
FORMAT(//.5X, "Convergence after ",I1," iterations",//) Ø437 Ø438 110 Ø439 IF (NADINE.EQ.Ø.AND.NAD.NE.1.AND.(NFLAG.EQ.Ø.OR.NFLAG.EQ.3)) Ø44Ø *WRITE (ITERW, 102) TRANS Ø441 FORMAT (//,5X, "Total transmission = ", F7.4," per cent",//) IF (NAD2.EQ.1.AND.(NFLAG.EQ.Ø.OR.NFLAG.EQ.3)) WRITE (ITERW,124) 102 Ø442 Ø443 IF (NAD2.EQ.1.AND.(NFLAG.EQ.Ø.OR.NFLAG.EQ.3))READ(ITERM.*)NAD3 8444 124 FORMAT (5X,"Do you want new monochromator settings?",/, Ø445 *10X,"yes....enter 1",/,

```
*18X, *no ....enter 8*,//)
IF (NAD3.NE.1) GO TO 28
  Ø446
  9447
  Ø448
             SUM=Ø.Ø
  Ø449
             SUMØ=Ø.Ø
  8458
             SUMD=Ø.Ø
  Ø451
             DO 3Ø I=1,5ØØØ
  Ø452
             S(I) = \emptyset.\emptyset
  Ø453
       3Ø
             CONTINUE
 Ø454
             GO TO 29
 Ø455
       28
             CONTINUE
 Ø456
             IF (NADINE.NE.Ø.OR.NAD1.NE.1) GO TO 26
 Ø457
             NFLAG=NFLAG-2
 Ø458
             IF (NFLAG.EQ.1) TRA=TRANS
 Ø459
             IF
               (NFLAG.EQ.-1) TRANSI=TRANS
 Ø46Ø
             IF (NFLAG.EQ.-3) TRANSØ=TRANS
 Ø461
             IF (NFLAG.EQ.-3) GO TO 25
 Ø462
             UNK=SQRT(1.5)**NFLAG
 Ø463
             GO TO 25
 Ø464
       26
             CONTINUE
 Ø465
             IF (NAD1.NE.1) GO TO 27
             UNFA=ALOG((100.-TRANS1)/(100.-TRANS0))/ALOG(1.5)*(100.-TRA)
 Ø466
 Ø467
             UNFA=UNFA*1.E-2
 Ø468
            WRITE (ITERW,119) UNFA
            FORMAT (//,5X, "The uncertainty on the CN mole fraction is:",//,
 Ø469
      119
            *30X,1H1,/,20X,20(1H-),/,20X,"S/N ratio *",F9.7,///)
 Ø47Ø
 8471
       27
            CONTINUE
 Ø472
            IF (NADINE.EQ.1) WRITE (ITERW, 106) UNK
            FORMAT (//,5X,"Oscillator strength =",F8.6,//)
 Ø473
       1Ø6
 Ø474
            IF (NADINE.EQ.2) WRITE (ITERW, 107) UNK
            FORMAT (//.5X, "CN mole fraction= ",F7.1 ," ppm",//)
 Ø475
      107
 Ø476
            IF (NAD.EQ.1) CALL LFCLS (LUIN)
 Ø477
            IF (NAD.EQ.1) CALL LFCLS (LUO )
 Ø478
            STOP
 Ø479
            END
 Ø48Ø
            FUNCTION F (BV.DV.GA.K.NA)
 Ø481
            F=BV*(K+1)*K-DV*K**2*(K+1)**2
            IF (NA.EQ.1) F=F+Ø.5*GA*K
 8482
Ø483
            IF (NA.EQ.2) F=F-Ø.5*GA*(K+1)
Ø484
            RETURN
Ø485
            END
Ø486
            FUNCTION GX (NV)
Ø487
            GX=2Ø71.1*(NV+Ø.5)-13.8*(NV+Ø.5)**2
Ø488
            RETURN
Ø489
            END
      Ø49Ø
Ø491
            REAL FUNCTION MONO ( WL )
      Ø492
Ø493
      С
Ø494
       This routine defines the monochromator slit function. It computes
      С
Ø495
       the relative power transmitted by the instrument as a function of
      С
Ø496
       wavelength in air. This function is accurately described by a simple
     С
Ø497
      C trapezoid.
Ø498
     C
Ø499
     Ø5ØØ
           REAL LØ
Ø5Ø1
           COMMON LØ, DX. DY. ALPHA
Ø5Ø2
           X=ABS(WL-LØ)
Ø5Ø3
           XØ=ALPHA*ABS(DX-DY)/2.
Ø5Ø4
           X1=ALPHA*
                      (DX+DY)/2.
Ø5Ø5
           IF (X.LE.XØ) MONO=1.Ø
Ø5Ø6
           IF (X.GE.X1) MONO=Ø.Ø
Ø5Ø7
           IF (X.GT.XØ.AND.X.LT.X1) MONO=1.-(X-XØ)/(X1-XØ)
Ø5Ø8
           RETURN
Ø5Ø9
           END
```

۱

ł

8518	00000	
a 5 1 1	• • • • • •	FUNCTION VOIGT(X,Y)
0311	~****	
0512	C	THE POLITING COMPUTED THE MOLET ENDETION AN ATTING ON A DESCRIPTION
Ø513	C	THIS ROUTINE COMPUTES THE VOIGT FUNCTION SYPPITINTEGRAL FROM
Ø514	С	- TO + INFINITY OF EXP(-T*T)/(Y**2+(X-T)**2)DT
a515	C****	****
ac16	•	PEAL B(22) BI(15) VN(15) VN(15) D(25) D1(25) D2(25) D2(25)
0210		REAL 5/227, R1(137, R1(137, R1(137, 00/237, D1(237, 92(237, 03(25),
Ø517		ID4(25),HN(25),XX(3),HH(3),NBY2(19),C(21)
Ø518		LOGICAL TRU
Ø519		DATA B/Ø7093602E-7/.XN/1092*876547
a52a		1 42 / VN/3* 6 5 2* / /* 3 1 9 9 2* 7/
0320		
Ø521		2H/.201/.XX/.52464/6,1.65068,./0/1068/,
Ø522		3HH/.2562121,.2588268E-1,.282Ø948/,NBY2/9.5,9.,8.5,8.,7.5,7.,6.5
Ø523		4.6.,5.5,5,,4.5,4.,3.5,3.,2.5,2.,1.5,1,5/.C/.7Ø936Ø2E-7,-2518434
9521		5F-6 8566874F-6 - 2787638F-5 860774F-5 - 2555551F-4 7228776F-4
#524		
0929		
Ø526		7.11196Ø1E-1,2Ø84976E-1,.3621573E-1,5851412E-1,.877Ø816E-1,
Ø527	1	3121664,.15584,184,.2/
Ø528		DATA TRU/.FALSE./
ac 20		
0323		
8238	U	
Ø531	С	REGION I: COMPUTE DAWSON'S FUNCTION AT MESH POINTS.
Ø532	C****	****
Ø533		TRUE, TRUE,
Ø534		
0034		
1535	101	R1(1) = -1/2.
Ø536		DO 1Ø3 I=1,25
Ø537		HN(I)=H*(I5)
Ø538		$CO=4$, π HN(I) π HN(I)/25, -2.
ac 20		
0339		
0549	192	B(0+1) = C0 = B(0-1) + C(0)
Ø541		DØ(I)=HN(I)*(B(22)-B(21))/5.
Ø542		D1(I)=12.*HN(I)*DØ(I)
0543		$D^{2}(T) = (HN(T) * D)(T) + D^{2}(T))/RT(2)$
<i><i><i>acxx</i></i></i>		$D_2(T) = (HN(T) + D_2(T) + D_1(T) + (HT(2)))$
10344		D3(1)~(NN(1)~D2(1)~D1(1))/R1(3)
0545	103	U4(1)=(HN(1)+U3(1)+U2(1))/R1(4)
Ø546	1Ø4	IF (X-5.) 1Ø5,112,112
Ø547	1Ø5	IF (Y-1.) 110,110,106
Ø548	1Ø6	IF $(X,GT,1,85*(3,6-Y))$ GO TO 112
8549	C****	*******
ALEA	č	PECION IT CONTINUED EPACTION COMPUTE NUMBER OF TERMS NEEDED
0550	~	REGION IT.CONTINUED FRACTION. COMPUTE NUMBER OF TERMS REEDED.
0221	C	
Ø552		IF (Y.LT.1.45) GO TO 1 <i>8</i> 7
Ø553		I=Y+Y
Ø554		GO TO 108
Ø555	107	
2555 2555	100	
0000	108	J=X+X+1.85
Ø557		MAX=XN(J)*YN(I)+.46
Ø558		MIN=MINØ(16,21-2*MAX)
Ø559	C****	******
Ø56Ø	č	EVALUATE CONTINUED ERACTION
Ø561	C****	
0501 0562	Ç	
20502		UU=Y
Ø563		VV=X
Ø564		DO 109 J=MIN.19
Ø565		
a566		· ABTETO// TO OUT // ///
4500 4527	1.00	
1000	103	VV=X−U×VV
Ø568		VOIGT≈UU/(UU*UU+VV*VV)/1.77454
Ø569		RETURN
Ø57Ø	11Ø	¥2=¥*¥
Ø571		TE (X+Y GE 5) GO TO 113
a572	*****	** ***********************************
0012 8670	C	
05/3	L	REGION I: COMPUTE DAWSON'S FUNCTION AT X FROM TAYLOR SERIES.

科目

でいたいという日本に

ac 74	<u> </u>
05/4	
Ø5/5	N=X/H
Ø576	DX=X-HN(N+1)
Ø577	$U = (\langle (D4(N+1)) \times D2(N-1) \rangle \times D2(N-1) \rangle \times D2(N-1) \rangle$
Ø578	V = 1, -2, *X * U
Ø579	
<i>a</i> eo <i>a</i>	
8500	C TAYLOR SERIES EXPANSION ABOUT Y=Ø.Ø
0581	
Ø582	VV=EXP(Y2-X*X)*COS(2.*X*Y)/1.128379_V*V
Ø583	UU=-Y
Ø584	MAX=5.+(12.5-X)* 8*V
Ø585	DO 111 I = 2 May 2
<i>a</i>586	
a507	
0007	v = (x - 0 + v) / Ri(1 + 1)
0588	00=-00*72
0589	
Ø59Ø	VOIGT=1.128379*VV
Ø591	RETURN
Ø592	112 Y2=Y*Y
Ø593	IF (Y T 1 - 6975 + y) = 0 = 70 + 10
a591	C*************************************
00074 0000	
Ø333	C REGION IIIB: 2-POINT GAUSS-HERMITE QUADRATURE
8230	
Ø597	U=X-XX(3)
Ø598	V=X+XX(3)
Ø599	VOIGT=Y*(HH(3)/(V2+U*()+UU(2)/(V2-V+V))
Ø6ØØ	RETURN
Ø6Ø1	****
8682	
8682	REGION ITTA: 4-POINT GAUSS-HERMITE QUADRATURE.
0003	
0004	113 0 = x - xx(1)
0605	V=X+XX(1)
Ø6Ø6	UU=X-XX(2)
Ø6Ø7	VV=X+XX(2)
Ø6Ø8	V01GT=V*(HH(1))/(V2+U*U)+UU(1)/(V2+UU(1)/(V2+U*U)+UU(1)/(V2+U*U)+UU(1)/(UU(1)/(UU(1)/(UU(1)/(U
Ø6Ø9	1(Y2+VV*V))
8618	
Ø611	
ac12	
2012	FUNCTION WIDV(A)
2013	
Ø614	
Ø615	C This function gives an approvimate per dia successful to the second se
Ø616	C value for the half-width at half end
Ø617	C Voigt profile of property
Ø618	C
Ø619	
~~	
2020 2000	DATA PI/3.1415926/,AC/Ø.18121/
2021	RL=SQRT(ALOG(2.))
0622	D=(A-RL)/(A+RL)
Ø623	$BD = \emptyset$. $\emptyset 23665 * EXP(\emptyset, 6 * D) + \emptyset$. $\emptyset \emptyset A 1 P * E V P (- 1 - 0 + 0)$
Ø624	RD=1, $-(AC*(1 - 0.*)) = 0.*(2.0)(0.1*0)(0.1*0)$
0625	VIOVERD#(AID) ////////////////////////////////////
0626	DETIDA
8627	
~~~/	

1. 1

177

ł

ł

#### Program PART

3:02 PM THU., 2 AUG., 1984 LSPART T=00004 IS ON CR GØ USING 00011 BLKS R=0000 FTN4,L 0001 PROGRAM PART 0002 ØØØ3 9994 С MICHEL LOUGE 1983 ØØØ5 С ØØØ6 С ØØØ7 INTEGER VMAX,V ØØØ8 REAL JMAX, J, LA1, LA2, LA3 0009 ØØ1Ø DATA E,A /-.1591,-96.2Ø/ DATA B,D /.3894,.149E-6/ ØØ11 DATA 01,02,03 /1847.,538.94,2383./ ØØ12 ØØ13 DATA L /1/ DATA X2.XK /Ø.69.Ø.77/ ØØ14 ØØ15 CALL LUERR (ITERM) WRITE (ITERM, 100) ØØ16 FORMAT (5X, "Please enter temperature (K) _") READ (ITERM,*) T ØØ17 100 ØØ18 ØØ19 HC=1.4388/T QV1=1./(1.-EXP(-HC*O1)) ØØ2Ø QV3=1./(1.-EXP(-HC*O3)) VMAX=INT(T/100.)+15 ØØ21 ØØ22 ØØ23  $JMAX=3.*SQRT(T)+5\emptyset$ . ØØ24 Q=Ø.Ø DO 1 I=1,VMAX+1 ØØ25 ØØ26 V = I - IKMAX=V+L ØØ27 ØØ28 K=KMAX+2 C1=-E**2*02/8.*FLOAT(V+1) ØØ29 C=C1*FLOAT(V+2) ØØ3Ø 2 K=K-2 ØØ31 IF (K.LT.Ø) GC TO 1 ØØ32 ØØ33 R=Ø.5*SQRT(A**2+FLOAT(V+1-K)*FLOAT(V+1+K) **E**2*02**2) ØØ34 SB=Ø.5*E*02*SQRT(FLOAT(V+1-K)*FLOAT(V+1+K))/R ØØ35 ANH=X2*FLOAT(V)**2+XK*(X**2-1.)+02*FLOAT(V) IF (K.NE.KMAX) GO TO 3 ØØ36 ØØ37 ØØ38 AEFF=A*(1.-E*#2/8.*FLOAT(K)*FLOAT(K+1)) ØØ39 J=FLOAT(K)-Ø.5 ØØ 4 Ø F=C+B*FLOAT(K)-9.5*A+ANH ØØ41 Q=Q+(2.*J+1.)*2.*EXP(-F*HC) ØØ42 4 J=J+1. ØØ43 F=C+B*((J+Ø.5)**2-FLOAT(K)**2)+ANH ØØ44 F1=Ø.5*SQRT(4.*8**2*(J+Ø.5)**2 ØØ45 *+AEFF*(AEFF-4.*B*FLOAT(X))) ØØ46 Q=Q+(2.*J+1.)=2.*(EXP(-HC*(F+F1))+EXP(-HC*(F-F1))) 8847 IF (J.LT.JMAX) GO TO 4 ØØ48 GO TO 2 ØØ49 3 CONTINUE ØØ5Ø IF (K.EQ.Ø) GO TO 5 ØØ51 W=FLOAT(V+1)*FLOAT(X)*A*E**2*02/16./R ØØ52 CB=Ø.5*A/R ØØ53 J=FLOAT(K)-Ø.5ØØ54 F=C1+B*FLOAT(K)+ANH ØØ55 F1=R+W ØØ56 Q=Q+(2.*J+1.)*2.*(EXP(-HC*(F+F1))+EXP(-HC*(F-F1))) ØØ57 б J = J + 1. ØØ58 LA1=R+CB**2*B**2/2./R*(J+Ø.5-FLOAT(K))*(J+Ø.5+FLOAT(K)) ØØ59 LA2=SQRT((W+B*FLOAT(X))**2+SB**2*B**2* ØØ6Ø *(J+Ø.5-FLOAT(K))*(J+Ø.5+FLOAT(K))) ØØ61 LA3=SQRT((W-B*FLOAT(K))**2+SB**2*B**2*

国家が学行用権の法

ŧ

ØØ62		*(J+Ø.5-FLOAT(K))*(J+Ø.5+FLOAT(K)))
ØØ63		$F=C1+B*(J+\emptyset, S-FLOAT(K))*(J+\emptyset, S+FLOAT(K))+ANH$
ØØ64		Q=Q+(2,*J+1,)*2,*(EXP(-HC*(F+LAI+LA2))+
0065		* $EXP(-HC*(F+LA) - LA2)) +$
<b><i><b>a</b></i>a66</b>		
a 767		
aa68		IF (J.LT.JMAX) GO TO 6
aa69		
aa7a	5	
a a 7 1	5	
00/1	٩	
aa73	0	E=C1+R*/.3+0 E1**2+ANU
00/3		F - GIY D - Y ( U + U + J ) 2 + ANA
00/4		F1=K-~2+B-~2~(J+0.5)*~2
8875		$F \ge 2 \cdot B = \{J + b + b\} = R = SB$
00/6		d=d+(2, *J+1, )*(EXP(-HC*(F+SORT(F1+F2)))+
0977		= EXP(-HC=(F+SQRT(F1-F2)))+
0078		<pre># EXP(-HC*(F-SQRT(F1+F2)))+</pre>
ØØ79		<pre>* EXP(-HC*(F-SQRT(F1-F2))))</pre>
ØØ8Ø		J=J+1.
ØØ81		IF (J.LT.JMAX) GO TO 8
ØØ82	1	CONTINUE
ØØ83		Q=Q*QV1*QV3
ØØ84		WRITE (ITERM, 1Ø1) T,O
ØØ85	1Ø1	FORMAT (5X, "The partition function at ".F7.2." is:"
ØØ86		*E12.7)
ØØ87		STOP
ØØ88		END

,

۱

ł

The second

ï

## Program LNCOA

3:Ø1 PM THU., 2 AUG., 1 LSNCOA T=ØØØØ4 IS ON CR GØ 2 AUG., 1984 USING ØØ111 BLKS R=ØØØØ FTN4,L ØØØ1 SEMA (XYZ.Ø) ØØØ2 PROGRAM LNCOA ØØØ3 **aaa**4 ØØØ5 C MICHEL LOUGE 1983 8886 C ØØØ7 ØØØ8 This program calculates the semi-quantitative spectroscopy of the NCO[A2Sigma+i(100) <-- X2PIi(000)] band around 440nm. øøø9 ØØ1Ø С It evaluates line strengths and positions of the twelve possible С ØØ11 C branches of the band. References for the calculations are: ØØ12 ØØ13 ØØ14 content reference Author ØØ15 C spectr.csts.of X2PIi,Renner effect,etc... ØØ16 48 Dixon С Rovibronic levels of a 2911 linear XYZ mol. ØØ17 49 С Hougen ØØ18 spectr.review 25,66,67 Herzberg С rotational line strengths for 2Sig <-- 2PI ØØ19 26 Kovacs C ØØ2Ø background on diatomic mol.spectra 102 Lucht ØØ21 С C ØØ22 The input and output of the program are: ØØ23 С Ċ ØØ24 output, units input.units mode ØØ25 С C ØØ26 relative line temperature (K) line position. С strength (cm-2*atm-1). ØØ27 relative strength С ØØ28 iins pos. (cm-1 or Angs.), (mode 1) С ØØ29 and Jⁱⁱ ØØ3Ø С С ØØ31 relative absorption temperature (K), line position. ØØ32 С coaff. (cm-1*atm-1) Voigt factor, relative strength, ØØ33 C as a funct. of posit. spectral region broadening С ØØ34 (cm-1 or Angstroms) cm-1 or Angstroms (mode 2) С ØØ35 C ØØ36 ØØ37 C The formulae associated with the two modes are: ØØ38 ØØ39 С mode 1: ØØ 4 Ø С ØØ41 C 1/IØ=exp[-K*flØ*Phi*Pnco*L] ØØ42 C ØØ43 C mode 2: ØØ44 C ¢ ØØ45 I/IØ=exp[-S*flØ*Pnco*L] ØØ46 С С ØØ47 ØØ48 С where: K..... relative result of mode 1 (cm-2*atm-1) ØØ49 С f1Ø... fel*qv"v' fel... electronic oscillator strength qv"v' Franck-Condon factor C ØØ5Ø ¢ ØØ51 ØØ52 C Phi... lineshape factor (cm) С ØØ53 Phoo.. partial pressure of NCO (atm) ØØ54 Ċ L.... absorption cell length (cm) ØØ55 С S.... relative strength (mode 2 output) (cm-1*atm-1) С ØØ56 I/IØ.. transmission (Beer's law) ØØ57 0058 ØØ59 IMPLICIT DOUBLE PRECISION (A-H.O-Z) 8868 DIMENSION IDCB(144), NAME(3) ØØ61

180

.

