Dense granular flows down inclines

Michel Louge

Member of Qatar Joundation

2nd IMA Conference on Dense Granular Flows

Isaac Newton Institute for Mathematical Sciences, Cambridge UK

July 1, 2013

Dense inclined granular flow

Steady, fully-developed force balance

Steady
$$(\partial / \partial t \equiv 0)$$
, fully-developed $(\partial / \partial x \equiv 0)$ flow

Force balance

$$\frac{dS}{dy} = \rho g \sin \alpha$$

$$\frac{dN}{dy} = \rho g \cos \alpha$$

$$S = \rho g y \sin \alpha$$
$$N = \rho g y \cos \alpha$$

$$\mu_{\rm eff} = \frac{S}{N} = \tan \alpha$$

Newtonian viscous fluid

laminar flow

Newtonian viscous fluid turbulent flow $\operatorname{cst}=\left(u^{*} / \overline{u}\right)^{2} \approx 3 \ 10^{-3}$ $S_b = \rho g h \sin \alpha = \operatorname{cst} \times \rho \overline{u}^2$ $\frac{\dot{m}}{W} = \rho \overline{u} h = \rho \sqrt{\frac{g \sin \alpha}{cst}} h^{3/2}$ George Batchelor

Shallow flows, far sidewalls, bumpy base

Shallow flows, far sidewalls, bumpy base

Granular temperature

1

"temperature"
$$T = \frac{1}{3} \overline{u'_{i} u'}$$

fluctuation velocity u'_i

Osborne Reynolds, 1883

Profile concavity and viscosity

$$S = \rho_s v g y \sin \alpha = -\mu \frac{\mathrm{d}u}{\mathrm{d}y}$$

^y⁄α

bumpy base

 $\frac{d\ln\mu}{d\ln y} = \frac{1}{2} \qquad \frac{d\ln\nu}{d\ln y} = 0$

Moderate increase in viscosity with depth for core flows over a bumpy base

Inverted concavity for a soft base

Flat, frictional base cartoon

Flat, frictional base; shallow flows

Sustained flows exist at inclinations in the range $15.5^{\circ} \le \alpha \le 20^{\circ}$.

Roy Jackson

Louge and Keast, Phys. Fluids 2001

Steady flows require variable friction

Effective friction set by basal rolling

Fluctuation energy

$$0 = -\frac{dq}{dy} + S\frac{du}{dy} - \gamma \quad \text{dissipation}$$

$$q = -\kappa\frac{dT}{dy} \quad \text{heat flux gradient} \quad \gamma = f_3\rho_s T^{3/2}/d$$
shear work rate

$$\kappa = f_2\rho_s d\sqrt{T} \quad S = f_1\rho_s d\sqrt{T}\frac{du}{dy}$$

$$N \approx \rho_s \overline{v} g \cos \alpha y$$

$$S \approx \rho_s \overline{v} g \sin \alpha y$$

$$T \approx \overline{v} g \cos \alpha y / f_4$$

$$y^* = \frac{y}{d}$$

$$\frac{f_1}{f_4^{1/2}} \sqrt{y^*} \frac{d}{dy^*} \left\{ \frac{f_2}{f_4^{3/2}} \sqrt{y^*} \left[1 - \left(\frac{d \ln f_4}{d \ln v} \right) \left(\frac{d \ln v}{d \ln y^*} \right) \right] \right\} + y^{*2} \left[\tan^2 \alpha - \frac{f_1 f_3}{f_4^2} \right] = 0$$

$$\frac{dq}{dy} = 0$$

$$T \approx \overline{v} g \cos \alpha / f_4$$

$$q = -\kappa \frac{dT}{dy}$$

$$\frac{d\kappa}{dy} = 0$$
Invariant conductivity
$$0 = -\frac{dq}{dy} + S \frac{du}{dy} + \gamma$$

Louge, Gran. Mat. 2011

Mass flow rate versus flowing depth

flow type	n
soft, dissipative base	1
Newtonian fluid, turbulent	1.5
flat, frictional base	1.5
core over a bumpy base	2.5
Newtonian fluid, laminar	3

$$\frac{\dot{m}}{W} \propto H^n$$

channel width W, flowing depth H

http://grainflowresearch.mae.cornell.edu