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Nature shuns homogeneity. In turbulent clouds, industrial reactors and geophysical flows,
discrete particles arrange in clusters, posing difficult challenges to theory. A persistent
question is whether clusters can be modeled with continuum equations. Recent evidence
indicates that suitable equations can predict the formation of clusters in granular flows,
despite violating the simplifying assumptions upon which they are based.
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1. Introduction
The article by Mitrano et al. (2013) addresses the pivotal question whether particle

suspensions can be modeled by continuum equations, despite the inevitable formation of
clusters. Whether particles interact with atmospheric turbulence as cloud aerosols (Chun
et al. 2005), flow as a suspension through chemical reactors (Pepiot & Desjardins 2012),
or rise in volcanic eruptions (Doronzo et al. 2012), they invariably produce clusters that
theory cannot ignore. Industrial risers, for example, lift catalyst particles with a gas
to stimulate chemical reactions. A challenge is to predict the drag on particles, so their
concentration and reaction rates may be calculated. Unfortunately, the average drag force
on clustered solids is much less than if particles were homogeneously distributed (Helland
et al. 2007), a fact that wild geese exploit to fly long distances.

An essential ingredient for cluster formation is inertia, which compels particles to skip
fluid streamlines (Maxey 1987). Kinetic energy losses exacerbate this mechanism, either
as particles interact with the surrounding fluid (Wylie & Koch 2000), or as they collide
inelastically with one another (Conway & Glasser 2004). Turbulence also congregates
particles in regions where their collisions are more frequent than if they were homoge-
neously distributed (Longmire & Eaton 1992; Duncan et al. 2005; Simonin et al. 2006;
Pan & Padoan 2010; Bec et al. 2010).

Numerical simulations reveal details of cluster dynamics by tracking individual parti-
cles, either as points subject to a local drag law (van der Hoef et al. 2008; Capecelatro &
Desjardins 2013), or by resolving the flow around them (Wylie et al. 2003). However, real
systems can involve more particles than numerical simulations can directly handle. For
example, a riser of 1 m diameter and 20 m height holding a mere 0.2% solids by volume
already contains ∼ 1011 particles of 70µm.

Treating particles as a continuum allows computation on a larger scale (Agrawal et al.
2001; Fox 2012). Yet, a persistent question is whether this can capture cluster formation,
particularly when particles cross (Desjardins et al. 2008). Therefore, because clusters
also form in a granular “gas” of inelastic particles colliding in a vacuum (Hopkins et al.
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Figure 1. Visualizations of three-dimensional, stable (L/d = 18) flows and clustering
(L/d = 40) flows in a homogeneous cooling system at long times with restitution coefficient
of 0.7 and solids volume fraction of 0.1: (a) stable and (b) unstable MD simulations showing
slice of thickness L/10, (c) stable and (d) unstable kinetic-theory-based simulations showing one
layer of numerical cells (of thickness d).

that demarcates spatially homogeneous (stable) and clustering flows (unstable) is studied.
Specifically, we compare predictions from transient, NS-order continuum simulations in
the granular homogeneous cooling system (HCS) to MD simulations, while quantifying
the Knudsen numbers throughout the domain at the time of cluster detection.

2. Methods
2.1. Transient simulation via continuum model

We numerically solve the transient, kinetic-theory-based continuum equations devel-
oped by Garzó & Dufty (1999) via a first-order accurate, finite-volume method for
discretization (Syamlal 1998; Patankar 1980). Specifically, we use the computational
fluid dynamics code MFiX, developed at the National Energy Technology Laboratory
(mfix.netl.doe.gov). The continuum model (Garzó & Dufty 1999) is derived from the
Enskog kinetic equation, which assumes molecular chaos (i.e. that the velocities of collid-
ing particles are uncorrelated) and is applicable to flows up to moderate concentrations.
Constitutive equations are derived via the Chapman-Enskog perturbation expansion. By
invoking an assumption of small Knudsen number (i.e. small spatial gradients in hy-
drodynamic variables), the constitutive quantities are truncated at first order in spatial
gradients. The balance equations of this continuum model (Garzó & Dufty) are given by

∂n

∂t
+ u · ∇n + n∇ · u = 0 (2.1)
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)
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where n is number density, t is time, u is velocity, ρ = nm is the bulk solids density,
P is the pressure tensor, T is the granular temperature, q is the heat flux, and ζ is the
cooling rate. Detailed constitutive relations for the terms P , q, ζ can be found in (Garzó
& Dufty 1999) and are not duplicated here for the sake of brevity. The theory assumes
hard spheres that interact via instantaneous, binary collisions with a constant restitution
coefficient e. We simulate the HCS, a freely cooling and fully periodic, three-dimensional
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Figure 1. Mitrano et al. (2013) juxtapose (a,b) simulations and (c,d) solutions of the equations
of Garzó & Dufty (1999) having similar features. For a large enough domain, clusters form in
simulations (b), and they also arise as instabilities of the continuum theory (d).