8862 INTEGER NP(4,12) COMMON /XYZ/ ST(5000),VO(2000) ØØ63 ØØ64 DOUBLE PRECISION J,K.KMAX DOUBLE PRECISION INDEX ØØ65 ØØ66 NAME(1)=2HLN ØØ67 NAME(2)=2HCO ØØ68 NAME(3)=2HSA ØØ69 DATA NP ØØ7Ø ØØ71 The array NP describes the possible branches in the spectrum. ØØ72 С ØØ73 С We have: ØØ74 С NP(1,1) .... Delta(J)=J'-J" ØØ75 С NP(2,1) .... Alpha (Upper state) ØØ76 С NP(3,i) .... Beta (Lower state) ØØ77 C NP(4,i) ....  $J \mathcal{Q} - \mathcal{Q}$ , 5 ( $J \mathcal{Q} = lowest possible J^*$ ) ØØ78 C Note that Alpha (or Beta) =1 means that J=K+1/2 and F1=rot.energyØØ79 С ØØ8Ø С 2 J=K-1/2 F2= " ØØ81 С The branches described by NP(1,j) are: ØØ82 С ØØ83 C ØØ34 C Q1 P 1 R 1 qR12 pQ12 oP12 sR21 rQ21 gP21 R2 ØØ85 02 P2 C 1, Ø, -1, 1. Ø, -1. 1, -1, 1, ø, ø, -1, ØØ86 С 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, ØØ87 C 1, 1. 1, 2, 2, 2. 1, 1, 2, 1, 2, 2, ØØ88 С ø, 1, 1. 1, 1, ø, 1, 1. 2, ØØ89 1, 1, 2 / С ØØ9Ø ØØ9,1 * 1, 1, 1, 1, * Ø. 1, 1, 1, ØØ92 ØØ93 *-1, 1, <u>1</u>, Ø, ØØ91 * 1, 1, 2, 1, ØØ95 * Ø, 1, 2, 1, ØØ96 *-1, 1, 2, Ø, ØØ97 * 1, 2, 1, 1, ØØ98 * Ø, 2, 1, 1, ØØ99 *-1, 2, 1, 2, * 1, 2, 2, 1, Ø1ØØ Ø1Ø1 * Ø, 2, 2, 1, Ø1Ø2 *-1, 2, 2. 2/ Ø1Ø3 CALL CREAT (IDCB, IER, NAME, 144, 4) Ø1Ø4 CALL CLOSE (IDCB) Ø1Ø5 Ø1Ø6 C The program names and creates its output file LNCOSA. The format is Ø1Ø7 C compatible with GRAPH. In mode 1, the output file contains 5 blocks Ø1Ø8 Ø1Ø9 C of 1000 points each to describe the proadened spectrum. In mode 2, the output file lists line strengths and positions for the 12 branches \$11Ø Ø111 C RI through P2. Note that in mode 2, the number of lines in each C individual band is automatically adjusted by the program to account Ø112 Ø113 C for different rotational progressions at different temperatures. Ø114 C For simplicity of programming, the number of lines in each branch is C omitted in the output file, and it is replaced by a row of (*). Ø115 Ø116 C Before graphing, the output file of mode 2 should be adited accordingly. Ø117 Ø118 Ø119 CALL LFOUT (NAME, LUOUT) Ø12Ø CALL LUERR (IT) Ø121 WRITE (IT,1Ø3) Ø122 FORMAT (5X, "If you want wavenumbers in vacuum, enter  $\mathcal{G}$ ", /. 1Ø3 Ø123 wavelengths in air, enter i..._") Ø124 READ (IT,*) NAD Ø125 WRITE ( IT, 180)

```
FORMAT (5X, "Please enter the temperature: _ ")
     100
Ø126
           READ (IT.*) T
Ø127
           WRITE (IT, 1Ø4)
Ø128
           FORMAT (5X, "Do you consider broadening ?"./.
     1Ø4
Ø129
          *10X,"yes ... enter 1",/,
*10X,"no ... enter 2 __")
Ø13Ø
Ø131
           READ (IT,*) NAD1
Ø132
           IF (NAD1.NE.1) GO TO 4
Ø133
           IF (NAD.EQ.Ø) WRITE (IT,1Ø5)
Ø134
           FORMAT (5X, "Please enter the spectral region:",/,
ø135
     105
          *1ØX,"Omin,Omax ... cm-1 in vacuum _")
Ø136
           IF (NAD.EQ.1) WRITE (IT,105)
Ø137
           FORMAT (5X, "Please enter the spectral region:",/,
     1Ø6
Ø138
                                                       <u>, " `</u>
          *10X, "Lamb.min, lamb.max ... Angstroms in air
Ø139
           READ (IT.*) WMIN.WMAX
Ø14Ø
           WRITE (IT,1Ø7)
Ø141
           FORMAT (5%, "Please enter the Voigt parameter a: __")
Ø142
     1Ø7
           READ (IT,*) A
Ø143
           WRITE (IT, 112)
Ø144
           FORMAT (5X, "Do you intend to calculate Omax only?",/,
     112
Ø145
          *1ØX,"yes... enter 1",/,
*1ØX,"no ... enter Ø __")
Ø146
Ø147
           READ (IT,*) NAD2
Ø148
           IF (NAD.EQ.1) WMIN=1.D8/INDIX(WMIN)/WMIN
Ø149
           IF (NAD.EQ.1) WMAX1=1.D8/INDEX(WMAX)/WMAX
Ø15Ø
           IF (NAD.EQ.1) WMAX=WMIN
Ø151
           IF (NAD.EQ.1) WMIN=WMAX1
Ø152
      Ø153
J154
       Note that the line positions have been computed using frequencies
in vacuo (cm-1) or wavelength in air (Angstroms). The function INDEX
Ø155
      С
      C
Ø156
       is called to perform the appropriate corrections.
Ø157
      С
Ø158
      Ø159
           AINC=DABS(WMAX-VMIN)/4.999D3
Ø16Ø
      Ø161
Ø162
       In mode 2, the program divides the spectral region of in-
terest in 5900 increments (variable AINC). Note that the line posi-
Ø163
      C
Ø164
      C
      C tions are calculated in double precision.
Ø165
Ø166
      Ø167
           DO=7.1623D-7*22750.*DSORT(T/42.)
Ø168
      Ø169
Ø17Ø
       To calculate Doppler widths, a molecular weigth of 42 amu and an
Ø171
      C
      C average transition frequency of 22733 cm-1 have been assumed.
Ø172
Ø173
      C
      Ø174
Ø175
      C Some variables used in this program:
Ø176
Ø177
      C
Ø178
                                       meaning
      C
           variable name
Ø179
      С
                                        Doppler width (cm-1)
             DO
Ø18Ø
      C
                                       Voigt factor
Ø181
      С
                                        relative absorption coeff. (cm-1*atm-1)
      С
             ST(5000)
Ø182
                                       lower bound of the spectral region upper bound of the spectral region
Ø183
      С
             WMIN
Ø184
      С
             WMAX
                                       The user's input of WHIN and MMAX
      С
Ø185
                                       should be consistent with the
Ø186
      С
                                       choice of cm-1 in vacuum or Angstrom
Ø187
      C
                                       in air. Note that the program always
Ø188
      C
                                       converts to frequencies in cm-1 (vac.)
Ø189
      C
```

Ø102 С T Temperature (K) Tempining intrement for S-calc. (cm-1) Tempining intrement (cm-2*atm-1) AINC ø191 С Ø192 С ø193 С KMAX .  $\checkmark$  in the branch so far. VOIGT(X,Y) Ø194 С Function Ø195 С VO(2000) Songt line shape func. array (cm) Transition wave number in vac. (cm-1) Ø196 С Ω С OM(J,M,I,LEVEL) ø197 Energy level (cm-1) Ø198 С DJ J'-Jª ø199 С J Ground state J" **8288** С Q(T) Total partition function Ø2Ø1 С IND Index for the S(5033) array ø2ø2 С INDEX(WL) Air index of refraction func.of wav.le. ø2Ø3 С Ø2Ø4 X=AINC*1.6651/DO Ø2Ø5 Ø2Ø6 DO 9 I=1,5000 ST(I)=Ø.Ø Ø2Ø7 Ø2Ø8 9 CONTINUE DO 1Ø I=1,2ØØØ Ø2Ø9 Ø21Ø VO(I)=Ø.Ø Ø211 Ø212 C After setting the increment in mode 2, the program computes Voigt Ø213 Ø214 С lineshapes (cm) which are valid for any line in the band. The integer  $I \emptyset$  is the total number of points considered in a half Ø215 C C lineshape. (The complete lineshape function is therefore sampled using Ø216 C 2*IØ points.) Ø217 Ø218 C Ø219 Ø22Ø 1Ø CONTINUE Ø221 10=0 Ø222 VOI=VOIGT(Ø,A)*Ø.939437/D0 Ø223 5  $I \mathscr{D} = I \mathscr{D} + 1$ Ø224 VO(IØ)=VOIGT(X*(IØ-1),A)=9.939437/DO Ø225 TEST=VO(IØ)/VOI Ø226 IF (TEST.GT.5.D-4.AND.Ig.LT.2888) GO TO 5 Ø227 Ø228 С Ø229 WMIN=WMIN-(IØ-1)*AINC Ø23Ø WMAX=WMAX+(IØ-1)*AINC Ø231 C Ø232 Ø233 r Ø234 C Note that the computer automatically extends the spectral range used Ø235 in mode 2 to account for all possible lines that can influence the С Ø236 C spectral region of interest. Ø237 Ø238 Ø239 IØØ=IØ+4999 Ø24Ø CONTINUE 4 Ø241 IF (IØ.EQ.2000) WRITE (1T.113) Ø242 FORMAT (5X, "Warning: The number of points to describe",/, 113 Ø243 *5X, "the Voigt profile is unsufficient." ) Ø244 Ø245 С Ø246 C loop over 12 possible branches Ø247 С Ø248 DO 1 I=1,12 Ø249 Ø25Ø Ø251 KMAX=Ø.Ø Ø252 J=NP(4,1)+.5 Ø253

- 2

۱

ľ

Ø254 C implicit loop over all relevant values of J" Ø255 С С Ø256 3 CONTINUE Ø257 Ø258 C Ø259 O=OM(J+NP(1,I),NP(2,I),I.2)-OM(J.NP(3,I),I.1) Ø26Ø IF (NAD.EQ.1.AND.NAD1.NE.1) 0=1.D8/0 Ø261 IF (NAD.EG.1.AND.NAD1.NE.1) O=O/INDEX(O) Ø262 K=5.477D9/T*2.*DEXP(-1.4388*OM(J.NP(3.1),1,1)/T)/Q(T) Ø263 22222222 Ø264 Ø265 This factor of 2 has been introduced to respect the normalization Ø266 С convention of the rotational line strengths. We assume that each Ø267 С lambda singlet is an initial level of degeneracy 2J"+1, despite the Ø268 С small energy difference. Therefore, we have: Ø269 С Ø27Ø C sR21+Q1+qP21= Ø271 С R1+rQ21+P1 Ø272 С R2+pQ12+P2 С Ø273 qR12+Q2+oP12= 2J"+1 Ø274 С Ø275 Kovacs, however, quotes rotational line strengths with: Ø276 С Ø277 С sR21+Q1+qP21+R1+rQ21+P1=R2+pQ12+P2+qR12+Q2+o?12=2J"+1 Ø278 C Ø279 In other words, Kovacs considers each initial level as a С Ø280 C Lambda doublet. Consequently, Kovacs' line strengths must be Ø281 multiplied by a factor of 2. Ø282 С Ø283 C Ø284 **S(J,NP(1,I),NP(2,I),NP(3,I)) Ø285 IF (NADI.NE.1) WRITE (LUOUT, 191) 0.K.J Ø286 FORMAT (2X, D12.7.19, , D12.7.19, .D9.4) Ø287 1Ø1 IF (K.GT.KMAX) KMAX=K Ø288 TEST=K/KMAX Ø289 IF (NAD1.NE.1.OR.O.GT.WMAX.OR.O.LT.WMIN) GO TO 6 Ø29Ø Ø291 Ø292 In mode 2, after checking that a line falls within the spectral range Ø293 C of interest, the program calculates the contribution of the line to Ø294 С the relative absorption coefficient. Ø295 С C To this end, it first computes the closest index for line center Ø296 (variable IND) then proceeds to fill ID adjacent S(I) on both Ø297 С sides. Note that 1<IND<2*18+4998. Ø298 C Ø299 ตรฐต TEST1=0-AINC*IDINT((0-WMIN)/AINC)-WMIN-AIMC/2. Ø3Ø1 IF (TEST1.LE.Ø.Ø) IND=IDINT((O-WMIN)/AIHC) +1 Ø3Ø2 IF (TEST1.GT.Ø.Ø) IND=IDINT((O-WMIN)/AINC) +2 Ø3Ø3 IF (IND.GE.IØ.AND.IND.LE.ISS) ST(IND-IS*1)=ST(IND-IS+1) Ø3Ø4 Ø3Ø5 *+K*VO(1) Ø3Ø6 DO 7 I1=1, IØ-1 Ø3Ø7 J1 = IND + I1IF (J1.GE.IØ.AND.J1.LE.IØØ) ST(J1-IØ+1)=ST(J1-IØ+1)+K*VO(I1+1) Ø3Ø8 Ø3Ø9 J1=IND-I1 IF (J1.GE.IØ.AND.J1.LE.IØ3) ST(J1-IS+1)=ST(J1-IS+1)+K*VO(I1+1) Ø31Ø 7 Ø311 CONTINUE Ø312 6 CONTINUE Ø313 IF (TEST.GT.Ø.Ø1) J=J+1. Ø314 Ø315 The program considers all possible lines in a given branch until the Ø316 С C molative line strength is 1% of the strongest value in the branch so Ø317

#### 184

Ø318	1 C	far.								
Ø319	C									
Ø32Ø		222222222222222222222222222222222222222								
Ø321		IF	(TEST.	GT.Ø.Ø1)	GO TO 3					
0322			(NAD1.	NE.1) WR	ITE (LUOUT)	,192)				
Ø323	. 11	02 FC	RMAT(5)	1H*))						
0324	1	00	NTINUE		<b>—</b> ———————————————————————————————————					
Ø325 7026		11	(NADI.	NE.1) GO	TO 12					
0320		51	M=ย.ย							
a229		0-	8 I≏IX	, 100					•	
a320		15		-17-AINC	00/0					
a33a		15	(NAD C	(0,1) 0=1	.08/0					
a331		11	=1-(10-		/INDEX(U)					
<b>Ø</b> 332		ĬĒ		1 aa1 op						
Ø333		*	11.FO	2001.00	•					
Ø334		*	T1.F0	3001 00	•					
Ø335		*	II.EO	.0001.0R	•					
Ø336		*	I1.EQ	. 4001.AN	D.NAD2 NF 1	A WETTE ZIN	OUT 1101			
Ø337	11	Ø FO	RMAT (4	HIØØØ)		7 WAITE (LU	(01,110)			
Ø338		IF	(ST(11	).LE.STM	) GO TO 11					
Ø339		ST	M=ST(II	)						
Ø34Ø		OM.	AX=0							
Ø341	11	IF	(NAD2.	NE.1) WR	ITE (LUOUT.	1Ø9) 0.ST(1	1)			
Ø342	1Ø	'9 FOI	RMAT (D	14.9,1H,	,D12.7)		• •			
#343	8	CO	NTINUE							
0344	12	COL	NTINUE							
0345		115	(NAD1.	NE.Ø) WR	ITE (IT,111	> OMAX,STM				
0340	11	1 101	KMAI (5.	X,"Ine po	osition of	the max. abs	5. coeff.	. 1s: •,	D14.9,	
Ø347 Ø319		- / . C A I	ux, and	d Beta/Fi	JJ = ", D14.	9)				
Ø340			-L LFUL: 10	5(10001)						
A35A		FN	) )							
Ø351		0.01			UNCTION ON	/ 1 M T LEVEL				
Ø352		IME			PECISION (A	(V,M,I,LEVE) -4 0-7)	• /			
Ø353		CON	MON /X	YZ/ ST(50	199).VO(200	-n,0-2/ a)				
Ø354	CC	cccccc	:00000	22222222	000000000000000000000000000000000000000				~~~~~~	
Ø355	¢									
Ø356	C.	This fu	Inction	calculat	es the rot	ational ener	av level	s of th	0 V2PT (	
Ø357	C (	electro	onic lev	vel accor	ding to th	e formula of	Hill an	d Van V	le Azrii	
0358	C	<b>.</b>							· · · · ·	
0359	C	It calc	ulates	the ener	gy of the :	2Sigma÷ rot.	levels	accordi	ng to	
10362 0362		Dixon [	Phil. 1	Frans. Ro	y, Soc. Lo:	ndon, A252,	155 (193	Ø)].		
Ø367	۰ ۲	The com			A					
Ø363	č	me con	scancs	used in	this funct	ion are:				
Ø364	Ċ	prom n	ame	meaning	น มาการ	(cm=1)				
Ø365	С				Varue		sour	ce and	remarks	
Ø366	С	В		8"	.3894		Divon	+===10	7 - 170	
Ø367	С			B'	.40211		0 i von	table	7 7.178 5 p.175	
Ø363	С	D		D "	.149 e-	-6	Dixon	Cabie	o b.1.2	
Ø369	C	D		D'	.177 e	-6	01xon			
Ø37Ø	Ç	A		A"	-95.50		Dixon	9,173	tabla 7	
0371	C	_		Α'	S.S					
8372	C	P		P	.592		Dixon	table	7 5.178	
03/3	C	DBL					Lambéa	-doublt	ng term energ	10
NJ/4 NJ7=	с С	NUBL			÷1		for up	per Lam	b. doubl. com	, J 10 -
8375	č						(2012,	R2 and	P2 Sranches)	)
8377	č				-1		for lo	wer Lam	b. coubl. com	ıp.
Ø378	č						(7812,	Q2 and	o?12 branche	s)
Ø379	č	0		กมØ"	a		P.,		<b>.</b> .	
Ø38Ø	С			nuØ'	22753 98		sy con-	vention.	Uixon	
Ø381	С				I I I I I I I I I I I I I I I I I I I		200510	ars the	zero point	
					•		anely.	agove i	ле потелтія)	

Ø382 Dixon table 4 well (TØ instead of Te) Ø383 С Note that the 2Pil/2 level of the ground electronic state exhibits a Ø384 C small Lambda-doubling, according to Dixon. We have the selection rule Ø385 С + <--> - and the following symmetry rules for rotational levels: Ø386 С Ø387 С Ø388 For 2Sigma+ states: С Rotational levels are + for even N Ø389 - for odd N Ø39Ø Ø391 Ø392 For 2P1 1/2 states: Ø393 C C For even N, rot. states are + for the upper component of Lamb. doubl. Ø394 and - for the lower component of Lamb. doubl. For odd N, rot. states are - for the upper component of Lamb. doubl. Ø395 C Ø396 С Ø397 and + for the lower component of Lamb. doubl. Ø398 Ø399 (N is the total angular momentum apart from spin.) С Ø4ØØ C C Consequently, R2, PQ12 and P2 branches always originate from the upper C component of a Lambda-doublet in the X2Pi 1/2 state (Beta=2). Ø4Ø1 Ø4Ø2 Similarly. QR12, Q2 and OP12 always originate from the lower Ø4Ø3 С Ø4Ø4 Lambda-doublet component. С Ø4Ø5 C Ø4Ø6 Ø4Ø7 DOUBLE PRECISION J,K Ø4Ø8 IF (LEVEL.EQ.2) GO TO 1 0=Ø.ØDØ Ø4Ø9 Ø41Ø B=Ø.3894DØ Ø411 D = .149D - 6Ø412 A=-95.59DØ Ø413 P=Ø.ØØ2DØ Ø414 NDBL=Ø Ø415 IF (I.EQ.5.OR.I.EQ.10.OR.I.EQ.12) NDBL=+1 Ø416 IF (I.EQ.4.OR.I.EQ.6.OR.I.EQ.11) ND3L=-1 DBL=NDBL*Ø.5*P*(J+Ø.5) Ø417 Ø418 OM=0+B*(J-Ø.5)*(J+1.5)+(-1.Ø)**M*DSQRT( *B**2*(J+Ø.5)**2+Ø.25*A*(A-4.*B))-Ø419 Ø42Ø *D*((J-Ø.5)*(J+Ø.5)**2*(J+1.5)+1.)+DBL Ø421 GO TO 2 CONTINUE Ø422 1 Ø423 O=22753.98DØ Ø424 B=Ø.4Ø2110Ø Ø425 D=.177D-6 Ø425 K=J+(-1.)**M*Ø.5 Ø427 OM=O+B*K*(K+1.)-D*K**2*(K+1.)**2 Ø428 CONTINUE 2 Ø429 RETURN Ø43Ø END Ø431 DOUBLE PRECISION FUNCTION Q(T) Ø432 IMPLICIT DOUBLE PRECISION (A-H,O-Z) COMMON /XYZ/ ST(5000), VO(2000) Ø433 Ø434 Ø435 Ø436 C This function calculates the total partition function for NCO. The Ø437 complete calculation has been carried out elsewhere (prgm PART). С Ø438 In that program, all rovibronic levels of the ground electronic Ø439 state were summed up, according to the expressions of Hougen [J. Chem. Ø44Ø С Phys., 36, 519 (1962)]. Ø441 Ċ Contributions of the A- and B- energy levels to the total partition C function were neglected. Spectroscopic constants were taken from Dixon C or Hougen. In addition, Omegal=1922 cm-1 and Omega2=1275 cm-1 were taken Ø442 Ø443 Ø444 C from Millikan and Jacox [J. Chem. Phys., 47, 5157 (1967)]. Ø445 С

のないのないない

۱

```
C The total partition function can adequately be described by the simpler
  Ø446
       C formula given in this routine. A minor correction factor (variable F)
  Ø447
         was introduced to provide better agreement with the more complete
  Ø448
  Ø449
       C computation of PART.
  Ø45Ø
       С
       C Note that the bending vibration Omega2 has multiple degeneracies equal
  Ø451
         to 2*(v2+1). In addition, Lambda doubling occurs in all vibronic states
  Ø452
       C with non zero K. Therefore, the global degeneracy of a given bending
  Ø453
       C vibrational level is 4*(v2+1). The factor of 4 here explains the
  Ø454
         factor of 4 in Q(T), and the (v2+1) term explains the squared contri-
  Ø455
         bution of Omega2 to Q(T). Note that the introduction of a lambda
 Ø456
       C
       C doubling degeneracy (factor of 2) is consistent with our definition
 Ø457
       C of the lower levels of a rotational transition, and the normalization
 Ø458
 Ø459
 Ø46Ø
       C
       Ø461
 Ø462
             IF (T.LT.1000.) F=1.003+15./T
             IF (T.GE.1000.) F=1.0309-1.36D-5*T
 Ø463
             G=F*4.*T/1.4388/Ø.3894/(1.-DEXP(-1.4388*1922./T))/
 Ø464
            *(1.-DEXP(-1.4388*538.94/T))**2/
 Ø465
 Ø466
            *(1.-DEXP(-1.4388*1275.Ø/T))
 Ø467
             RETURN
 Ø468
             END
             DOUBLE PRECISION FUNCTION S(JS, DJ, NA, NB)
 Ø469
      Ø47Ø
 Ø471
      C The functions S, U and C are taken from Kovacs ["Rotational Structure
 8472
        in the Spectra of Diatomic Molecules", Elsevier, NY (1969)]. Kovacs'
 Ø473
      C expressions apply to diatomic molecules, and to polyatomics that
 Ø474
        satisfy the Born-Oppenheimer approximation.
 Ø475
      C Note that in his tables of rotational line strengths, Kovacs uses the
 Ø476
 Ø477
 Ø478
 Ø479
      C
              J .... J"
              Lambda ..... Min(Lamb.",Lamb.') ==> in our case, Lambda=Ø
 Ø48Ø
      C
 Ø481
      C
Ø482
      C We have the following variables:
Ø483
      С
Ø484
      C
                 . • • • • • • • • • • J"
Ø485
      С
               DJ ..... J'-J"
Ø486
      С
               NA ..... Alpha (upper level index)
NB ..... Beta (lower level index)
Ø437
      С
Ø488
      С
               LEVEL ..... Upper level ==> 2
Ø489
      С
                            Lower level ==> 1
Ø49Ø
      С
               IFLAG ..... Superscript in U and C
0491
                                                  + ==> 1
      Ć
                                                     ==> 2
Ø492
      С
     $493
Ø494
           IMPLICIT DOUBLE PRECISION (A-H.O-Z)
8495
           COMMON /XYZ/ ST(5929),VO(2009)
DOUBLE PRECISION J,JØ
Ø496
Ø497
           INTEGER DJ.NA.NB
$498
           J=JØ
Ø495
           IF (DJ.EQ.+1.AND.NA.EQ.1.AND.N3.EQ.1) GO TO
Ø5ØØ
           IF (DJ.EQ. Ø.AND.NA.EQ.1.AND.MB.EQ.1) GO TO
Ø5Ø1
           IF (DJ.EQ.-1.AND.NA.EQ.1.AND.NB.EQ.1) GO TO 3
Ø5Ø2
           IF
              (DJ.EQ.+1.AND.MA.EQ.1.AND.NB.EQ.2) GO
Ø5Ø3
                                                    70
           IF (DJ.EQ. Ø.AND. HA.EQ. 1. AND. NB.EQ. 2) GO TO
85.84
           IF (DJ.EQ.-1.AND.NA.EQ.1.AND.N3.EQ.2) GO TO
Ø5Ø5
           IF
             (DJ.EQ.+1.AND.NA.EQ.2.AND.NB.EQ.1) GO TO
8585
             (DJ.EQ. S.AND.NA.EQ.2.AND.NB.EQ.1) GO TO
           IF
Ø5Ø7
           IF (DJ.EQ.-1.AND.NA.EQ.2.AND.NB.EQ.1) GO TO
IF (DJ.EQ.+1.AND.NA.EQ.2.AND.NB.EQ.2) GO TO
                                                      9
8508
8509
           IF (DJ.EQ. S.AND.NA.EQ.2.AND.NB.EQ.2) GO TO 11
                                                   TO 12
```

۱

協

		IF (DJ.EQ1.AND.NA.EQ.2.AND.NB.EQ.2) SO TO 12
75:1		GO TO 13
Ø512	1	J=J+1.
Ø513	-	S=(J-1.3)*(J3)/?./J/C/C/J-1?.2)/C/C/J.1.2)*
Ø514		*(U(J-1.,2.7 #2 C.).7 + 2 + 2 + 2 + 2 + 2) #*2
Ø515		GO TO 13
Ø516	2	S=(J5)*(J+.5)*(
Ø517	_	*(U(J,2,2)*U(J,1,2)+ (J5)**2)**2
Ø518		GO TO 13
Ø519	3	J=J-1.
Ø52Ø		S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+1.,2,2)/C(J,1,2)*
Ø521		*(U(J+1.,2,2)*U(J,1,2)+4.*(J+.5)**2)**2
Ø522		GO TO 13
Ø523	4	J=J+1.
Ø524		S=(J-1.5)*(J5)/8./J/C(J-1.,2,1)/C(J,1,2)*
Ø525		*(U(J-1.,2,1)*U(J,1,2)-4.*(J+.5)**2)**2
Ø526		GO TO 13
Ø527	5	S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J.1.2)*
Ø528		*(U(J,2,1)*U(J,1,2)-4.*(J+.5)**2)**2
Ø529		GO TO 13
Ø53Ø	6	J=J-1.
Ø531		S=(J+1.5)*(J+2.5)/B./(J+1.)/C(J+1.,2.1)/C(J,1.2)*
Ø532		*(U(J+1.,2,1)*U(J,1,2)-4.*(J+.5)**2)**2
Ø533		GO TO 13
Ø534	7	J=J+1.
Ø535		S=(J+1.5)*(J5)/8./J/C(J-1.,2.2)/C(J,1,1)*
Ø536		*(U(J-1.,2,2)*U(J,1,1)-4.*(J+.5)**2)**2
Ø537		GO TO 13
Ø533	8	S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2,2)/C(J.1,1)*
Ø539		*(U(J,Z,Z)*U(J,1,1)-4.*(J+.5)**2)**2
Ø54Ø		GO TO 13
Ø541	9	J=J-1.
Ø542		S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+1.,2.2)/C(J.1,1)*
Ø543		*(U(J+12,2)*U(J,1,1)-4.*(J+.5)**2)**2
Ø544		GO TO 13
Ø545	107	
	110	J=J+1.
Ø546	1.0	J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)*
Ø546 Ø547	1.0	J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)* *(U(J-12.1)*U(J.1.1)+4.*(J+.5)**2)**2
Ø546 Ø547 Ø548	12	J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)* *(U(J-12.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13
Ø546 Ø547 Ø548 Ø549	11	J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)* *(U(J-12.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J.1.1)*
Ø546 Ø547 Ø548 Ø549 Ø55Ø	11	J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)* *(U(J-12.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J.1.1)* *(U(J.2.1)*U(J.1.1)+4.*(J+.5)**2)**2
Ø546 Ø547 Ø548 Ø549 Ø55Ø Ø551	11	J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)* *(U(J-12.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J.1.1)* *(U(J.2.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13
Ø546 Ø547 Ø548 Ø549 Ø55Ø Ø551 Ø552	11	J=J+1. $S=(J-1.5)*(J5)/8./J/C(J-12,1)/C(J,1,1)*$ *(U(J-1.,2,1)*U(J,1,1)+4.*(J+.5)**2)**2 GO TO 13 $S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J,2,1)/C(J,1,1)*$ *(U(J,2,1)*U(J,1,1)+4.*(J+.5)**2)**2 GO TO 13 $J=J-1.$ Solution Statistic Statistics (2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)*(2.1)
Ø546 Ø547 Ø548 Ø549 Ø559 Ø551 Ø552 Ø553	11	J=J+1. $S=(J-1.5)*(J5)/8./J/C(J-12,1)/C(J,1,1)*$ *(U(J-1.,2,1)*U(J,1,1)+4.*(J+.5)**2)**2 GO TO 13 $S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J,2,1)/C(J,1,1)*$ *(U(J,2,1)*U(J,1,1)+4.*(J+.5)**2)**2 GO TO 13 $J=J-1.$ $S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+12,1)/C(J,1,1)*$ *(U(J,2,1)*U(J,1,1)+4.*(J+.5)**2)**2
Ø546 Ø547 Ø548 Ø549 Ø558 Ø551 Ø552 Ø553 Ø554	11	J=J+1. $S=(J-1.5)*(J5)/8./J/C(J-12,1)/C(J,1,1)*$ *(U(J-1.,2,1)*U(J,1,1)+4.*(J+.5)**2)**2 GO TO 13 $S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2,1)/C(J,1,1)*$ *(U(J,2,1)*U(J,1,1)+4.*(J+.5)**2)**2 GO TO 13 $J=J-1.$ $S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+12,1)/C(J,1,1)*$ *(U(J+12,1)*U(J,1,1)+4.*(J+.5)**2)**2 PETURN
Ø546 Ø547 Ø548 Ø559 Ø551 Ø552 Ø553 Ø553 Ø555	11 12 13	J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)* *(U(J-12.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J.1.1)* *(U(J.2.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 J=J-1. S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+12.1)/C(J.1.1)* *(U(J+12.1)*U(J.1.1)+4.*(J+.5)**2)**2 RETURN END
Ø546 Ø547 Ø548 Ø558 Ø558 Ø552 Ø553 Ø5553 Ø5555 Ø5556 Ø5556	11 12 13	J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)* *(U(J-12.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J.1.1)* *(U(J.2.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 J=J-1. S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+12.1)/C(J.1.1)* *(U(J+12.1)*U(J.1.1)+4.*(J+.5)**2)**2 RETURN END DOUBLE REFCISION FUNCTION C(J+5VEL_STAC)
0546 0547 0547 0548 0555 05553 05553 05553 05553 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 000000	11 12 13	J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)* *(U(J-12.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J.1.1)* *(U(J.2.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 J=J-1. S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+12.1)/C(J.1.1)* *(U(J+12.1)*U(J.1.1)+4.*(J+.5)**2)**2 RETURN END DOUBLE PRECISION FUNCTION C(J.LEVEL.IFLAG) IMPLICIT DOUBLE PRECISION (Art Or T)
0546 0547 0547 0548 0555 05553 05553 05553 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 000000	11 12 13	J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)* *(U(J-12.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J.1.1)* *(U(J.2.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 J=J-1. S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+12.1)/C(J.1.1)* *(U(J+12.1)*U(J.1.1)+4.*(J+.5)**2)**2 RETURN END DOUBLE PRECISION FUNCTION C(J.LEVEL.IFLAG) IMPLICIT DOUBLE PRECISION (A-4.0-2) COMMON (W72, ST(5000) V0/2000)
Ø546 Ø547 Ø548 Ø555 Ø5553 Ø5553 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555	11 12 13	J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)* *(U(J-12.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J.1.1)* *(U(J.2.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 J=J-1. S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+12.1)/C(J.1.1)* *(U(J+12.1)*U(J.1.1)+4.*(J+.5)**2)**2 RETURN END DOUBLE PRECISION FUNCTION C(J.LEVEL.IFLAG) IMPLICIT DOUBLE PRECISION (A-4.0-2) COMMON /XYZ/ ST(5090),VO(2000) DOUBLE PRECISION J.L
Ø5467 Ø547 Ø5478 Ø5555 Ø5555 Ø5555 Ø555567 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø5555 Ø55555 Ø55555 Ø55555 Ø55555 Ø555555	11 12 13	J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12,1)/C(J,1.1)* *(U(J-12,1)*U(J,1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J,1.1)* *(U(J.2.1)*U(J,1.1)+4.*(J+.5)**2)**2 GO TO 13 J=J-1. S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+12,1)/C(J,1.1)* *(U(J+12,1)*U(J,1.1)+4.*(J+.5)**2)**2 RETURN END DOUBLE PRECISION FUNCTION C(J.LEVEL.IFLAG) IMPLICIT DOUBLE PRECISION (A-4.0-2) COMMON /XYZ/ ST(5999),V0(2999) DOUBLE PRECISION J.L IF (LEVEL FO.1) = 0
0546 0547 0547 0555 05555 055555 055555 055555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 05555 055555 05555 055555 055555 055555 055555 055555 0555555	11 12 13	J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)* *(U(J-12.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J.1.1)* *(U(J.2.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 J=J-1. S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+12.1)/C(J.1.1)* *(U(J+12.1)*U(J.1.1)+4.*(J+.5)**2)**2 RETURN END DOUBLE PRECISION FUNCTION C(J.LEVE'.ITLAG) IMPLICIT DOUBLE PRECISION (A-4.0-2) COMMON /XYZ/ ST(5090),VO(2000) DOUBLE PRECISION J.L IF (LEVEL.EQ.1) L=1.0 IF (LEVEL.EQ.1) L=1.0
0546 0547 0547 0555 05555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 0055555 0055555 0055555 0055555 0055555 0055555 0055555 00555555	11 12 13	J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)* *(U(J-12.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J.1.1)* *(U(J.2.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 J=J-1. S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+12.1)/C(J.1.1)* *(U(J+12.1)*U(J.1.1)+4.*(J+.5)**2)**2 RETURN END DOUBLE PRECISION FUNCTION C(J.LEVE'.IFLAG) IMPLICIT DOUBLE PRECISION (A-4.0-2) COMMON /XY2/ ST(5Ø9Ø).VO(2ØØØ) DOUBLE PRECISION J.L IF (LEVEL.E0.1) L=1.Ø IF (LEVEL.E0.2) L=Ø.Ø C=Ø F*(U(J.LEVEL JELAG)**2+(J(J+0.5-1))*(J+0.5+1))
Ø5467 Ø54789Ø555555555555555555555555555555555555	11 12 13	J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)* *(U(J-12.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J.1.1)* *(U(J.2.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 J=J-1. S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+12.1)/C(J.1.1)* *(U(J+12.1)*U(J.1.1)+4.*(J+.5)**2)**2 RETURN END DOUBLE PRECISION FUNCTION C(J.LEVEL.IFLAG) IMPLICIT DOUBLE PRECISION (A-4.0-2) COMMON /XY2/ ST(5Ø9Ø).VO(2ØØØ) DOUBLE PRECISION J.L IF (LEVEL.EQ.1) L=1.Ø IF (LEVEL.EQ.2) L=Ø.Ø C=Ø.5*(U(J.LEVEL.IFLAG)**2+4.*(J+Ø.5-L)*(J+Ø.5+L)) PETURN
05467 854489 854489 85555555555568 855555555556666565 855555555	11 12 13	J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)* *(U(J-12.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J.1.1)* *(U(J.2.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 J=J-1. S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+12.1)/C(J.1.1)* *(U(J+12.1)*U(J.1.1)+4.*(J+.5)**2)**2 RETURN END DOUBLE PRECISION FUNCTION C(J.LEVE'.ITLAG) IMPLICIT DOUBLE PRECISION (A-4.0-2) COMMON /XY2/ ST(5Ø9Ø).VO(2000) DOUBLE PRECISION J.L IF (LEVEL.E0.1) L=1.0 IF (LEVEL.E0.2) L=Ø.0 C=Ø.5*(U(J.LEVEL.IFLAG)**2+4.*(J+0.5-L)*(J+Ø.5+L)) RETURN FND
05467 054489 0555555555555555555555555555555555555	11 12 13	J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)* *(U(J-12.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J.1.1)* *(U(J.2.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 J=J-1. S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+12.1)/C(J.1.1)* *(U(J+12.1)*U(J.1.1)+4.*(J+.5)**2)**2 RETURN END DOUBLE PRECISION FUNCTION C(J.LEVEL.IFLAG) IMPLICIT DOUBLE PRECISION (A-4.0-2) COMMON /XY2/ ST(5ØØØ).VO(2000) DOUBLE PRECISION J.L IF (LEVEL.EQ.1) L=1.0 IF (LEVEL.EQ.2) L=Ø.0 C=Ø.5*(U(J.LEVEL.IFLAG)**2+4.*(J+0.5-L)*(J+Ø.5+L)) RETURN END DOUBLE PRECISION FUNCTION H(J.LEVEL.IFLAG)
05447 854489 85555555555555555555555555555555	11 12 13	J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)* *(U(J-12.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J.1.1)* *(U(J.2.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 J=J-1. S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+12.1)/C(J.1.1)* *(U(J+12.1)*U(J.1.1)+4.*(J+.5)**2)**2 RETURN END DOUBLE PRECISION FUNCTION C(J.LEVEL.IFLAG) IMPLICIT DOUBLE PRECISION (A-4.0-2) COMMON /XY2/ ST(5ØØØ).VO(2ØØØ) DOUBLE PRECISION J.L IF (LEVEL.EQ.1) L=1.Ø IF (LEVEL.EQ.2) L=Ø.Ø C=Ø.5*(U(J.LEVEL.IFLAG)**2+4.*(J+Ø.5-L)*(J+Ø.5+L)) RETURN END DOUBLE PRECISION FUNCTION U(J.LEVEL.IFLAG) IMPLICIT DOUBLE PRECISION (A-4.0-7) COMMON /XY2/ ST(SØØØ).VO(2ØØØ) DOUBLE PRECISION J.L IF (LEVEL.EQ.2) L=Ø.Ø C=Ø.5*(U(J.LEVEL.IFLAG)**2+4.*(J+Ø.5-L)*(J+Ø.5+L)) RETURN END DOUBLE PRECISION FUNCTION U(J.LEVEL.IFLAG) IMPLICIT DOUBLE PRECISION (A-4.0-7)
054789 0555555555555555555555555555555555555	11 12 13	<pre>J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)* *(U(J-12.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J.1.1)* *(U(J.2.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 J=J-1. S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+12.1)/C(J.1.1)* *(U(J+12.1)*U(J.1.1)+4.*(J+.5)**2)**2 RETURN END DOUBLE PRECISION FUNCTION C(J.LEVEL.IFLAG) IMPLICIT DOUBLE PRECISION (A-4.0-2) COMMON /XY2/ ST(5ØØØ).VO(2ØØØ) DOUBLE PRECISION J.L IF (LEVEL.EQ.2) L=Ø.Ø C=Ø.5*(U(J.LEVEL.IFLAG)**2+4.*(J+Ø.5-L)*(J+Ø.5+L)) RETURN END DOUBLE PRECISION FUNCTION U(J.LEVEL.IFLAG) IMPLICIT DOUBLE PRECISION (A-H.0-Z) COMMON (XYZ/ ST(5ØØØ) VO(2ØØØ)</pre>
054789 0555555555555555555555555555555555555	11 12 13	<pre>J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)* *(U(J-12.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J.1.1)* *(U(J.2.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 J=J-1. S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+12.1)/C(J.1.1)* *(U(J+12.1)*U(J.1.1)+4.*(J+.5)**2)**2 RETURN END DOUBLE PRECISION FUNCTION C(J.LEVE'.IFLAG) IMPLICIT DOUBLE PRECISION (A-4.0-2) COMMON /XYZ/ ST(5ØØØ.VO(2ØØØ) DOUBLE PRECISION J.L IF (LEVEL.E0.1) L=1.Ø IF (LEVEL.E0.2) L=Ø.Ø C=Ø.5*(U(J.LEVEL.IFLAG)**2+4.*(J+Ø.5-L)*(J+Ø.5+L)) RETURN END DOUBLE PRECISION FUNCTION U(J.LEVEL.IFLAG) IMPLICIT DOUBLE PRECISION (A-H.0-Z) COMMON /XYZ/ ST(5ØØØ).VO(2ØØØ) DOUBLE PRECISION J.L</pre>
054489 0555555555555555555555555555555555555	11 12 13	<pre>J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)* *(U(J-12.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J.1.1)* *(U(J.2.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 J=J-1. S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+12.1)/C(J.1.1)* *(U(J+12.1)*U(J.1.1)+4.*(J+.5)**2)**2 RETURN END DOUBLE PRECISION FUNCTION C(J.LEVE'.17LAG) IMPLICIT DOUBLE PRECISION (A-4.0-2) COMMON /XYZ/ ST(5ØØ).VO(2ØØØ) DOUBLE PRECISION J.L IF (LEVEL.EQ.2) L=Ø.Ø C=Ø.5*(U(J.LEVEL.IFLAG)**2+4.*(J+Ø.5-L)*(J+Ø.5+L)) RETURN END DOUBLE PRECISION FUNCTION U(J.LEVEL.IFLAG) IMPLICIT DOUBLE PRECISION (A-H.0-Z) COMMON /XYZ/ ST(5ØØ).VO(2ØØØ) DOUBLE PRECISION FUNCTION U(J.LEVEL.IFLAG) IMPLICIT DOUBLE PRECISION (A-H.0-Z) COMMON /XYZ/ ST(5ØØ).VO(2ØØØ) DOUBLE PRECISION J.L IF (LEVEL FO 1) 1=1.Ø</pre>