1993; McNamara 1993), it is instructive to test, as Mitrano et al. (2013) did, whether
hydrodynamic equations are relevant to the particle phase without a fluid.

2. Overview
Hydrodynamic equations for granular gases are obtained by extending the Maxwell-

Boltzmann kinetic theory to inelastic impacts. A central concept is the granular temper-
ature which, as with a gas of hard spheres, represents the kinetic energy stored in velocity
fluctuations. At first, Jenkins & Richman (1988) and others considered weak collisional
energy dissipation, mostly with smooth inelastic spheres or disks, but possibly involving
frictional interactions as well (Lun 1991; Jenkins & Zhang 2002). The resulting equations
reproduced most features of numerical simulations and experiments without gravity (Xu
et al. 2003, 2009), but they did not apply to highly inelastic systems.

To derive a granular hydrodynamics for higher collisional energy dissipation, Garzó
& Dufty (1999) considered a homogeneous cooling process, in which particles steadily
lose their initial agitation through collisions, without any mechanism to replenish it.
Their calculations uncovered concentration gradient terms in the energy flux that become
important at high inelasticity. However, as Goldhirsch & Zanetti (1993) had observed
in molecular dynamics (MD) simulations, the cooling process readily forms clusters,
seemingly contradicting the suspension homogeneity that Garzó & Dufty (1999) invoked.

At first glance, particle clusters also appear to challenge two chief simplifications of the
kinetic theory. In the first, particles are required to forget their past rapidly, so the theory
can easily handle reshuffling of their statistical velocity distribution after impacts. Long-
lasting coherent clusters would seem to cast doubt on this “molecular chaos” assumption.

In the second simplification, most kinetic theories forbid variations of flow variables
on a scale less than the mean free path between consecutive collisions, so the granular
gas is not rarefied. In other words, the Knudsen ratio Kn of mean free path to a gradient
length scale is taken to be small. Yet, with a periphery featuring steep variations in flow
variables next to relatively small concentrations, clusters can produce regions of high
mean free paths and large Kn based on velocity gradients.

In principle, the Navier-Stokes equations can then be refined by expanding the ve-
locity distribution to higher order in Kn (Agarwal et al. 2001). However, for granular
materials, this “Burnett” expansion must also account for non-trivial effects of particle
inelasticity (Sela & Goldhirsch 1998; Kumaran 2006).

Mitrano et al. (2013) suggest that such laborious approach might be avoided, while
preserving clusters as a natural instability of the hydrodynamic equations. To show this,
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they juxtapose results from MD simulations similar to Goldhirsch & Zanetti (1993) and
a numerical integration of the hydrodynamic equations that Garzó & Dufty (1999) de-
rived for small Kn (figure 1). The linear stability analysis of Garzó (2005) yields a scale
that Mitrano et al. (2012) had interpreted as a cluster length. As Brilliantov et al. (2004)
suggested, clusters materialize in systems large enough to contain them.

In short, continuum equations at the Navier-Stokes order appear to initiate realistic
granular clusters. This surprises Mitrano et al. (2013) for two reasons. First, vortices
observed at the onset of clusters produce velocity correlations contradicting the molecular
chaos assumption. Then, clusters comprise regions of large Kn that stretch equations
beyond limits of their derivation.

3. Future
The article of Mitrano et al. (2013) fits within a fertile line of observations and models

on inhomogeneities in granular media. Their remarks suggest that complicated extensions
of hydrodynamic equations to finite Knudsen number may not be necessary to capture
cluster onset. This is reminiscent of a debate in gas dynamics, whereby adjustments to
the Navier-Stokes equations (Brenner 2005) could capture features of shock waves (Ho-
lian et al. 1993; Greenshields & Reese 2007), thus avoiding Burnett-order considerations
despite recorded failures of the Navier-Stokes equations (Alsmeyer 1976). This simplifi-
cation will be welcomed by those attempting to unify theories of clusters arising from
fluid-particle interactions and granular collisions away from walls.
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