0547 8547 855555555555555566666667 80555555555556666666667 8055555555556612345667 8055555555556612345 80555555555566566678901	11 12 13	<pre>J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12,1)/C(J.1.1)* *(U(J-12,1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J.1.1)* *(U(J.2.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 J=J-1. S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+12.1)/C(J.1.1)* *(U(J+12.1)*U(J.1.1)+4.*(J+.5)**2)**2 RETURN END DOUBLE PRECISION FUNCTION C(J.LEVE'.17LAG) IMPLICIT DOUBLE PRECISION (A-4.0-2) COMMON /XYZ/ ST(5ØØØ).VO(2ØØØ) DOUBLE PRECISION J.L IF (LEVEL.EQ.1) L=1.Ø IF (LEVEL.EQ.2) L=Ø.Ø C=Ø.5*(U(J.LEVEL.IFLAG)**2+4.*(J+Ø.5-L)*(J+Ø.5+L)) RETURN END DOUBLE PRECISION FUNCTION U(J.LEVEL.IFLAG) IMPLICIT DOUBLE PRECISION (A-H.0-Z) COMMON /XYZ/ ST(5ØØØ).VO(2ØØØ) DOUBLE PRECISION J.L IF (LEVEL.EQ.1) L=1.Ø IF (LEVEL.EQ.1) L=1.Ø IMPLICIT DOUBLE PRECISION (A-H.0-Z) COMMON /XYZ/ ST(5ØØØ).VO(2ØØØ) DOUBLE PRECISION J.L IF (LEVEL.EQ.1) L=1.Ø IMPLICIT DOUBLE PRECISION (A-H.0-Z) COMMON /XYZ/ ST(5ØØØ).VO(2ØØØ) DOUBLE PRECISION J.L IF (LEVEL.EQ.1) L=1.Ø IF (LEVEL.EQ.1) L=1.Ø IMPLICIT DOUBLE PRECISION (A-H.0-Z) COMMON /XYZ/ ST(5ØØØ).VO(2ØØØ) DOUBLE PRECISION J.L IF (LEVEL.EQ.1) L=1.Ø IF (LEVEL.EQ.1) L=1.Ø</pre>
054489 0555555555555555555555555555555555555	11 12 13	<pre>J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12,1)/C(J,1.1)* *(U(J-12,1)*U(J,1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J,1.1)* *(U(J.2.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 J=J-1. S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+12.1)/C(J,1.1)* *(U(J+12,1)*U(J.1.1)+4.*(J+.5)**2)**2 RETURN END DOUBLE PRECISION FUNCTION C(J.LEVEL.IFLAG) IMPLICIT DOUBLE PRECISION (A-4.0-2) COMMON /XYZ/ ST(5ØØØ),VO(2ØØØ) DOUBLE PRECISION J.L IF (LEVEL.E0.1) L=1.Ø IF (LEVEL.E0.2) L=Ø.Ø C=Ø.5*(U(J.LEVEL.IFLAG)**2+4.*(J+Ø.5-L)*(J+Ø.5+L)) RETURN END DOUBLE PRECISION FUNCTION U(J.LEVEL.IFLAG) IMPLICIT DOUBLE PRECISION (A-H.0-Z) COMMON /XYZ/ ST(5ØØØ),VO(2ØØØ) DOUBLE PRECISION J.L IF (LEVEL.E0.1) L=1.Ø IMPLICIT DOUBLE PRECISION (A-H.0-Z) COMMON /XYZ/ ST(5ØØØ),VO(2ØØØ) DOUBLE PRECISION J.L IF (LEVEL.E0.1) L=1.Ø IF (LEVEL.E0.1) L=1.Ø</pre>
054489 0555555555555555555555555555555555555	11 12 13	<pre>J=J+1. S=(J-1.5)*(J5)/8./J/C(J-12.1)/C(J.1.1)* *(U(J-12.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 S=(J5)*(J+.5)*(J+1.5)/4./J/(J+1.)/C(J.2.1)/C(J.1.1)* *(U(J.2.1)*U(J.1.1)+4.*(J+.5)**2)**2 GO TO 13 J=J-1. S=(J+1.5)*(J+2.5)/8./(J+1.)/C(J+12.1)/C(J.1.1)* *(U(J+12.1)*U(J.1.1)+4.*(J+.5)**2)**2 RETURN END DOUBLE PRECISION FUNCTION C(J.LEVEL.IFLAG) IMPLICIT DOUBLE PRECISION (A-4.0-2) COMMON /XYZ/ ST(5Ø\$Ø).VO(2Ø\$Ø\$) DOUBLE PRECISION J.L IF (LEVEL.E0.1) L=1.\$ IF (LEVEL.E0.2) L=Ø.\$ C=Ø.5*(U(J.LEVEL.IFLAG)**2+4.*(J+Ø.5-L)*(J+Ø.5+L)) RETURN END DOUBLE PRECISION FUNCTION U(J.LEVEL.IFLAG) IMPLICIT DOUBLE PRECISION (A-4.0-Z) COMMON /XYZ/ ST(5Ø\$Ø).VO(2Ø\$Ø\$) DOUBLE PRECISION J.L IF (LEVEL.E0.1) L=1.\$ IF (LEVEL.E0.2) L=\$ IF (LEVEL.E0</pre>

Ø574 U=DSQRT(L**2*Y*(Y-4.)+4.*(J+8.5)**2) *+(-1.Ø)**(IFLAG+1)*L*(Y-2.) Ø575 Ø576 RETURN Ø577 END Ø578 DOUBLE PRECISION FUNCTION INDEX ( WL ) Ø579 IMPLICIT DOUBLE PRECISION (A-H, O-Z) COMMON /XYZ/ ST(5000), VO(2000) **8588** Ø581 Ø582 C This function is given in the CRC handbook p. E-224. It uses the Cauchy Ø583 C formula for the air index of refraction. The fit is C valid for all UV wavelengths. Note that the temperature dependence of the Ø584 Ø585 Ø586 index has been omitted here. Ø587 C Ø588 Ø589 INDEX=2726.43DØ+12.288D8/WL**2+.3555D16/WL**4 Ø59Ø INDEX=1.+INDEX*1.D-7 Ø591 RETURN Ø592 END DOUBLE PRECISION FUNCTION VOIGT (X,Y) Ø593 IMPLICIT DOUBLE PRECISION (A-H.O-Z) Ø594 Ø595 COMMON /XYZ/ ST(5000), VO(2000) Ø596 C* ************ Ø597 C THIS ROUTINE COMPUTES THE REAL (WR) AND IMAGINARY (WI) PARTS OF Ø598 С Ø599 THE COMPLEX PROBABILITY FUNCTION w(z), С Ø6Ø2 С Ø6Ø1 С  $w(z) = \exp(-z^*z) * \operatorname{erfc}(-i^*z),$ Ø662 C WHERE erfc IS THE COMPLEMENTARY ERROR FUNCTION. THE COMPUTATION Ø6Ø3 С IS VALID FOR THE UPPER HALF PLANE OF z = x + iy, ie  $y > \vartheta$ . Ø6Ø4 С Ø6Ø5 С MAXIMUM RELATIVE ERROR FOR WR IS < 2.5-5 AND FOR WI IS < 5.5-6. Ø6Ø6 С Ø6Ø7 С Ø6Ø8 С SUBROUTINE ADAPTED FROM: J. HUMLICEK, J. QUANT. SPECTROSC. RADIAT. TRANSFER 21, 309 (1979) Ø6Ø9 С Ø61Ø С Ø611 С Ø612 C*********************** ************* Ø613 DIMENSION T(6), C(6), S(6) DATA T/Ø.31424Ø376DØØ.Ø.947788391DØØ.Ø.159758254DØ1. Ø614 Ø615 * Ø.22795Ø7Ø8DØ1,Ø.3Ø2Ø637.93D.91,.9.33897249DØ1/ DATA C/Ø.1Ø1172805DØ1,-0.75197147D00.0.12557727D-01, \$616 Ø617 * Ø.100220082D-01.-0.242058125D-03.0.5008430510-03/ DATA S/Ø.1393237DØ1.Ø.231152436DØ0.-Ø.155331465DØ0. Ø618 Ø619 * Ø.621836624D-Ø2.Ø.919Ø32986D-Ø4.-Ø.627523953D-Ø5/ Ø62Ø WR=Ø. Ø621 WI=Ø. Ø622 Y1 = Y + 1.5Ø623 Y2=Y1*Y1 Ø624 C****** Ø625 С Ø626 BRANCH TO REGION I OR II DEPENDING ON VALUES OF X AND Y. С Ø627 C Ø628 Ø629 IF(Y.GT.Ø.85.OR.DABS(X).LT.(13.1*Y+1.55)) GO TO 23 Ø63Ø C** Ø631 C Ø632 С CALCULATIONS FOR REGION II Ø633 C Ø634 IF (DABS(X).LT.12.) WR=DEXP(-X*X) Ø635 Y3=Y+3. Ø636 DO 1Ø I=1.6 Ø637 R=X-T(1)

		· ·
Ø638		R2=R*R
Ø639		D=1./(R2+Y2)
Ø64Ø		D1=Y.1*D
Ø641		
Ø642		WR=WR+Y*(C(I)*(R*D2-1.5*D1)+S(I)*Y3*D2)/(R2+2.25)
a643		R=X+T(I)
a644		R2=R*R
a615		D=1./(R2+Y2)
ac 16		D3=V1*D
0040 ac 17		
0047 acio		$W_{R=WR+V*(C(T)*(R*D4-1.5*D3)-S(T)*Y3*D4)/(R2+2.25)$
0040	107	$V_{1} = V_{1} + C(1) * (D_{2} + D_{4}) + S(1) * (D_{1} - D_{3})$
0049	1.0	
8658		
Ø651	~	RETORN
Ø652	C .	THE OF CALCULATIONS FOR REGION II
Ø653	Ç	END OF CALCULATIONS FOR REGION II
Ø654	C	
Ø655	C***	
Ø656	С	
Ø657	C	CALCULATIONS FOR REGION I
Ø658	C	
Ø659	2Ø	DO 3Ø I=1,6
Ø66Ø		R=X-T(I)
Ø661		D=1./(R*R+Y2)
Ø662		D1=Y1*D
Ø663		D2=R*D
Ø664		R=X+T(I)
Ø665		D=1./(R*R+Y2)
Ø666		D3=Y1*D
Ø667		
<b><i><i>ã</i>668</i></b>		$W_{R} = W_{R} + C(I) * (D1 + D3) - S(I) * (D2 - D4)$
8669	าส	WI = WI + C(I) * (D2 + D4) + S(I) * (D1 - D3)
a67a		VOIGT=WR
ac71		
00/1	c	KE FORM
Ø372 Ø672	c c	END OF CALCULATIONS FOR REGION I
203/3		END OF CALCULATIONS FOR REGION I
200/4		***********
00/3	U	
2676	-	E UD
Ø677	S	

Ņ

II.

#### Program LNCOB

3:00 PM THU., 2 AUG., 1 LSNCOB T=00004 IS ON CR G0 2 AUG., 1984 USING ØØØ98 BLKS R=ØØØØ FTN4,L 0001 SEMA (XYZ,Ø) ØØØ2 **PROGRAM LNCOB** ØØØ3 ØØØ4 øøø5 С ØØØ6 С MICHEL LOUGE 1983 ØØØ7 C 0008 ØØØ9 C This program calculates the semi-quantitative spectroscopy of the C NCO[B2PIi(1999) <-- X2PIi(899)] band around 385nm. ØØ1Ø ØØ11 It evaluates the line strengths and positions for the Pl.Ql.Rl and ØØ12 С the P2,Q2,R2 branches. References for the calculations are: ØØ13 С 0014 С ØØ15 C Author reference content С ØØ16 spectr.csts.of X2PI1.Renner effect,etc...
spectr.csts.of B2PI1,bands,etc... ØØ17 Ĉ Dixon 48 ØØ18 С Dixon 59 ØØ19 С Hougen 49 Rovibronic levels of a 2711 linear XYZ mol. ØØ2Ø ¢ 25,66,67 spectr.review Herzberg ØØ21 С Kovacs 26 rotational line strengths for 2PI <-- 2PI ØØ22 C Lucht 1Ø2 background on diatomic mol.spectra ØØ23 С Sullivan 6Ø lifetimes in the 32PIi <-- X2PIi trans. ØØ24 С ØØ25 С The input and output of the program are: ØØ26 С ØØ27 С mode input, units output, units ØØ28 С ØØ29 C line position, temperature (X) relative line ØØ3Ø С relative strength strength (cm-2*atm-1), 0031 С (mode 1) I(ne pos. (cm-1 or Angs.), and J" ØØ32 С 8833 С ØØ34 С line position. temperature (K), relative absorption ØØ35 С relative strength, Voigt factor, coeff. (cm-1*atm-1) 0036 C broadening spectral region as a funct. of posit. ØØ37 Ċ (mode 2) cm-1 or Angstroms (cm-1 or Angstroms) ØØ38 С ØØ39 С **Ø**Ø4Ø С The formulae associated with the two modes are: 9941 С 8842 C mode 1: ØØ43 С 0044 С I/IØ=exp[-K*f1Ø*Phi*Pnco*L] 8845 С 8846 C mode 2: 8847 С 8848 С I/IØ=exp[-S*f1Ø*Pnco*L] 8849 С ØØ5Ø С where: 0051 Ċ K.... relative result of mode 1 (cn-2*atm-1) f18... fel*qv"v' 0052 C ØØ53 ¢ fel... electronic oscillator strength qv"v' Franck-Condon factor ØØ54 C Franck-Condon factor ØØ55 С Phi... lineshape factor (cm) Ċ C 8856 Pnco.. partial pressure of NCO (atm) 8857 L.... absorption cell length (cm) ØØ58 С S.... relative strength (mode 2 output) (cm-1*atm-1) I/IØ.. transmission (Beer's law) ØØ59 С 886g C 0061 

ł

```
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
 ØØ62
              DIMENSION IDCB(144), NAME(3)
 0063
              COMMON /XYZ/ ST(5000), VO(2000)
 ØØ64
              INTEGER DJ
 ØØ65
              DOUBLE PRECISION JØ, J, K, KMAX
 9866
              DOUBLE PRECISION INDEX
 ØØ67
 ØØ68
              NAME(1)=2HLN
              NAME(2)=2HCO
 ØØ69
 ØØ7Ø
              NAME(3)=2HSB
              CALL CREAT (IDCB, IER, NAME, 144, 4)
 ØØ71
 0072
              CALL CLOSE (IDCB)
       8873
 ØØ74
 ØØ75
       C The program names and creates its output file LNCOS3. The format is
       C compatible with GRAPH. In mode 1, the output file contains 5 blocks
 ØØ76
       C of 1000 points each to describe the broadened spectrum. In mode 2,
 ØØ77
       C the output file lists line strengths and positions for the 12 branches
 ØØ78
       C R1 through P2. Note that in mode 2, the number of lines in each C individual band is automatically adjusted by the program to account
 ØØ79
 ØØ8Ø
 ØØ81
       C for different rotational progressions at different temperatures.
 0082
       C For simplicity of programming, the number of lines in each branch is
       C omitted in the output file, and it is replaced by a row of (*).
 ØØ83
       C Before graphing, the output file of mode 2 should be edited accordingly.
 ØØ84
 ØØ85
 ØØ86
       ØØ87
             CALL LFOUT (NAME, LUOUT)
 ØØ88
             CALL LUERR (IT)
 ØØ89
             WRITE (IT,1Ø3)
             FORMAT (5X, "If you want wavenumbers in vacuum, enter g",/,
ØØ90
       1Ø3
                      5X."
ØØ91
                                       wavelengths in air. enter 1... _")
ØØ92
             READ (IT,*) NAD
ØØ93
             WRITE (IT,100)
ØØ94
             FORMAT (5X, "Please enter the temperature: _ ")
       100
ØØ95
             READ (IT.*) T
ØØ96
             WRITE (IT,1Ø4)
             FORMAT (5X,"Do you consider broadening ?",/,
ØØ97
       1Ø4
            *1ØX,"yes ... enter 1",/,
*1ØX,"no ... enter 5 _">
ØØ98
ØØ99
             READ (IT,*) NAD1
WRITE (IT,114)
Ø1ØØ
Ø1Ø1
             FORMAT (5%, "Please enter the new values of 3'v and D'v",/,
Ø1Ø2
       114
            *5X, "(if Dixon's values are O.K., enter a negative number)
Ø1Ø3
Ø1Ø4
             READ (IT.*) EN.DN
Ø1Ø5
             IF (BN.LT.Ø.Ø) BN=Ø.3765
Ø1Ø6
             IF (DN.LT.Ø.Ø) DN=15.D-3
Ø1Ø7
             IF
                (NAD1.NE.1) GO TO 4
Ø1Ø8
             IF (NAD.EQ.Ø) WRITE (IT.1.35)
Ø1Ø9
       1Ø5
             FORMAT (5X, "Please enter the spectral region: ",/,
Ø11Ø
            *1ØX,"Omin.Omax ... cm-1 in vacuum __"}
Ø111
             IF (NAD.EQ.1) WRITE (IT,136)
Ø112
            FORMAT (5X, "Please enter the spectral region:",/,
*1ØX, "Lamb.min.lamb.max ... Angstroms in air _")
      1Ø6
Ø113
Ø114
             READ (IT,*) WMIN, WMAX
Ø115
             WRITE (IT,1Ø7)
             FORMAT (5%, "Please enter the Voigt parameter a: _*)
Ø116
      1Ø7
Ø117
             READ (IT,*) A
Ø118
             WRITE (IT,112)
Ø119
      112
            FORMAT (5%, "Do you intend to calculate Omax only?",/,
           *1ØX."yes... enter 1"./.
*1ØX."no ... enter J _")
READ (IT.*) NAD2
Ø12Ø
Ø121
Ø122
Ø123
            IF (NAD.EQ.1) WMIN=1.D8/INDEX(WMIN)/WMIN
Ø124
             IF (NAD.EQ.1) WMAX1=1.D3/INDEX(VMAX)/WMAX
Ø125
            IF (NAD.EQ.1) WMAX=WMIN
```

:

1.1

2

ł

IF (NAD.EQ.1) WMIN=WMAX1 Ø126 Ø127 Ø128 C Note that the positions have been computed using frequencies in vacuo Ø129 (cm-1) or wavelengths in air (Angstroms). The function INDEX is called Ø13Ø Ĉ C to perform the appropriate corrections. Ø131 Ø132 Ø133 AINC=DABS(VMAX-VMIN)/4.999D3 Ø134 Ø135 Ø136 2 ø137 С In mode 2, the program divides the spectral region of in-C terest in 5000 increments (variable AINC). Note that the line posi-Ø138 Ø139 C tions are calculated in double precision. Ø14Ø Ø141 Ø142 DO=7.1623D-7*32781.*DSQRT(T/42.) Ø143 Ø144 C Ø145 C To calculate Doppler widths, a molecular weigth of 42 amu and an Ø146 C average transition frequency of 32781 cm-1 have been assumed. Ø147 Ø148 Ø149 Ø15Ø C Some variables used in this program: Ø151 С Ø152 С variable name meaning С Ø153 DO Ø154 С Doppler width (cm-1) Ø155 С Δ Voigt factor Ø156 С ST(5ØØØ) relative absorption coeff. (cm-1*atm-1) Ø157 C WMIN lower bound of the spectral region upper bound of the spectral region The user's input of WMIN and WHAX ¢ Ø158 WMAX Ø159 С Ø16Ø С should be consistent with the choice Ø161 C of cm-1 in vacuum or Angstroms in air. Ø162 С Note that the program always converts Ø163 C to frequencies (cm-1) in vacuum. Ø164 С Т Temperature (X) Ø165 С AINC Elementary increment for S-calc. (cm-1) Ø166 С ĸ Relative line strength (cm-2*atm-1) Ø167 С KMAX Largest K in the branch so far. VOIGT(X,Y) Ø168 С Voigt function Voigt line shape func. array (cm) Transition frequency in vac. (cm-1) Ø169 С VO(2ØØØ) Ø17Ø С 0 Ø171 С OM(J,N,LEVEL) Energy level (cm-1) Ø172 С ງ - - ງ -DJ Ø173 С N Branch index (alpha, beta= 1 or 2) Initial rotational quantum number Ø174 С JØ Ø175 С л Ground state J" Ø176 Total partition function Index for the 3(3333) array С Q(T) Ø177 С IND Ø178 С INDEX(WL) Air index of refraction functof wavile. Ø179 С Ø18Ø Ø181 X=AINC*1.6651/DO Ø182 DO 9 I=1.5000 Ø183 ST(I)=Ø.Ø Ø184 g CONTINUE Ø185 DO 1Ø I=1,2ØØØ Ø186 VO(I)=Ø.Ø Ø187 Ø188 С Ø139 C After setting the increment in mode 2, the program computes Voigt

C lineshapes (cm) which are valid for any line in the band. Ø19Ø C The integer IØ is the total number of points considered in a half Ø191 lineshape. (The complete lineshape function is therefore sampled using С Ø192 C 2*IØ points.) ø193 Ø194 Ø195 CONTINUE Ø196 10 IØ=Ø Ø197 VOI=VOIGT(Ø,A)*Ø.939437/DO Ø198 IØ = IØ + 1Ø199 5 VO(IØ)=VOIGT(X*(IØ-1),A)*Ø.939437/DO 8288 TEST=VO(IØ)/VOI ø2ø1 IF (TEST.GT.5.D-4.AND.IØ.LT.2000) GO TO 5 ø2ø2 WMIN=WMIN-(IØ-1)*AINC Ø2Ø3 WMAX=WMAX+(IØ-1)*AINC Ø2Ø4 100=10+4999 Ø2Ø5 CONTINUE 4 Ø2Ø6 IF (10.EQ.2000) WRITE (1T,113) ø2ø7 FORMAT (5X, "Warning: The number of points to describe",/, Ø2Ø8 113 *5X, "the Voigt profile is unsufficient.") Ø2Ø9 Ø21Ø Ø211 C Loop over three branches (P,O,R) Ø212 Ø213 C DO 1 I=1,3 Ø214 Ø215 C Ø216 DJ = I - 2Ø217 Ø218 C Ø219 Ø22Ø C C Loop over the branch index N (alpha or beta). Ø221 С Ø222 DO 2 N=1,2Ø223 С Ø224 Ø225 Ø226 Ø227 Ø228 C Ø229 C DJ=-1 ==> P-branch C DJ=  $\emptyset$  ==> Q-branch Ø23Ø Ø231 С DJ=+1 ==> R-branch Ø232 С Omega=Lambda+/-S Index Ø233 С Sign in the Ø234 C Hill and Van Vleck Ø235 С formula: Ø236 C 1/2 FΖ С Ø237 (+)E 1 3/2 Ø238 C (-)Ø239 C C Note that both states are inverted (A( $\emptyset$ ). Ø24Ø Ø241 Ø242 Ø243 KMAX=Ø.Ø Ø244 JØ=1.5 IF (N.EQ.1.AND.DJ.EQ.Ø) JØ=Ø.5 Ø245 Ø246 IF (DJ.EQ.-1)  $J\emptyset=2.5$ Ø247 J=JØ Ø248 Ø249 Ø25Ø ¢ Note the missing lines at the initial rotational transitions: Ø251 С Ø252 C branch JØ Ø253 С

```
Ø254
     С
          P 2
                  2.5
Ø255
     С
          Q2
                  1.5
                  1.5
          R2
Ø256
     Ć
Ø257
     С
          Ρ1
                  2.5
Ø258
     С
          Q1
                  Ø.5
Ø259
     С
          R 1
                  1.5
Ø26Ø
     C
     Ø261
Ø262
          CONTINUE
          O=OM(J+DJ.N,2,BN,DN)-OM(J,N,1,BN,DN)
Ø263
Ø264
          IF (NAD.EQ.1.AND.NAD1.NE.1) 0=1.D8/0
          IF (NAD.EQ.1.AND.NAD1.NE.1) O=O/INDEX(O)
Ø265
          K=6.477D9/T*2.*DEXP(-1.4388*OM(J.N.1.BN,DN)/T)/Q(T)
Ø26?
Ø267
     CCCCCCCCC
                                Ø268
     C
       This factor of 2 has been introduced because Lambda doubling cannot be
Ø269
     С
       resolved. Since NCO is asymmetrical, both components are equally strong.
ø27ø
     С
Ø271
     Ø272
Ø273
          **S(J,DJ.N)
Ø274
          IF (NADI.NE.1) WRITE (LUOUT, 101) O,K,J
Ø275
     1Ø1
          FORMAT (2X,D12.7,1H,,D12.7,1H,,D9.4)
Ø276
          IF (K.GT.KMAX) KMAX=K
Ø277
          TEST=K/KMAX
          IF (NADI.NE.1.OR.O.GT.WMAX.OR.O.LT.WMIN) GO TO 6
Ø278
     Ø279
Ø28Ø
     C In mode 2, after checking that a line falls within the spectral range
Ø281
       of interest, the program calculates the contribution of the line to
Ø282
     С
Ø283
       the relative absorption coefficient.
     C
       To this end, it first computes the closest index for line center
Ø284
     C
       (variable IND) then proceeds to fill IØ adjacent S(I) on both
Ø285
     С
Ø286
     C sides. Note that 1 \le IND \le 2*I\emptyset + 4998.
Ø287
     Ø288
Ø289
          TESTI=O-AINC*IDINT((O-WMIN)/AINC)-WMIN-AINC/2.
Ø29Ø
            (TEST1.LE.Ø.Ø) IND=IDINT((O-WMIN)/AINC) +1
          IF
          IF (TEST1.GT.Ø.Ø) IND=IDINT((O-WMIN)/AINC)
Ø291
                                               +2
          IF(IND.GE.IØ.AND.IND.LE.IØØ) ST(IND-IØ+1)=ST(IND-IØ+1)+K*VO(1)
Ø292
Ø293
          DO 7 I1=1, IØ-1
Ø294
          JI = IND + II
          IF (J1.GE.IØ.AND.J1.LE.IØØ) ST(J1-IØ+1)=ST(J1-IØ+1)+K*VO(I1+1)
Ø295
Ø296
          J1=IND-I1
Ø297
          IF (J1.GE.IØ.AND.J1.LE.IØØ) ST(J1-IØ+1)=ST(J1-IØ+1)+K*VO(I1+1)
Ø298
     7
          CONTINUE
Ø299
          CONTINUE
     6
8388
          IF (TEST.GT.Ø.Ø1) J=J+1.
     Ø3Ø1
Ø3Ø2
     С
Ø3Ø3
     C The program considers all possible lines in a given branch until the
Ø3Ø4
      relative line strength is 1% of the strongest value in the branch so
     C
Ø3Ø5
     C far.
Ø3Ø6
     С
Ø3Ø7
     Ø3Ø8
          IF (TEST.GT.Ø.Ø1) GO TO 3
            (NAD1.NE.1) WRITE (LUOUT,132)
Ø3Ø9
          IF
Ø31Ø
     102
          FORMAT(5(1H*))
Ø311
     2
          CONTINUE
Ø312
     1
          CONTINUE
Ø313
          IF (NAD1.NE.1) GO TO 12
Ø314
          STM=Ø.Ø
Ø315
          DO 8 I=IØ,IØØ
Ø316
          O=WMIN+(I-1)*AINC
Ø317
          IF (NAD.EQ.1) 0=1.D8/0
```

IF (NAD.EQ.1) O=O/INDEX(O) Ø318  $I 1 = I - (I \mathcal{D} - 1)$ Ø319 IF (11.EQ.1001.OR. ø32ø I1.EQ.2001.OR. Ø321 I1.EQ.3001.OR. Ø322 I1.EQ.ØØØ1.OR. 11.EQ.4001.AND.NAD2.NE.1) WRITE (LUOUT,110) Ø323 Ø324 FORMAT (4H1ØØØ) 11Ø IF (ST(I1).LE.STM) GO TO 11 Ø325 Ø326 STM=ST(I1) Ø327 IF (NAD2.NE.1) WRITE (LUOUT,1Ø9) O,ST(11) OMAX=0 ø328 FORMAT (D14.9,1H,,D12.7) 11 ø329 1Ø9 ø33ø CONTINUE IF (NADI.NE.Ø) WRITE (IT.111) OMAX.STM FORMAT (5X."The position of the max. abs. coeff. 1s: ".D14.9. Ø331 8 12 Ø332 Ø333 */,5X,"(Beta/F1Ø)max=",D14.9,/) CALL LFCLS(LUOUT) 111 Ø334 ø335 Ø336 STOP ø337 DOUBLE PRECISION FUNCTION OM(J.N.LEVEL, BN, DN) Ø338 IMPLICIT DOUBLE PRECISION (A-H,O-Z) Ø339 COMMON /XYZ/ ST(5000), VO(2000) Ø34Ø Ø341 Ø342 This function calculates the rotational energy levels of both 2PIi electronic states using the Hill and Van Vleck formula. Ø343 С Ø344 С Ø345 С The spectroscopic constants for NCO are: Ø346 Ø347 С References: Dixon [Phil.Trans.Roy.Soc.London, A252, 165 (1960)] Ø343 C Dixon [Can.J.Phys., 38, 18 (1963)]. C Ø349 Ø35Ø С source and remarks C value (cm-1) Ø351 meaning prgm name Ø352 С Dixon table 7 p.178 C .3894 Ø353 B " Dixon (3) p.14 В С Ø354 β' 3765 Dixon p.14 С Ø355 15.e-8 D",D' Dixon p.178 table 7 С D Ø356 Α" -95.59 Dixon p.14 Ø357 С Α -3Ø.8 Ä' By convention, Dixon С Ø358 ø nuØ" considers the zero point 0 С Ø359 energy above the potential well (TØ instead of Te) 32781.13 nuØʻ С Ø36Ø С Ø361 Ø362 C Ø363 Ø364 DOUBLE PRECISION J Ø365 IF (LEVEL.EQ.2) GO TO 1 Ø366 O=Ø.ØDØ Ø367 B=Ø.3894DØ Ø368 D=15.D-8 Ø369 A=-95.59DØ Ø37Ø GO TO 2 Ø371 CONTINUE Ø372 1 0=32781.13DØ Ø373 B = BNØ374 Ø375 D = DNA=-3Ø.8DØ Ø376 CONTINUE 2 OM=O+B*(J-Ø.5)*(J+1.5)+(-1.8)**N*DSQRT( Ø377 *B**2*(J+Ø.5)**2+Ø.25*A*(A-4.*B))-Ø378 ø379 *D*((J-Ø.5)*(J+Ø.5)**2*(J+1.5)+1.) Ø38Ø RETURN Ø381

l

Ø382 END DOUBLE PRECISION FUNCTION Q(T) Ø383 IMPLICIT DOUBLE PRECISION (A-H,O-Z) Ø384 Ø385 COMMON /XYZ/ ST(5000), VO(2000) ø386 Ø387 Ø388 C This function calculates the total partition function for NCO. The C complete calculation has been carried out elsewhere (prgm PART). C In that program, all rovibronic levels of the ground electronic Ø389 ø39ø state were summed up, according to the expressions of Hougen [J. Chem. Ø391 Ø392 С Phys., 36, 519 (1962)]. Contributions of the A- and B- energy levels to the total partition Ø393 С Ø394 C function were neglected. Spectroscopic constants were taken from Dixon C or Hougen. In addition, Omegal=1922 cm-1 and Omega2=1275 cm-1 were taken Ø395 C from Millikan and Jacox [J. Chem. Phys., 47, 5157 (1967)]. Ø396 Ø397 Ø398 The total partition function can adequately be described by the simpler C Ø399 C formula given in this routine. A minor correction factor (variable f) 8488 was introduced to provide better agreement with the more complete С C computation of PART. Ø4Ø1 Ø4Ø2 C Note that the bending vibration Omega2 has multiple degeneracies equal C to 2*(v2+1). In addition, Lambda doubling occurs in all vibronic states Ø4Ø3 8484 C with non zero K. Therefore, the global degeneracy of a given bending C vibrational level is 4*(v2+1). The factor of 4 here explains the Ø4Ø5 Ø4Ø6 C factor of 4 in Q(T), and the (v2+1) term explains the squared contri-Ø4Ø7 C bution of Omega2 to Q(T). Note that the introduction of a lambda C doubling degeneracy (factor of 2) is consistent with our definition Ø4Ø8 Ø4Ø9 C of the lower levels of a rotational transition, and the normalization C rule Sum[Sj*j']=2*J"+1. Ø41Ø Ø411 Ø412 C Ø413 Ø414 IF (T.LT.1000.) F=1.093+15./T Ø415 IF (T.GE.1000.) F=1.0309-1.36D-5*T Ø416 Q=F*4.*T/1.4388/Ø.3894/(1.-DEXP(-1.4383*1922./T))/ Ø417 *(1.-DEXP(-1.4388*538.94/T))**2/ *(1.-DEXP(-1.4388*1275.9/T)) Ø418 Ø419 RETURN Ø42Ø END Ø421 DOUBLE PRECISION FUNCTION S(J,DJ,N) IMPLICIT DOUBLE PRECISION (A-9,0-2) COMMON /XYZ/ ST(5909),VO(2999) Ø422 Ø423 Ø424 Ø425 - C C The functions S,U and C are taken directly from Kovacs [Rotationa] Ø426 C Structure in the Spectra of Diatomic Molecules. Elsevier, NY (1969)]. Ø427 C Kovacs' expressions apply to diatomic molecules and to polyatomics Ø428 Ø429 C that satisfy the Born-Oppenheimer approximation. Ø43Ø Ø431 C We have the following variables: Ø432 C Ø433 C J ....J" Ø434 С .... Lambda Ø435 С D.J ....J'-J" Ø436 С LEVEL ..... Upper level ==> 2 Ø437 Lower level ==> 1 C Ø438 С. IFLAG ..... Superscript in U and C + ==> 1 Ø439 - ==> 2 C Ø44Ø C 8441 8442 Ø443 C Rotational line strengths are normalized according to  $Sum(Sj^*j^*)=2j^*+1$ . Lower levels are chosen with degeneracy 2J"+1. Therefore, we have. eg: 8444 ¢ Ø445 С

Ø446	с	S(P1c)+S(Q1c)+S(R1c)=2*J*+1 (respec. index 2,c,d)
Ø447 Ø148	C	This description implicitely assumes that Lambda doubling can be
Ø449	č	resolved. A lower level is therefore defined by J, N and the Lambda
Ø45Ø	ç	doubling quantum number. This is consistent with the introduction of
Ø451 Ø452	c	Lambda doubling cannot be resolved. The individual components of the
Ø453	ē	doublet therefore add up in the line strength calculation. This explains
Ø454	ç	our earlier introduction of a factor of 2, since both components of the
Ø455 Ø456	C	lambda doublet of an asymmetrical molecule are equal in scrength (see
Ø457	č	
Ø458	cc	••••••••••••••••••••••••••••••••••••••
Ø459 Ø460		DOUBLE PRECISION J.L INTECEP D.3
Ø461		L=1.Ø
Ø462		IF (N.NE.1) GO TO 1Ø
Ø463		IF (DJ.NE.−1) GO IO 1 S=(J=1=0 5)*(J+1+0 5)/A /J/C(J−1 2 2)/C(J 1 2)*
Ø465		*(U(J-1.,2,2)*U(J,1,2)+4.*(J-L+Ø.5)*(J+L-Ø.5))**2
Ø466		GO TO 2 <i>0</i>
Ø467	1	CONTINUE IE (D.) NE Ø) CO TO 2
Ø469		S=(J+Ø.5)/2./J/(J+1.)/C(J,2,2)/C(J,1,2)*
Ø47Ø		*((L+Ø.5)*U(J,2,2)*U(J,1,2)+4.*(L-Ø.5)*
Ø471 Ø472		*(J-L+Ø.5)*(J+L+Ø.5))**2 CO TO 20
Ø472 Ø473	2	CONTINUE
\$474		S=(J-L+Ø.5)*(J+L+1.5)/4./(J+1.)/C(J+1.,2,2)/
Ø475 Ø476		*C(J,1,2)*(U(J+1,2,2)*U(J,1,2)+ *A,*(J-(+1,5)*(J+(+4,5))**2
Ø477		GO TO 2Ø
Ø478	1Ø	CONTINUE
194/9 8488		IF (DJ.NEI) GO IO 3 S={J-1-0.5}=(J+1+0.5)/4./J/C{J-12.1}/C(J.1.1)*
Ø481		*(U(J-1.,2,1)*U(J,1,1)+4.*(J-L+Ø.5)*(J+L-Ø.5))**2
Ø482	-	GO TO 20
10483 10484	3	IF (DJ.NE.Ø) GO TO 4
Ø485		S=(J+Ø.5)/2./J/(J+1.)/C(J,2,1)/C(J,1,1)* *
Ø486		*((L+Ø.5)*U(J,2,1)*U(J,1,1)+
Ø488		GO TO 2Ø
Ø489	4	CONTINUE
Ø49Ø Ø491		S¤(J−L+Ø.5)*(J+L+1.5)/4./(J+1.)/C(J+1.,2,1) #/C(J 1 1)*(U(J+1 2 1)*U(J 1 1)*
Ø492		*4.*(J-L+1.5)*(J+L+Ø.5))**2
Ø493	2Ø	RETURN
Ø494 Ø495		END DOUBLE RECISION FUNCTION C(1 LEVEL JELAC)
Ø496		IMPLICIT DOUBLE PRECISION (A-H.O-Z)
Ø497		COMMON /XYZ/ ST(5000), VO(2000)
19498 07499		DOUBLE PRECISION J.L
ø5øø		C=Ø.5*(U(J.LEVEL.IFLAG)**2+4.*(J+Ø.5-L)*(J+Ø.5+L))
Ø5Ø1		RETURN
0502 0503		END Double precision function H() (Even telac)
Ø5Ø4		IMPLICIT DOUBLE PRECISION (A-H.O-Z)
Ø5Ø5		COMMON /XYZ/ ST(5000), VO(2000)
มรม6 Ø5Ø7		DOUBLE PRECISION J,L
Ø5Ø8	•	IF (LEVEL.EQ.1) Y=-95.59/Ø.3894
Ø5Ø9		IF (LEVEL.EQ.2) Y=-30.80/0.3765

.

U=DSQRT(L**2*Y*(Y-4.)+4.*(J+Ø.5)**2) Ø51Ø Ø511 #+(-1.Ø) **(IFLAG+1)*L*(Y-2.) RETURN Ø512 Ø513 END DOUBLE PRECISION FUNCTION INDEX ( WL ) 9514 IMPLICIT DOUBLE PRECISION (A-H, O-Z) Ø515 Ø516 COMMON /XYZ/ ST(5000), VO(2000) Ø517 Ø518 С This function is found in the CRC handbook p. E-224. It is the Cauchy index of refraction of air as a function of wavelength. The fit is Ø519 Ø52Ø С C valid for all UV wavelengths. Ø521 Ø522 Ø523 INDEX=2726.43DØ+12.288D8/WL**2+Ø.3555D16/WL**4 Ø524 Ø525 INDEX=1.+INDEX*1.D-7 RETURN Ø526 Ø527 END DOUBLE PRECISION FUNCTION VOIGT (X,Y) Ø528 IMPLICIT DOUBLE PRECISION (A-H,O-Z) Ø529 COMMON /XYZ/ ST(5000), VO(2000) Ø53Ø Ø531 C Ø532 C С THIS ROUTINE COMPUTES THE REAL (WR) AND IMAGINARY (WI) PARTS OF Ø533 Ø534 C THE COMPLEX PROBABILITY FUNCTION w(z). Ø535 C Ø536 C w(z) = exp(-z*z) * erfc(-i*z),Ø537 С WHERE erfc IS THE COMPLEMENTARY ERROR FUNCTION. THE COMPUTATION С Ø538 IS VALID FOR THE UPPER HALF PLANE OF z = x + iy, ie  $y > \emptyset$ . Ø539 С Ø54Ø С MAXIMUM RELATIVE ERROR FOR WR IS < 2.E-6 AND FOR WI IS < 5.E-6. Ø541 Ø542 C Ø543 С SUBROUTINE ADAPTED FROM: Ø544 J. HUMLICEK, J. QUANT. SPECTROSC. RADIAT. TRANSFER 21, 309 (1979) C Ø545 C Ø546 С C** Ø547 ******* DIMENSION T(6), C(6), S(6) DATA T/Ø.31424Ø376DØØ,Ø.947788391DØØ,Ø.159768264DØ1, Ø548 Ø549 Ø55Ø * Ø.22795Ø7Ø8DØ1,Ø.302Ø637Ø3DØ1,Ø.38897249DØ1/ Ø551 DATA C/Ø.101172805D01,-0.75197147D00.0.12557727D-01, Ø552 * Ø.1ØØ22ØØ82D-Ø1,-Ø.242Ø68135D-Ø3,Ø.5ØØ843Ø61D-Ø6/ Ø553 DATA S/Ø.1393237DØ1,Ø.2311524Ø6DØØ,-Ø.155351456DØØ, Ø554 * Ø.621836624D-Ø2,Ø.919Ø82986D-Ø4,-Ø.627525953D-Ø6/ Ø555 WR=Ø. Ø556 WI=Ø. Ø557 Y1=Y+1.5 Ø558 Y2=Y1*Y1 C* Ø559 ************************************** Ø56Ø С Ø561 С BRANCH TO REGION I OR II DEPENDING ON VALUES OF X AND Y. Ø562 С Ø563 C* Ø564 IF(Y.GT.Ø.85.OR.DABS(X).LT.(18.1*Y+1.65)) GO TO 23 C***** \$565 ************** **\$**566 С Ø567 С CALCULATIONS FOR REGION II Ø568 С Ø569 IF (DABS(X).LT.12.) WR=DEXP(-X*X) Ø57Ø Y3=Y+3. Ø571 DO 1Ø I≈1.6 Ø572 R=X-T(I) Ø573 R2=R*R

P

۱

Ø574		D=1./(R2+Y2)
Ø575		D1=V1*D
Ø576		D2=R*D
Ø577		WR=WR+Y*(C(I)*(R*D2-1.5*D1)+S(I)*Y3*D2)/(R2+2.25)
a578		R=X+T(I)
a579		R2⊐R*R
a598		D=1./(R2+Y2)
0591		D3=V1*D
ac 92		
N202 NE02		$W_{R=VR+V*(C(T)*(R*D4-1.5*D3)-S(I)*Y3*D4)/(R2+2.25)$
0000	10	$M_{1} = M_{1} + (1) * (D_{2} + D_{4}) + S(1) * (D_{1} - D_{3})$
10004 Acor	1.0	
8282		
8280	~	RETORN
8587		THE OF CALCULATIONS FOR REGION IT
0588	L	END OF CALCULATIONS FOR ALGION TO
Ø589	C .	
0590		
Ø591	C	AN AN ATTANG FOR REGION I
Ø592	c	CALCULATIONS FOR REGION 1
Ø593	C	
Ø594	2Ø	DO 30 I=1,6
Ø595		R=X-T(I)
Ø596		D=1./(R*R+YZ)
Ø597		D1=Y1*D
Ø598		D2≃R*D
Ø599		R=X+T(I)
Ø6ØØ		D=1./(R*R+Y2)
Ø6Ø1		D3=Y1*D
0602		D4⊐R*D
Ø6Ø3		WR=WR+C(I)*(D1+D3)−S(I)*(D2-D4)
0504	3Ø	WI=WI+C(I)*(D2+D4)+S(I)*(D1-D3)
8685		VOIGT=WR
8686		RETURN
a6a7	Ċ	
8682	č	END OF CALCULATIONS FOR REGION I
<i><i>a</i>c<i>a</i>c</i>	č	
0009 0610	C****	*********
ac11	<b>U</b>	END
0011 0011	¢	End

ł

### Appendix 6

# Data Reduction Procedure and Uncertainty Analysis

In this appendix, a systematic approach to the experimental and data reduction procedures is presented and a method to estimate the uncertainties associated with shock tube experiments is discussed.

## A6.1 Determination of Experimental Conditions

Shock tube experiments are generally aimed at measuring fundamental kinetic data by comparing measured and calculated profiles of selected species. Before running an experiment, a comprehensive study is performed to choose reactant mixtures, conditions and species diagnostics that render the measured profile most sensitive to the kinetic data of interest. To analyze each problem, it is useful to reduce the chemical mechanism to a handful of key reactions and to perform a steady-state analysis of the simplified reaction set. In addition to simplifying the kinetic problem, this approach provides a convenient frame for discussing the data interpretation. Moreover, computer experiments based on a comprehensive chemical mechanism can be used to validate the conclusions of the simple analysis and carry out an optimization of the kinetics experiments.

If posed in general terms, the problem of optimizing shock tube measurements becomes a task with a confusing range of choices. Fortunately, a few rules of thumb can reduce the number of acceptable options.

First, reactant mixtures must be tailored to limit the influence of interfering reactions in the kinetics mechanism, and to promote the reactions of interest in the very first stages of the experiment. If elementary radicals and atoms are involved in the reaction studied, then the test mixtures should include a well known and direct source of these species. For example,  $N_2O$  can be used as a reliable source of O-atoms; a mixture of  $N_2O$  and  $H_2$  can provide known amounts of H-atoms, etc... Further, it is important to restrict the induction mechanism to a single

rate-limiting step, because new uncertainties are added with each new initiation reaction.

The precision of a rate measurement depends also on the careful choice of the species diagnostic. In general, it is better to measure an intermediate species than a final product, because the concentration of the former is more dependent on the kinetics of the system than the concentration of the latter. For example, mixtures of  $C_2N_2$  and  $N_2O$  diluted in argon at moderate temperatures (T=1800°K) can be described using the simplified three reactions model

$$N_{20} + M \rightarrow N_{2} + 0 + M,$$
 (1)

$$C_2N_2 + 0 + CN + NCO,$$
 (2)

$$CN + O \rightarrow CO + N.$$
 (3)

It was shown in chapter 3 that  $[CN]^{peak}/[C_{2N_2}] \approx k_2/k_3$ . Further,  $[CO]^{peak_{constrainty}}$  $[CO]_{t \rightarrow \infty} \approx 2[C_{2N_2}]_{t \approx 0}$ . It follows that plateau CO concentrations are independent of the reaction kinetics. By contrast, peak CN concentrations are directly proportional to the ratio  $k_2/k_3$ . It is clear that a measurement of the intermediate radical CN provides better kinetics insight than a measurement of the stable product CO.

Finally, acceptable experiments usually correspond to a narrow range of conditions. In general, it is better to work with maximum dilution to prevent excessive kinetics interference from unknown reactions. On the other hand, spectroscopic diagnostics usually dictate the conditions of the experiment. In particular, detection limits often impose high reactant mole fractions to achieve suitable post-shock species concentrations. For example, an upper bound on temperature must be set to collect a detectable absorption signal (absorption levels decrease with increasing temperature). Note that detection limits are closely related to the size of the molecular partition functions. For example, the partition function and detection limits of a polyatomic molecule are equally dependent on temperature. Further, experimental temperatures are often restricted by possible optical interferences (spontaneous emission from the test gas), or by reaction rate considerations. In practice, experi-

202

•

mental conditions are frequently adjusted by trial and error because of conflicting and possibly unknown diagnostic and kinetics considerations.

# A6.2 Development of a Chemical Kinetics Model

The successful interpretation of measured species time-histories depends on the careful choice of a chemical kinetics mechanism. The failure to include certain reactions in a comprehensive model can result in erroneous measurements of the rate constants of interest. The consequences of such mistakes can be greatly reduced by diluting the reactant mixtures. However, further dilution can be prevented by detection limits considerations, and a correct interpretation of the chemical mechanism becomes essential.

To construct a reasonable mechanism, it is helpful to envision the reactions in the shock tube as a simple chemical sequence. Each step of the sequence is found by determining which species are most likely to react with the products of the previous step. Consider for example the mechanism in Fig. 3.10. The initial step is the thermal decomposition of  $C_2N_2$ . The resulting CN radicals will undoubtedly react with  $O_2$ , giving rise to NCO and 0. At this stage, it is essential to recognize that the resulting O-atoms will react with  $C_2N_2$ , thus accelerating the production of CN, and the production of O-atoms. Clearly, the failure to include reaction (2)

$$C_2 N_2 + 0 + CN + NCO, \qquad (2)$$

would render the data interpretation impossible, since the model would predict an excessive rise time of CN. More subtle mistakes can arise from the omission of other critical reactions. For example, omitting reaction (3) from the  $C_{2}N_{2}/O_{2}/argon$  mechanism

$$CN + 0 + CO + N,$$
 (3)

would not prevent a fit of the initial slope of CN; however, it would certainly result in an erroneous measurement of  $k_4$ 

$$CN + O_2 \rightarrow NCO + O_{\bullet}$$
(4)

In the absence of a known chemical mechanism, postulating an excessive number of reactions is better than failing to include a few important steps. If it necessary to reduce the size of the mechanism, then the computer can be used to evaluate the importance of each reaction. However, such an analysis can only be performed if reasonable data is available for all reaction rates.

In the absence of any published data, it is therefore useful to estimate the magnitude of selected reaction rate constants. Unfortunately, such theoretical predictions are limited. Benson [103] and Gardiner [86] surveyed a great variety of elementary reactions, proposed a few semi-empirical correlations, and reviewed the available theories. They also mentioned the serious limitations associated with each theoretical analysis. In particular, they indicated that the collision theory of reaction rates depends on unknown steric factors in the range  $10^{-5}$ [86], and fails to predict activation energies. In addition, the transition state theory (TST) requires two uncertain procedures i.e., estimating the set of vibrational frequencies of the activated complex and estimating the barrier height [103]. In an attempt to overcome these limitations, Binkley and Frisch [104] have applied quantum mechanical techniques to compute the vibrational frequencies, equilibrium geometries and total energies of any H/N/C/O molecular species, including activation complexes. Using empirically determined corrections, and transition state theory, this method proved successful in predicting the temperature dependence of the reaction of O-atoms with HCN [16]. Unfortunately, this sophisticated technique is not readily available; to perform a TST calculation, most researchers must make various assumptions about the intrinsic properties of the transition state. To this end, known molecules of comparable shape can provide approximate frequencies and bond lengths (see ¶ 5.1.3). Additional assumptions about the tightness of the transition state are made to relate the properties of the parent molecule to the properties of the transition state. Tight
transition states have interatomic distances about twice the distances in the corresponding stable molecules [103]; in addition, their bending and stretching frequencies are about 30% lower than comparable stable frequencies [103]. On the other hand, loose complexes have longer distances (2.9 times the stable bond distance) and smaller frequencies [103]. Most atom metathesis reactions such as reactions (2), (3), (4), (5), (8), (9), (10) and (11) have tight transition states [103]. Note that the uncertainties associated with these assumptions increase with increasing complexity of the transition state. In general, simple theoretical estimates based on transition state theory predict the temperature dependence of pre-exponential factors with reasonable accuracy, and are useful to correlate the observed curvature of non-Arrhenius rate constants (see ¶ 5.1.3). To this date however, no simple theory can reliably predict the barrier height of an elementary reaction. In general, endothermic reactions have a barrier height at least equal to their heat of reaction, and strongly exothermic reactions commonly exhibit small activation energies. In addition, limited correlations for simple reactions such as abstraction reactions are available (see Benson [103]). In the present study, barrier heights  $E=\Delta H_R+\delta$  have been observed for endothermic reactions, with  $2<\delta<6$  kcal/mole (see Table A6.1).

Upper bounds for the magnitude of unknown rate constants are given by the line-of-center collision rate,

$$k_{c} = 10^{12.44} \left(\frac{T}{\mu}\right)^{1/2} \bar{\sigma}^{2} \exp[-E_{0}/RT] \text{ cm}^{3}/\text{mole/sec}$$
 (A6.1)

 $\mu$  is the reduced mass of the reactants (g/mole).  $\overline{\sigma}$  is the collision cross-section diameter (Å) [86], and is presumably known from experimental transport properties measurements [105].  $E_0=0$  for exothermic reactions and  $E_0=\Delta H_R$  for endothermic reactions. Around the average temperature  $\overline{T}$ ,  $k_c$  can be approximated using a standard Arrhenius expression [86],

$$k_c = A_c \exp[-E/RT],$$
 (A6.2)

۱

$$c = 10^{12.44} \left(\frac{e\bar{T}}{\mu}\right)^{1/2} \bar{\sigma}^{2} (cm^{3}/mole/sec), \qquad (A6.3)$$

where

and

 $E=E_0+1/2$  RT. (A6.4)

As mentioned above, the collision rate  $k_c$  is an upper bound for k, the actual rate constant of interest. To relate further  $k_c$  to k around the average temperature T, a steric factor p can be introduced to relate  $A_c$  to  $A_a$ , the respective Arrhenius pre-exponential factors of  $k_c$  and k; for

k=A 
$$T^{m} \exp[-\theta/T]$$
 (cm³/mole/sec),

the approximate Arrhenius pre-exponential factor  $A_a$  around T is [86]

 $p=A_a/A_c$ 

$$A_a = A (eT)^m$$
, (A6.5)

and, by definition,

In general, steric factors decrease with increasing complexity of the reactants. Table A6.1 shows estimates of the steric factors for the reaction rates measured in the present study. To evaluate p from eqs. (A6.2) to (A6.6), average temperatures T were set equal to the average experimental temperatures in Table 6.1; in addition, the present recommended rate expressions (Table 6.1) were used to estimate the "actual" rate constants k and the corresponding values of  $A_a$  (eq. A6.5). Note the coupling between the value of p inferred and the activation energy specified or assumed. The resulting steric factors are high for the reactions of radicals and atoms  $(0.05 \le 0.1)$ , and lower for the reactions of stable molecules and radicals ( $p\approx 0.01$ ). A greater disparity is observed for the reactions of stable molecules and atoms (0.01<p<0.2); such disparity has also been observed by Gardiner [86]. Table A6.1 and other reported values of p (see Gardiner [86]) are useful to assume reasonable steric factors for unknown elementary reactions. Thus, rough estimates of unknown rate constants can be found using eq. (A6.1) and

$$k^{\text{estimated}} = p^{\text{estimated}} \times k_{a}$$
 (A6.7)

(A6.6)

Table A6.1 - Experimental Steric Factors

	Reaction	Type ^a	тъ	μ ^c	ā	log ₁₀ A d	р	ΔH(T) e	E f
2	C ₂ N ₂ +O→CN+NCO	A-S	2000	12.2	3.05	14.73	0.009	+3	+9
3	CN+O+CO+N	R-A	2000	9.90	2.51	14.61	0.05	-75	0
4	CN+02+NCO+0	R-S	2400	14.3	3.37	14.82	0.009	-1	0
5	NCO+O+CO+NO	R-A	1450	11.6	3.26	14.73	0.1	-105	0g
8	HCN+O→NCO+H	A-S	1440	10.0	3.06	14.71	0.06	0	+2
9	NCO+Н→СО+NН	R-A	1490	0.977	3.13	15.24	0.06	-39	+2 ^g
10	NCO+H2+HNCO+H	R-S	1490	1.91	3.86	15.28	0.009	-10	+8 ^g
11	C ₂ N ₂ +H→CN+HCN	A-S	1490	0.981	2.92	15.18	0.2	+4	+8

a R-A=Radical+Atom; 0.05<p<0.1.

R-S=Radical+Stable species; p=0.009.

A-S=Atom+Stable species; 0.009<p<0.2.

^b Average experimental temperature (°K).

^c Collision cross-section of the reactants A and B.  $\bar{\sigma} = (\sigma_A + \sigma_B)/2$  (A).

^d A-factor of k_c in Arrhenius form, A=10^{12.44}  $\left(\frac{e\overline{T}}{\mu}\right)^{1/2} \sigma^{-2}(cc/mol/sec)$ . e Heat of reaction at  $\overline{T}$  (kcal/mole).

f Activation energy at T in Arrhenius form.  $E=(\theta+mT)R$  (kcal/mole).

g Estimated activation energy (kcal/mole).

In general, absolute estimates based on transition state theory or the line-of-center approach must be used with great caution, and shock tube experiments should be designed to minimize their influence on the final result.

# A6.3 Data Reduction Procedure

The reduction of experimental shock tube data consists in minimizing the quantity  $|\chi_{0}|/\chi_{0}$  in a given time interval  $[t_{0},t_{f}]$  by adjusting a few selected rate parameters.  $\chi_{0}=g_{0}[t;\beta]$  is the mole fraction profile derived from an experimental record using the calibration parameter  $\beta$ ,

and  $\chi_{=g}[t;k_j]$  is the theoretical mole fraction computed using a complete reaction mechanism and the set of rate constants  $k_j$ . The data reduction can prove very complex, if it is posed in these general terms, since  $\chi_{=}$  $g[t;k_j]$  is often a complicated parametric function of  $k_j$ . Only limited systematic treatments of this kind have been reported in the literature. In particular, Miller and Frenklach applied a statistical analysis to the study of the thermal decomposition of propane [90]. Despite several attempts to generalize these techniques, only simple mechanisms have been investigated. Further, these methods are often aimed at minimizing the quantity  $|\chi_{-}\chi_{0}|/\chi$  at a single characteristic time, rather than over a complete time interval  $[t_0, t_f]$ .

In practice, it appears convenient to fit the selected kinetics parameters to a few specific features that can be easily identified on the theoretical profile. Such features include absolute peak concentrations, plateau levels, relative initial slopes, relative decays, timesto-peak, etc... If these features can be quantified, then the data reduction consists in solving the set of N equations

$$a_{i} = a_{i}^{0} \quad i = 1, N,$$
 (A6.8)

where

$$a_{i}=g_{i}[K_{j};I_{n};\beta], j=1,N; n=1,M;$$
 (A6.9)

 $a_i$  are N features of the theoretical profile,  $K_j$  are N selected kinetics parameters,  $I_n$  are M uncertain rate constants that can interfere with the data reduction,  $\beta$  is a calibration parameter, and g is a real parametric function. (The quantities  $K_j$  may be rate constants of combinations thereof). To obtain a unique solution to eq. (A6.8), N features  $a_i$ must be identified to determine uniquely the N quantities  $K_j$ . In principle, eq. (A6.8) can be solved numerically using a Newton-Raphson technique based on a first order expansion of eq. (A6.9),

$$a_{i} - a_{i}^{0} = \sum_{j} \frac{\partial g_{i}}{\partial K_{j}} (K_{j} - K_{j}^{0}), i = 1, N$$
 (A6.10)

 $K_j^{\circ}$  is the solution to eq. (A6.8);  $a_j$  are N features computed using the N estimates  $K_j$ . Equation (A6.10) can be written in matrix form

**A** = J K,

where J is the Jacobian of the set of functions  $g_i$ . A unique solution to eq. (A6.11) can only be found if the determinant of J is different than zero.

In practice, it is often difficult to quantify the characteristic features  $a_1$  or to find the function  $g_1$  in closed form. In this case, a solution to eq. (A6.8) is found by adjusting the set of N parameters  $K_j$ until a simultaneous visual match of the N features  $a_1$  is obtained. The systematic treatment outlined above remains useful to establish the feasibility of the data reduction procedure. For example, in the data reduction of the  $C_2N_2/O_2/H_2/N_2O/Ar$  experiments described in (5.2), the following profile features and kinetics parameters have been used (see Table 5.4):  $a_1$ =relative slope,  $a_2$ =absolute peak concentration,  $a_3$ =relative decay;  $K_1=k_9$ ,  $K_2=k_{11}/k_{12}$ ,  $K_3=k_{10}$ , with the reactions

$$NCO + H + CO + NH, \qquad (9)$$

(A6.11)

$$C_2N_2 + H + CN + HCN, \qquad (11)$$

$$CN + H_2 \rightarrow HCN + H_1$$
 (12)

$$NCO + H_2 + HNCO + H_{\bullet}$$
(10)

Using Table 5.4, the corresponding Jacobian matrix is written

$$J = \begin{bmatrix} a_{11} & a_{12} & -a_{13} \\ -a_{21} & a_{22} & -a_{23} \\ 0 & a_{32} & 0 \end{bmatrix}, \text{ with } a_{ij} > 0.$$

It follows that the Jacobian determinant is strictly positive,

$$det(J)=a_{32}(a_{11}a_{23}+a_{21}a_{13})>0.$$

In principle, all three parameters  $K_j$  can be extracted using the three characteristic features found in Table 5.4, and the data reduction procedure is feasible.

# A6.4 Uncertainty Analysis

Like other experimental techniques, shock tube measurements contain inherent uncertainties. Since the resulting kinetics data is often used in other experiments to extract further fundamental parameters, careful estimates of the experimental uncertainties should be reported with the recommended rate constants. These uncertainties usually fall in two categories. First, the uncertainties associated with the spectroscopic diagnostics can be distinguished. They result in the uncertain measurement of the species concentrations, and are related to detection limits and the accuracy of calibration parameters. Other significant uncertainties result from the uncertain knowledge of the rates of interfering reactions in the mechanism. In principle, theoretical estimates of all uncertainties can be obtained using the first-order analysis introduced in A6.3. If the nominal interfering rates  $I_n^{\circ}$  and calibration parameter  $\beta^{\circ}$  are adjusted by the amounts  $(I_n - I_n^{\circ})$  and  $(\beta - \beta^{\circ})$ , then the recommended parameters  $K_j^{\circ}$  must be adjusted by  $(K_j - K_j^{\circ})$  to ensure the return to an optimum fit. To first order,

$$a_{i}-a_{i}^{0} = \sum_{j} \frac{\partial g_{i}}{\partial K_{j}} (K_{j}-K_{j}^{0}) + \sum_{n} \frac{\partial g_{i}}{\partial I_{n}} (I_{n}-I_{n}^{0}) + \frac{\partial g_{i}}{\partial \beta} (\beta-\beta^{0}) . \quad (A6.12)$$

An optimum fit is obtained with  $a_i - a_i^\circ = 0$ . Thus, eq. (A6.12) can be solved for  $(K_j - K_j^\circ)$ . For j=1,N,

$$(K_{j}-K_{j}^{0}) = \sum_{i} (\mathbf{J}^{-1})_{ji} \left( \sum_{n} \frac{\partial g_{i}}{\partial I_{n}} (\mathbf{I}_{n}-\mathbf{I}_{n}^{0}) + \frac{\partial g_{i}}{\partial \beta} (\beta-\beta^{0}) \right), \quad (A6.13)$$

where  $(\mathbf{J}^{-1})_{ji}$  is the (j,i) component of the inverse Jacobian. Equation (A6.13) can be rearranged to read

$$(K_{j}-K_{j}^{0}) = \sum_{n} \left( \sum_{i} (J^{-1})_{ji} \frac{\partial g_{i}}{\partial I_{n}} \right) (I_{n}-I_{n}^{0}) + \sum_{j} (J^{-1})_{ij} \frac{\partial g_{i}}{\partial \beta} (\beta - \beta^{0})$$
$$= \sum_{n} a_{jn} (I_{n}-I_{n}^{0}) + b_{j} (\beta - \beta^{0}) . \qquad (A6.14)$$

Assuming that  $(I_n - I_n^{\circ})$  and  $(\beta - \beta^{\circ})$  are N+1 normally distributed independent random variables with variance  $\sigma(I_n)$  and  $\sigma(\beta)$ ,

$$\sigma^{2}(K_{j}) = \sum_{n} a_{jn}^{2} \sigma^{2}(I_{n}) + b_{j}^{2} \sigma^{2}(\beta) . \qquad (A6.15)$$

Since absolute uncertainties in  $K_j$  are proportional to the variance  $\sigma(K_j)$ ,

$$\frac{\Delta K_{i}}{K_{i}} = \checkmark \sum_{n} \left( \frac{\Delta K_{i}}{K_{i}} \right)_{n}^{2}, \qquad (A6.16)$$

where  $(\Delta K_i/K_i)_n$  is the nth component of the uncertainty, associated with the nth interfering rate constant (or with the calibration parameter  $\beta$ ). As mentioned earlier, it is difficult in practice to evaluate the Jacobian J or the functions  $g_i$ . Usually, it is convenient to estimate the quantities  $(\Delta K_i/K_i)_n$  by modifying each individual rate  $I_n$  (or  $\beta$ ) by a factor  $F_n$ , and to adjust the parameters  $K_i^{\circ}$  by the factors  $F_i^{n}$  to ensure the return to an optimum fit of all characteristic features  $a_i$ . Then the values of  $(\Delta K_i/K_i)_n$  can be estimated using

$$\left(\frac{\Delta K_{i}}{K_{i}}\right)_{n} = \left(\Delta \ln K_{i}\right)_{n} = \ln F_{i}^{n} . \qquad (A6.17)$$

(In the uncertainty tables of chapters 2 to 5, the quantities  $\ln F_i^n$  are expressed as a percentage.)

In general, if an excursion  $I_n^{\circ} \times F_n$  results in the adjusted rate  $K_i^{\circ} \times F_i^n$ , then the excursion  $I_n^{\circ}/F_n$  does not necessarily result in  $K_i^{\circ}/F_i^n$ . Therefore, it is useful to consider separately the factors resulting in an increase in  $K_i^{\circ} (K_i \times F_i^n)$  and the factors resulting in a decrease in  $K_i^{\circ} (K_i \times f_i^n)$ , and

$$\ln F_{i} = 4 \sum_{n} (\ln F_{i}^{n})^{2} \text{ and } \ln f_{i} = 4 \sum_{n} (\ln f_{i}^{n})^{2} . \quad (A6.18)$$

 $F_i^n$  and  $f_i^n$  are the upper and lower factors necessary to adjust  $K_i^\circ$  for the return to an optimal fit, given the maximum excursions of  $I_n \cdot F_i$  and  $f_i$  are the resulting excursion factors for  $K_i^\circ \cdot$  Thus, the estimated error bar attached to the result  $K_i = K_i^\circ$  is given by

$$(K_{i}^{\min} f_{i}K_{i}^{\circ}) < K_{i} < (K_{i}^{\max} F_{i}K_{i}^{\circ}).$$
 (A6.19)

#### Appendix 7

# Analysis of an HCN/argon Cylinder

Hydrogen cyanide may slowly decompose in high-pressure HCN/Ar cylinders by surface reactions on the cylinder walls. In the kinetics experiments of chapter 5, the precise composition of a cylinder mixture was required to extract absolute values of elementary reaction rate constants. In particular, eq. (5.6) shows that the experimental ratio  $k_8^*/k_2^*$  is inversely proportional to the mole fraction of HCN in the reactant mixture. In this appendix, a comparative method to check the HCN composition of an unknown cylinder (C₁) using another cylinder of known composition (C₂) is examined.

Shortly after completing our experiments with the original cylinder ( $C_1$ ; initial composition, 8.9% HCN dilute in argon), the manufacturer (Airco) delivered a recently calibrated cylinder  $(C_2)$  containing a mixture of 9.116% HCN dilute in argon. To check the composition of  $(C_1)$ against the known composition of  $(C_2)$ , mixtures of the cylinder gases dilute in argon were shock-heated, with the conditions  $T_2=4050\pm130$  °K and  $p_2=0.33\pm0.01$  atm. The respective plateau emission levels of CN at 388 nm were compared to infer the composition of  $C_1$ , the unknown cylinder. The CN emission system was described in detail by Szekely [72]. It consists of aligning and focusing optics, a monochromator and a photomultiplier tube. To ensure nearly complete conversion of HCN to CN, the experiments were conducted in highly diluted mixtures of HCN (see Szekely, et al. [91]). Table A7.1 summarizes the experimental conditions and results. The dilution parameter d is the fraction of cylinder gas in the experimental mixture. If x is the mole fraction of HCN in the cylinder, then the HCN mole fraction in the experiment is x×d. V is the observed voltage corresponding to the CN emission plateau. It is proportional to the plateau CN mole fraction and to the pressure p. The CN mole fraction is in turn proportional to the initial HCN mole fraction, and

 $V=F(T) \times d p$ , (A7.1)

where F(T) is a constant independent of the cylinder composition and function of temperature. Six runs were performed with the original cylinder (C₁) and F(T) showed no significant temperature dependence within the limited temperature range of these experiments (3963<T< 4368°K). After a statistical analysis of the data using a t-distribution [62], it was found

$$(x_2F)=(5.97\pm0.34) \ 10^4 \ mV/atm$$
  
 $(x_1F)=(4.83\pm0.04) \ 10^4 \ mV/atm$ , (A7.2)

at 95% degree of confidence. Using eqs. (A7.1) and (A7.2), the dilution of the original cylinder  $(C_1)$  was extracted using

$$x_1 = x_2 \frac{(x_1F)}{(x_2F)} = 9.116\% \times \frac{4.83}{5.97} = 7.4 \pm 0.4\%$$
, (A7.3)

at 95% degree of confidence. The magnitude of  $x_1$  indicates that a significant amount of HCN had decomposed in cylinder  $C_1$  (18%).

Cylinder	p(atm)	<b>T(°K)</b>	d(%)	V(mV)	xF×10 ⁻⁴ (mV/atm)
c ₂	0.329	4058	0.261	55.4	6.45
c2	0.357	4368	0.263	52.0	5.54
c ₂	0.321	3980	0.242	48.4	6.23
c ₂	0.320	3963	0.291	54.4	5.84
c ₂	0.334	4113	0.292	56.9	5.83
c ₂	0.327	4048	0.368	71.4	5.93
c _i	0.325	4039	0.274	43.0	4.83
c ₁	0.321	3961	0.279	43.2	4.82

### Table A7.1 - Analysis of an HCN Cylinder

An additional experiment was conducted to check the accuracy of this method using a known cylinder containing a mixture of  $C_{2}N_{2}$  (1.01%) dilute in argon. Under the conditions of the experiment  $(T_{2}=3940^{\circ}K, p_{2}=0.328 \text{ atm}, d=1.224\%)$ ,  $C_{2}N_{2}$  is rapidly converted to 2 CN (see Appendix 2), and the observed voltage plateau (V=50.5 mV) is given by

$$V=2 F \times d p. \tag{A7.4}$$

Using  $F=(x_2F)/x_2=5.97\times10^4/0.09116$  mV/atm, this method predicts the following composition of the  $C_2N_2/Ar$  cylinder:

# x=50.5×0.09116/2×5.97.10⁴×0.01224×0.328=0.96%.

This value agrees within 5% with the actual composition of the  $C_2N_2/Ar$  cylinder (x=1.01%). The method described in this appendix is therefore reliable and it can be used to check the composition of HCN/Ar gas cylinders.

#### Appendix 8

#### The Fuel-Nitrogen Mechanism

#### A8.1 Introduction

The mechanism of fuel-nitrogen chemistry has drawn considerable attention in the combustion community. In a study of rich atmospheric pressure flames (CH₄,  $C_2H_4$  or  $C_2H_2$ ), Morley [3] observed nearly quantitative conversion of fuel-nitrogen to hydrogen cyanide in the reaction zone, regardless of the actual source of fuel-nitrogen (NO, NH3, CH3CN or pyridine). Acknowledging Morley's results, and implicitly assuming a fast, quantitative and therefore not rate-limiting production of HCN, other workers subsequently studied the conversion of HCN to NO and  $N_2$  in the post-flame gases. For example, Haynes [9] considered the fate of HCN in a key paper on HCN oxidation in fuel-rich flames. Morley [74] detected intermediate species such as OH, NH, CN and NO in premixed  $H_2/O_2/ar$ gon flames doped with  $CH_3CN$  to elucidate NO and  $N_2$  formation. Using a more direct approach, Miller, et al. [6] recently studied low pressure premixed  $H_2/O_2/argon$  flames seeded with HCN, and successfully developed the first comprehensive model of fuel-nitrogen chemistry coupled with a complete flame structure analysis. Finally, the present shock tube work was aimed at characterizing the detailed kinetics of the conversion of HCN to NH₁ species.

In this appendix, implications of the present reaction rate measurements for the overall kinetics of the fuel-nitrogen mechanism are discussed. A simplified model of the combustion of  $H_2/CO$  mixtures seeded with HCN is used to assess the relative importance of the major paths in the conversion of HCN to NO and N₂ under post-flame conditions. The computer results are then compared with available experimental data to discuss the limitations of the model.

	Reactions -	Rate Constant ^a			Source (Ref. #)	
		log ₁₀ A	m	θ(°K)		
3	CN+O-CO+N	13.31	0	210	This study	
4	CN+02+NCO+0	12.75	0	0	This study	
5	NCO+O-CO+NO	13.75	0	0	This study	
6	NCO+M+N+CO+M	16.80	-0.5	24000	This study	
8	HCN+O+NCO+H	8.24	1.47	3775	This study	
9	NCO+H-CO+NH	14.02	0	1000	This study	
10	NCO+H2-HNCO+H	13.23	0	4000	This study	
12	CN+H2+HCN+H	11.74	0.7	2460	[6]	
15	N ₂ +O-N+NO	14.26	0	38370	[22]	
16	N0+0-N+02	9.58	1.0	20820	[22]	
22	NO+H <del>-</del> N+OH	14.23	0	24560	[22]	
23	н+0 ₂ -0н+0	17.57	-1.0	8810	[94]	
24	0+н ₂ -н+он	10.26	1.0	4480	[94]	
25	^н 20+0 <del>-</del> 0н+он	9.66	1.3	8605	[94]	
26	н ₂ +он-н ₂ о+н	9.07	1.3	1825	[95]	
27	HCN+O≁NH+CO	8.73	1.2	3820	[16]	
29	hcn+oh-cn+h ₂ 0	12.64	0	4530	[6]	
30	CN+OH-NCO+H	13.75	0	0	[9]	
36	HNCO+H-NH2+CO	14.00	0	4280	[97]	
37	NH+H÷N+H2	13.70	0	1000	[22]	
38	NH2+H-NH+H2	13.28	0	0	[22]	
39	NCO+OH-HNCO+O	13.3	0	0	estimate	
40	сн ₄ +1/2 0 ₂ +со+2н ₂	-	-	-	[73] ^b	
41	^н 2+02+0н+он	13.23	0	24230	[99]	
42	H ₂ +M-H+H+M	12.35	0.5	46600	[6]	
43	со+он-со ₂ +н	7.18	1.3	-385	[100]	
44	NH2+OH-NH+H20	11.7	0.5	1000	[22]	
45	NH2+0-HNO+H	14.8	-0.5	0	[22]	
46	NH2+0-NH+OH	14.1	-0.5	0	[22]	

Table A8.1 - Kinetic Model of  $H_2/O_2/CO/argon/HCN$  Combustion

Reactions	Ra	Source (Ref. #)		
	log ₁₀ A	. m	θ(°K)	
47 NH+OH-HNO+H	12.0	0.5	1000	[22]
48 NH+OH-N+H ₂ 0	11.7	0.5	1000	[22]
49 NH+O-NO+H	11.8	0.5	0	[22]
50 NH+N-N ₂ +H	11.8	0.5	0	[22]
51 HNO+M-H+NO+M	16.5	0	24500	[22]
52 ню+он <del>-</del> ю+н ₂ 0	12.1	0.5	1000	[22]
53 HNO+O-NO+OH	11.7	0.5	1000	[22]
54 HNO+H-NO+H ₂	13.1	0	2000	[22]
55 NH2+NO-N2+H20	19.8	-2.5	950	[22]

Table A8.1 (continued)

^a Using the notation k=A  $T^m \exp[-\theta/T]$  (cm³/mole/sec).

^b Global reaction (see eq. A8.1).

## A8.2 Simplified Model of the Fuel-Nitrogen Mechanism

A zero dimension, diffusion-free, constant pressure and temperature model of the combustion of  $H_2/CO$  mixtures seeded with HCN was incorporated in a standard shock tube kinetics code [40]. The initial proportions of  $H_2$ ,  $O_2$  and CO corresponded to selected methane/air flames stoichiometries, in an attempt to approximate the relative proportions of H, O and OH species in the post-flame gases of a  $CH_4/air$  flame. Accordingly, an additional step was introduced to produce CO and  $H_2$  from the global oxidation of  $CH_4$ ,

$$CH_4 + 1/2 \ 0_2 \rightarrow CO + 2 \ H_2.$$
 (40)

Note that reaction (40) is several orders of magnitude faster than reaction (41), the rate-limiting step of the detailed kinetics,

$$H_2 + O_2 + OH + OH.$$
 (41)

Thus, reaction (40) does not significantly influence the kinetics of the model, and is merely a convenient way to incorporate the correct  $H_2$ ,  $O_2$  and CO proportions corresponding to methane combustion.

Despite the introduction of reaction (40), this calculation does not adequately model a typical premixed hydrocarbon flame. Bowman has shown that, upon choosing a judicious quasi-global rate, a model can successfully predict the distribution of temperature in the flame, but generally fails to reproduce the NO concentration profiles based on more detailed hydrocarbon kinetics [106]. In fact, the substitution of a quasiglobal step for the detailed kinetics of methane oxidation results in a significant overshoot of active radical and atom concentrations that lead to increased rates of NO formation [106].

Reaction (40) is followed by elementary reactions in the H/O system, leading to partial equilibrium levels of O, H and OH

- $H_2 + O_2 + OH + OH,$  (41)
- $H_2 + M \rightarrow H + H + M, \qquad (42)$
- $H_2 + OH \rightarrow H_2O + H, \qquad (26)$
- $O_2 + H + OH + O,$  (23)
- $H_2 + 0 \rightarrow OH + H, \qquad (24)$
- $H_2O + O \rightarrow OH + OH,$  (25)

and by the CO oxidation reaction

$$CO + OH \rightarrow CO_2 + H.$$
 (43)

Duterque, et al. measured the rate of reaction (40) in a well-stirred reactor [73]

$$RR_{40}=10^{16.85} exp[-23500/T] [CH_4][O_2] mole/cm^3/sec,$$
 (A8.1)

where  $RR_{40}$  represents the rate of reaction (40). Note that the choice of Duterque's expression for  $RR_{40}$  is arbitrary. Quasi-global models developed for well-stirred reactors are not generally suitable to model shock

tube ignition delays or flame speeds. However, in the present case, reaction (40) is several orders of magnitude faster than reaction (41), the rate-limiting step of the detailed kinetics, regardless of the specific expression for  $RR_{40}$ . Thus, the present model conveniently incorporates Duterque's expression, which, unlike more complicated quasi-global rates, is first order in the reactant concentrations.

For this simplified model, the conversion of fuel-nitrogen to HCN is assumed to be instantaneous; thus, HCN is introduced with the premixed reactants [6], with a mole fraction corresponding to typical fuel-nitrogen contents ( $\chi_{HCN}/\chi_{CO}$ =1%). At the temperature of the calculations (T=1800°K), the direct oxidation of N₂ does not contribute significantly to nitric oxide formation, and the amount of molecular nitrogen in the premixed reactants does not influence the kinetics of the model. Thus, in order to monitor the formation of molecular nitrogen, argon has been used as a diluent in the "air", with the stoichiometric equation

$$\phi CH_4 + 2(O_2+3.76 \text{ Ar}) \rightarrow \phi CO + 2\phi H_2 + (2-\phi/2)O_2 +7.52 \text{ Ar}$$
  
+ products (A8.2)

A 38-reaction model shown in Table A8.1 was utilized in the calculations. A base case was computed with the nominal conditions T=1800°K, p=1 atm,  $\phi$ =1,  $\chi_{\rm HCN}/\chi_{\rm CO}$ =1%. Time histories of the major/minor species mole fractions are given in Figs. A8.1 and A8.2.



<u>Fig. A8.1</u> Computer-predicted major species time-histories in a zerodimensional model of premixed  $CO/H_2/O_2/Ar/HCN$  combustion. The conditions are T=1800°K, p=1 atm,  $\phi$ =1 (based on CH₄/air combustion) and HCN=1% of CO by volume. Note the rapid establishment of steady NO and N₂ mole fractions and the corresponding disappearance of HCN.



Fig. A8.2 Computer-predicted minor species time-histories. The conditions are identical to Fig. A8.1.

Figure A8.3 shows the relative importance of significant reaction paths in the HCN to NO and N₂ conversion. The numbers on each path represent the fraction of fuel-nitrogen which participates in a given reaction. These fractional numbers are subsequently called  $P_{j}^{i+k}$ , where subscript (j) is the index of reaction (j), and superscripts (i) and (k) indicate which intermediate species in Fig. A8.3 are respectively removed (i) and formed (k) by reaction (j). Figure A8.3 can be interpreted as a current flow diagram, where the nodes (e.g., i or k) are the intermediate species, and the current (e.g.,  $P_{j}^{i+k}$ ) is the amount of fuelnitrogen involved in the reaction (e.g., j). For example, 9.6% of the fuel-nitrogen is involved in reaction (3).



<u>Fig. A8.3</u> Major reaction paths in the conversion of HCN to NO and N₂. The conditions are identical to Fig. A8.1. The numbers on each path represent the instantaneous fraction (%) of fuelnitrogen which participates in a given reaction( $P_{\pm}^{i \rightarrow k}$ ). The fractional numbers  $P_{j}^{i \rightarrow k}$  were computed for each intermediate species (i) using

$$P_{j}^{i+k} = \left(\sum_{n} P_{n}^{i+i}\right) \frac{RR_{j}^{i+k}}{\sum_{m} RR_{m}^{i+p}}, \qquad (A8.3)$$

where  $RR_{m}^{i \rightarrow p}$  represents the rate of reaction (m), which removes (i) and forms (p). For each node in Fig. A8.3 (e.g., CN), the total fraction of fuel-nitrogen coming to the node is equal to the total fraction leaving the node,

$$\sum_{n} p^{1+i} = \sum_{m} p^{i+p}.$$
 (A8.4)

Note that Fig. A8.3 was constructed from left to right i.e., the numbers  $P_{j}^{i+k}$  were computed using removal rates only,

$$RR_{m}^{i \rightarrow p} = -k_{m}[i][x] + k_{m}[p][y] < 0.$$
 (A8.5)

For example, reaction (3) removes 30.8% of CN, since

$$\frac{RR^{CN+N}_{3}}{RR^{CN+N}_{3} + RR^{CN+NCO}_{4} + RR^{CN+NCO}_{30}} = \frac{RR^{1+k}_{j}}{\sum_{m} RR^{m}_{m}} = 30.8\%,$$

$$CN + O \rightarrow CO + N$$
 (3)

 $CN + O_2 \rightarrow NCO + O, \qquad (4)$ 

$$CN + OH \rightarrow NCO + H.$$
 (30)

Further, the total fraction of fuel-nitrogen converted to CN is given by

 $P_{-12}^{\text{HCN} \rightarrow \text{CN}} + P_{29}^{\text{HCN} \rightarrow \text{CN}} = \sum_{n} P_{n}^{1 \rightarrow 1} = 31.2\%,$ HCN + H + CN + H₂, (-12)

 $HCN + OH \rightarrow CN + H_2O.$  (29)

۱

with

with

Therefore, the fraction of fuel-nitrogen involved in reaction (3) is

$$P_{3}^{CN \rightarrow N} = 31.2\% \times 30.8\% = 9.6\%.$$

All removal rates  $RR_{m}^{i+p}$  were computed at the peak of species (i) or, in the case of monotonic time-histories (e.g. for (i)=HCN, NO or N₂), at the l/e time. This convention results in an instantaneous picture of the relative reaction paths (Fig. A8.3). Note that a more sophisticated algorithm could be used to integrate eq. (A8.3) and obtain the total fraction of fuel-nitrogen involved in reaction (j), during the entire conversion of HCN to NO and N₂,

$$\overline{P} \frac{i+k}{j} = \left(\sum_{n} \overline{P} \frac{1+i}{n}\right) \frac{\int RR^{i+k} dt}{\sum_{m} \int RR^{m} dt}.$$
(A8.6)

Thus, under the assumptions of the present model, Fig. A8.3 indicates the major paths in the conversion of HCN to NO and  $N_2$ ,

$$NCO + H + CO + NH (36\%),$$
 (9)  
 $NCO + O + CO + NO (21\%),$  (5)

 $NH + H + N + H_2 (34\%).$  (37)



Fig. A8.4 Effect of pressure on the fraction of fuel-nitrogen converted to NO and N₂. The time-dependent conversion is defined as  $2\chi_{N_2}^{(\chi_{HCN})}_{t=0}$  for N₂ and  $\chi_{NO}^{(\chi_{HCN})}_{t=0}$  for NO.



<u>Fig. A8.5</u> Effect of temperature on the fraction of fuel-nitrogen converted to NO and  $N_2$ .



<u>Fig. A8.6</u> Effect of equivalence ratio  $\phi$  on the fraction of fuel-nitrogen converted to NO and N₂. Stoichiometric coefficients are based on methane/air combustion.



Fig. A8.7 Effect of fuel-nitrogen content  $(\chi_{HCN}^{\chi}/\chi_{CO})$  on the fraction converted to NO and N₂.

Effects of excursions in p, T,  $\phi$  and the ratio  $\chi_{\rm HCN}/\chi_{\rm CO}$  are shown in Figs. A8.4 to A8.7, where the fraction of fuel-nitrogen converted to NO  $(\chi_{\rm NO}/\chi_{\rm HCN,t=0})$  or N₂  $(2\chi_{\rm N_2}/\chi_{\rm HCN,t=0})$  are plotted as a function of time. Pressure and temperature have a significant influence on the time behavior, but have a smaller effect on the overall conversion to N₂ and NO (Figs. A8.4 and A8.5). On the other hand, richer stoichiometries and higher fuel-nitrogen contents enhance the conversion of NO to N₂ (Figs. A8.6 and A8.7). Figures A8.8 and A8.9 show the main reaction paths corresponding to  $\phi$ =0.8 and  $\phi$ =1.2. Only the paths that involve more than 20% fuel-nitrogen have been shown. From Figs. A8.3, A8.8 and A8.9, it is clear that nitrogen formation follows the production of nitric oxide and occurs mostly via reaction (-15)

$$N + NO \rightarrow N_2 + 0, \qquad (-15)$$

and that NO is produced mostly by reactions (-22) and (-16)

$$N + OH + NO + H$$
, (-22)

$$N + O_2 \Rightarrow NO + O. \tag{-16}$$



Fig. A8.8 Major reaction paths in the conversion of HCN to NO and N₂. The conditions are identical to Fig. A8.1, except  $\phi=0.8$ .



<u>Fig. A8.9</u> Major reaction paths in the conversion of HCN to NO and N₂. The conditions are identical to Fig. A8.1, except  $\phi$ =1.2.

#### A8.3 Discussion

The consistency of the model presented above can be checked against the experimental results of Miller, et al. for low-pressure  $H_2/O_2/argon/HCN$  flames (p=30 Torr) [6]. Miller observed substantial nitrogen yields at low pressures, with increasing stoichiometries leading to more  $N_2$ . Under similar conditions (T=1300°K, p=30 Torr and  $H_2:O_2:HCN:Ar=27:13:2:$ 9958), the present model predicts  $\chi_{N_2} \simeq 0.5\%$  and  $\chi_{NO} \simeq 0.8\%$  at steady state, while Miller has observed  $\chi_{N_2} \simeq 0.6\%$  and  $\chi_{NO} \simeq 0.7\%$ . Thus, the model appears consistent with relevant experimental observations. A comparison of Miller's observed time-histories with model predictions has not been attempted, because the temperature profiles observed in the experiments are markedly different from the constant temperature assumed in the model.

By incorporating the fuel-nitrogen chemistry in the mechanism for post-flame combustion of  $H_2/CO$  mixtures, the present model predicts instantaneous and nearly quantitative conversion of HCN to nitric oxide. Unfortunately, such a fast NO yield is in contradiction with stable species profiles observed in hydrocarbon flames. De Soete conducted experiments in  $C_2H_2/O_2/argon$  atmospheric flames seeded with  $C_2N_2$ ,  $NH_3$  or  $N_2$  [10]. Puechberty and Cottereau studied low-pressure  $CH_4/O_2$  flames doped with NH3. In both experiments, the HCN profiles exhibited a much slower decay in the post-flame gases than the present model would predict. This discrepancy in the time-histories of stable species can be attributed to various intrinsic differences between real hydrocarbon/air flames and the assumptions of the present model. As mentioned earlier, high radical concentrations characteristic of  $CO/H_2/O_2$  combustion are expected to accelerate the kinetics of HCN disappearance in the model. On the other hand, strong diffusion fluxes of H, O and (to a lesser extent) OH are essential to explain the behavior of a premixed flame. These fluxes are driven by steep concentration gradients present in the reaction zone. Thus, the resulting proportions of H, O and OH entering the post-flame gases of a real flame should be different from the corresponding predictions of the present model. Nevertheless, it is reasonable to assume that approximate relative proportions of active species

such as 0, H and OH are predicted by the model, and that Fig. A8.3 provides a rough estimate of the relative importance of the major reaction paths, despite the failure of the model to reproduce correct timehistories.

Current research on the detailed chemistry of hydrocarbon flames should result in better predictions of the absolute levels of active radicals, and a refined model of the fuel-nitrogen mechanism. However, potential discrepancies may still arise from the assumption of a fast and quantitative production of HCN from fuel-nitrogen, and the corresponding failure to include a mechanism of HCN formation in the reaction zone. In fact, a few experiments have shown that peak HCN concentrations can be noticeably smaller than initial fuel-nitrogen levels, and that HCN forms at a finite rate in the reaction zone. Such observations were made by De Soete in atmospheric  $C_2H_2/O_2/argon$  flames doped with  $C_2N_2$  or NH₃ [10], and by Puechberty and Cottereau in low-pressure CH₄/O₂ flames seeded with NH₃ [4].

To explain this behavior, Puechberty and Cottereau proposed a mechanism for the conversion of  $NH_3$  to HCN in the reaction zone [4],

$$(fuel-nitrogen=NH_3) + NH_2 + NH + \begin{cases} \xrightarrow{CH_3} HCN \\ \xrightarrow{NH,NH_2} N2 \\ N + \begin{cases} NO + HCN \\ + N_2 \end{cases}$$
(A8.7)

Note that this mechanism includes reactions which bypass HCN to form molecular nitrogen directly. In addition, nitric oxide is a precursor of HCN by reactions with hydrocarbon radicals. The abundance of such radicals in the reaction zone can conceivably promote the conversion of NO to HCN rather than the reverse mechanism which we have studied. Thus, the rate of HCN formation in the reaction zone may be governed by two competing mechanisms, one which converts NO to HCN by reactions with hydrocarbon radicals, and the other that converts HCN to NCO, NH, N, and eventually NO. The maximum HCN concentration corresponds to a steady-

state level achieved between the two competing mechanisms, and can thus be smaller than the initial fuel-nitrogen content. After the reaction zone, a slower conversion of HCN to NO takes place in the post flame gases, where a depleted radical pool results in slower kinetics. The absence of hydrocarbon radicals prevents further reconversion of NO to HCN, except in very rich flames, where hydrocarbon breakthrough is possible. The mechanism of the HCN breakdown can be described using the simplified sequence (see Fig. 1.1),

$$HCN \left\{ \begin{array}{c} H \rightarrow CN \\ \rightarrow OH \rightarrow OH \\ \hline O \rightarrow NCO \\ \hline H \rightarrow NH \\ \hline OH \rightarrow N \left\{ \begin{array}{c} OH \\ \rightarrow OH \\ \hline OH \end{array} \right\} NO$$
(A8.8)

Thus, the formation of HCN in the reaction zone may prove an essential feature of the mechanism; different sources of fuel-nitrogen may yield different amounts of HCN, and promote different rates of  $N_2$  production in the reaction zone. For example, note that Crowhurst and Simmons [75] have observed lower conversion rates of ammonia to NO than the corresponding rates of pyridine to NO. More generally, the rate of HCN formation in the reaction zone may depend on the nature of the nitrogen bonding to the fuel-nitrogen compound. The subsequent conversion of HCN to NO in the post-flame gases could be affected by the efficiency of the initial HCN formation. Therefore, a complete study of the fuel-nitrogen mechanism should also focus on the formation of HCN in the reaction zone. Puechberty and Cottereau [4] have postulated that the formation of HCN from NH3 results from the reactions of early nitric oxide with hydrocarbon radicals. This observation suggests that further experimental work should focus on the high temperature study of elementary reactions such as

NO + CH₁ 
$$\rightarrow$$
 HCN + OH₁₋₁,  
N₂ + CH₁  $\rightarrow$  HCN + NH₁₋₁ (1=1,2,3). (A8.9)

#### References

- K. Wark and C. F. Warner: <u>Air Pollution: Its Origin and Control</u>, 2nd ed., Harper and Row, NY (1981).
- [2] Ya. B. Zeldovich: J. Acta Physicochim. URSS, 21, 577 (1946).
- [3] C. Morley: Combustion and Flame, <u>27</u>, 189 (1976).
- [4] D. Puechberty and M. J. Cottereau: Combustion and Flame, <u>51</u>, 299 (1983).
- [5] B. S. Haynes: Prog. Astron., <u>62</u>, 359 (1978).
- [6] J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, and R. J. Kee: Accepted for presentation at the 20th Symposium (International) on Combustion, University of Michigan, August 1984.
- [7] A. N. Hayhurst and I. M. Vince: Prog. Energy Combust. Sci., <u>6</u>, 35 (1980).
- [8] C. P. Fenimore: 13th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, p. 373 (1971).
- [9] B. S. Haynes: Combustion and Flame, 28, 113 (1977).
- [10] G. G. De Soete: 15th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, p. 1093 (1975).
- [11] W. M. Shaub: Ph. D. Thesis, Cornell University, Ithaca, NY (1976).
- [12] J. N. Mulvihill and L. F. Phillips: 15th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, p. 1113 (1975).
- [13] D. L. Baulch, J. Duxbury, S. J. Grant, D. C. Montague: J. of Phys. and Chem. Ref. Data, <u>10</u>, Suppl. 1, p. 1/576 (1981).
- [14] P. Roth, R. Lohr, and H. D. Hermanns: Ber. Bunsenges. Phys. Chem., 84, 835 (1980).
- [15] P. B. Davies and B. A. Thrush: Trans. Faraday Soc., <u>64</u>, 1836 (1968).
- [16] R. A. Perry and C. F. Melius: Accepted for presentation at the 20th Symposium (International) on Combustion, University of Michigan, August 1984.
- [17] W. R. Anderson, J. A. Vanderhoff, A. J. Kotlar, M. A. Dewilde, and R. A. Beyer: J. Chem. Phys., <u>77</u>, 1677 (1982).

237

- [18] G. E. Bullock and R. Cooper: J. Chem. Soc. Faraday Trans., <u>68</u>, 2175 (1972).
- [19] C. T. Bowman and R. K. Hanson: J. Phys. Chem., <u>83</u>, 757 (1979).
- [20] H. Mirels: Phys. Fluids, 9, 1265 (1966).
- [21] P. C. T. De Boer and J. A. Miller: <u>Proceedings of the 10th Inter-</u> <u>national Shock Tube Symposium</u>, G. Kamimoto, Ed., The Shock Tube Research Society, Japan, p.796 (1975).
- [22] R. K. Hanson and S. Salimian: <u>Chemistry of Combuston Reactions</u>, Chapter 6, <u>Survey of Rate Constants in the N/H/O System</u>, W. Gardiner, Ed., Springer Verlag (1984).
- [23] D. W. Setser and B. A. Thrush: Proc. Roy. Soc., <u>A288</u>, 256 (1965).
- [24] M. B. Colket: J. Quant. Spectrosc. Radiat. Transfer, 31, 7 (1984).
- [25] G. Herzberg: <u>Molecular Spectra and Molecular Structure I. Spec-</u> <u>tra of Diatomic Molecules</u>, Van Nostrand Reinhold, NY (1950).
- [26] I. Kovacs: <u>Rotational Structure in the Spectra of Diatomic Mole-</u> <u>cules</u>, Elsevier, NY (1969).
- [27] R. J. Spindler: J. Quant. Spectrosc. Radiat. Transfer, <u>5</u>, 165 (1965).
- [28] R. G. Bennett and F. W. Dalby: J. Chem. Phys., <u>36</u>, 399 (1962).
- [29] R. K. Hanson, J. P. Monat, and C. H. Kruger: J. Quant. Spectrosc. Radiat. Transfer, <u>16</u>, 705 (1976).
- [30] T. R. Todd, C. M. Clayton, W. B. Telfair, T. K. McCubbin, Jr., and J. Pliva: J. Mol. Spectrosc., <u>62</u>, 201 (1976).
- [31] P. L. Varghese and R. K. Hanson: J. Quant. Spectrosc. Radiat. Transfer, <u>26</u>, 339 (1981).
- [32] R. K. Hanson: Proceedings of the llth International Symposium on Shock Tubes and Waves, University of Washington Press, Seattle, Washington, p. 432 (1978).
- [33] R. C. Millikan and D. R. White: J. Chem. Phys., <u>39</u>, 3209 (1963).
- [34] L. D. Gray Young: J. Quant. Spectrosc. Radiat. Transfer, <u>11</u>, 1265 (1971).
- [35] L. D. Gray Young: J. Quant. Spectrosc. Radiat. Transfer, <u>12</u>, 307 (1972).
- [36] J. Pliva: J. Mol. Spectrosc., <u>25</u>, 62 (1968).
- [37] J. Pliva: J. Mol. Spectrosc., 27, 461 (1968).

- [38] P. L. Varghese: Ph.D. Thesis, Stanford University, Stanford, California (1983).
- [39] L. J. Drummond: Comb. Sci. and Tech., 1, 415 (1970).
- [40] D. A. Bittker and V. J. Scullin: <u>General Chemical Kinetics Comput-</u> er Program for Static and Flow Reactors, with Application to <u>Combustion and Shock Tube Kinetics</u>, NASA TN D-6586 (1972).
- [41] K. J. Schmatjko and J. Wolfrum: 16th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, p. 819 (1977).
- [42] J. C. Boden and B. A. Thrush: Proc. Roy. Soc., A305, 107 (1968).
- [43] N. Basco: Proc. Roy. Soc., <u>A283</u>, 302 (1965).
- [44] A. Lifshitz and M. Frenklach: Int. J. Chem. Kinet., <u>12</u>, 159 (1980).
- [45] M. B. Colket: Int. J. Chem. Kinet., <u>16</u>, 353 (1984).
- [46] E. C. Rea and R. K. Hanson: Conference on Laser and Electro-Optics, paper # Thu 7-1, Baltimore, May 17-20 (1983).
- [47] H. Reisler, M. Mangir, and C. Wittig: Chem. Phys., <u>47</u>, 49 (1980).
- [48] R. N. Dixon: Phil. Trans. Roy. Soc. London, <u>A252</u>, 165 (1960).
- [49] J. T. Hougen: J. Chem. Phys., <u>36</u>, 519 (1962).
- [50] G. Herzberg: Ref. [25], p. 232.
- [51] R. Mavrodineanu and H. Boiteaux: <u>Flame Spectroscopy</u>, Wiley, NY (1965).
- [52] R. Renner: Z. Physik, <u>92</u>, 172 (1934).
- [53] J. A. Pople: Mol. Phys., <u>3</u>, 16 (1960).
- [54] D. E. Milligan and M. E. Jacox: J. Chem. Phys., <u>47</u>, 5157 (1967).
- [55] E. C. Rea, S. Salimian, and R. K. Hanson: Applied Optics, <u>23</u>, 1691 (1984).
- [56] T. R. Charlton, T. Okamura, and B. A. Thrush: Chem. Phys. Lett., 89, 98 (1982).
- [57] W. L. Smith and P. A. Warsop: Trans. Faraday Soc., <u>64</u>, 1165 (1968).
- [58] T. E. Sharp and H. M. Rosenstock: J. Chem. Phys., <u>41</u>, 3453 (1964).
- [59] R. N. Dixon: Can. J. Phys., <u>38</u>, 10 (1960).
- [60] B. J. Sullivan, G. P. Smith, and D. R. Crosley: Chem. Phys. Lett., <u>96</u>, 307 (1983).

ł

- [61] G. Herzberg: Ref. [25], p. 405,
- [62] A. H. Bowker and G. J. Lieberman: <u>Engineering Statistics</u>, 2nd ed., Prentice Hall, Englewood Cliffs, New Jersey (1972).
- [63] JANAF Thermochemical Tables, D. R. Stull and H. Prophet, Project Directors, Natl. Bur. Stand., Washington D.C., NBS 37, 2nd ed. (1971).
- [64] W. G. Vincenti and C. H. Kruger: <u>Introduction to Physical Gas</u> <u>Dynamics</u>, R. E. Krieger Publishing Co., Huntington, NY, p. 223 (1977).
- [65] C. F. Melius and J. S. Binkley: Fall 1983 Meeting of the Western States Section of the Combustion Institute, paper # WSS/CI 83-61.
- [66] G. Herzberg: <u>Molecular Spectra and Molecular Structure II.</u> <u>Infrared and Raman Spectra of Polyatomic Molecules</u>, Van Nostrand Reinhold, NY (1945).
- [67] G. Herzberg: <u>Molecular Spectra and Molecular Structure III.</u> <u>Electronis Spectra and Electronic Structure of Polyatomic Mole-</u> <u>cules</u>, Van Nostrand Reinhold, NY (1966).
- [68] J. E. Dove and W. S. Nip: Can. J. Chem., <u>52</u>, 1171 (1974).
- [69] A. Szekely, R. K. Hanson, and C. T. Bowman: Int. J. Chem. Kinet., <u>15</u>, 915 (1983).
- [70] E. A. Albers, K. Hoyermann, H. Schacke, K. J. Schmatjko, H. Gg. Wagner, and J. Wolfrum: 15th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, p. 765 (1975).
- [71] A. Szekely, R. K. Hanson, and C. T. Bowman: Int. J. Chem. Kinet., <u>15</u>, 1237 (1983).
- [72] A. Szekely: Ph.D. Thesis, Stanford University, Stanford, California (1984).
- [73] J. Duterque, R. Borghi, and H. Tichtinsky: Comb. Sci. and Tech., <u>26</u>, 1 (1981).
- [74] C. Morley: 18th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, p. 23 (1981).
- [75] D. Crowhurst and R. F. Simmons: Combustion and Flame, <u>51</u>, 289 (1983).
- [76] A. H. Shapiro: <u>The Dynamics and Thermodynamics of Compressible</u> <u>Fluid Flow</u>, Vol 1, Ronald, NY (1953).

- [77] J. N. Bradley: <u>Shock Waves in Chemistry and Physics</u>, John Wiley and Sons, NY (1962).
- [78] G. Herzberg: Ref. [25], p. 248.
- [79] G. Herzberg: Ref. [25], p. 222.
- [80] G. Herzberg: Ref. [25], p. 250.
- [81] S. S. Penner: <u>Quantitative Molecular Spectroscopy and Gas Emissiv-</u> <u>ities</u>, Addison-Wesley, Reading, Mass. (1959).
- [82] T. Fueno, K. Tabayashi, and O. Kajimoto: J. Phys. Chem., <u>77</u>, 575 (1973).
- [83] J. L. Dunham: Phys. Rev., <u>41</u>, 721 (1932).
- [84] M. Abramovitz and I. A. Stegun: <u>Handbook of Mathematical Func-</u> <u>tions</u>, Dover Publications, NY (1970), pp. 298, 325.
- [85] W. L. Flower: Ph.D. Thesis, Stanford University, Stanford, California (1976).
- [86] W. C. Gardiner, Jr.: <u>Rates and Mechanism of Chemical Reactions</u>, Benjamin, Menlo Park, California (1969).
- [87] <u>Handbook of Chemistry and Physics</u>, R. C. Weast, Ed., CRC Press, Cleveland, Ohio (1974), p. E-224.
- [88] A. P. Thorne: <u>Spectrophysics</u>, Chapman and Hall Science Paperbacks, London (1974).
- [89] J. I. Steinfeld: <u>Molecules and Radiation: An Introduction to</u> <u>Modern Molecular Spectroscopy</u>, The MIT Press, Cambridge, Mass. (1979).
- [90] D. Miller and M. Frenklach: Int. J. Chem. Kinet., 15, 677 (1983).
- [91] A. Szekely, R. K. Hanson, and C. T. Bowman: J. Phys. Chem., <u>88</u>, 666 (1984).
- [92] M. W. Slack: J. Chem. Phys., <u>64</u>, 228 (1976).

ł

- [93] Unpublished estimates based on transition state theory and best fits of CN records in experiments at  $1600^{\circ}$ K, l atm with  $N_20:C_2N_2:$  Ar=25:4:971.
- [94] N. Cohen and K. R. Westberg: <u>Chemical Kinetics Data Sheets for</u> <u>High Temperature Chemical Reactions</u>, Aerospace Corporation, ATR-82 (7888)-3 (1982).
- [95] G. Dixon-Lewis and D. J. Williams: <u>Comprehensive Chemical Kinet-</u> <u>ics</u>, <u>17</u>, 1, C. H. Bamford and C. F. H. Tipper, Ed., Elsevier,

241

Amsterdam.

- [96] L. F. Phillips: Combustion and Flame, 35, 233 (1979).
- [97] R. C. Peterson: Ph.D. Thesis, Purdue University, West Lafayette, Ind. (1981).
- [98] O. I. Smith, S. I. Tseregounis, and Z. Yijie: Spring 1983 Meeting of the Western States Section of the Combustion Institute.
- [99] C. J. Jachimowski and W. M. Houghton: Combustion and Flame, <u>17</u>, 25 (1971).
- [100] D. L. Baulch and D. D. Drysdale: Combustion and Flame, <u>23</u>, 215 (1974).
- [101] G. Herzberg: Ref [25], p. 520.
- [102] R. P. Lucht, R. C. Peterson, and N. M. Laurendeau: "<u>Fundamentals</u> of Absorption Spectroscopy for Selected Diatomic Flame Radicals", Report No. PURDU-CL-78-06, Purdue University, West Lafayette, Indiana (1978).
- [103] S. W. Benson: <u>Thermochemical Kinetics</u>, 2nd ed., John Wiley, NY (1976).
- [104] J. S. Binkley and M. J. Frisch: Int. J. Quantum Chem., in press (1983).
- [105] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird: Molecular Theory of Gases and Liquids, Wiley, NY (1954).
- [106] C. T. Bowman: "Proceedings of the Symposium on Emissions from <u>Continuous Combustion Systems</u>", General Motors Research Laboratories, Warren, MI, September 27-28, 1971, Plenum Press, NY (1972), p. 98.