Granular flows down inclines: how different bases produce widely different scaling of mass flow rate with depth

Michel Louge

Member of Qatar Joundation

Second International Granular Flow Workshop, Guiyang, China Tuesday, August 22, 2017

ML, A. Valance, P. Lancelot, R. Delannay, O. Artières, PRE 92, 022204 (2015)

Dense inclined granular flow

Steady, fully-developed force balance

Steady
$$(\partial / \partial t \equiv 0)$$
, fully-developed $(\partial / \partial x \equiv 0)$ flow

Newtonian viscous fluid

laminar flow

Newtonian viscous fluid

turbulent flow

Ludwig Prandtl

Shallow flows, far sidewalls, bumpy base

Shallow flows, far sidewalls, bumpy base

$$20^{\circ} < \alpha < 26^{\circ}$$

 $0.595 > \nu > 0.545$

Silbert, et al. PRE 2001

Leo Silbert

Granular temperature

1

"temperature"
$$T = \frac{1}{3} \overline{u'_i u}$$

fluctuation velocity u'_i

Flat, frictional base experiments

Flat, frictional base cartoon

Inertial number

Ralph Bagnold

bumpy base

Profile concavity and viscosity

$$S = \rho_s v gy \sin \alpha = -\mu \frac{du}{dy} \qquad \frac{d^2 u}{dy^2} = -\rho$$

$$\mu \frac{du}{dy} \qquad \frac{d^2 u}{dy^2} = -\rho_s g \sin \alpha \left(\frac{vy}{\mu}\right) \left(\frac{v'}{v} + \frac{1}{y} - \frac{\mu'}{\mu}\right)$$
$$\frac{d^2 u}{dy^2} < 0 \Leftrightarrow \frac{d \ln \mu}{d \ln y} < \frac{d \ln v}{d \ln y} + 1$$
$$\frac{d \ln \mu}{d \ln y} = \frac{1}{2} \qquad \frac{d \ln v}{d \ln y} = 0$$

Moderate increase in viscosity with depth for core flows over a bumpy base

Inverted concavity for a soft base

Role of side walls

$$\tan \alpha = \mu_w \left(\frac{h}{W}\right) + \tan \alpha_{\min}$$

What about an erodible base with far side walls?

What about an erodible base with far side walls?

Fiber-Bragg-grating geotextile

ML, A. Valance, P. Lancelot, R. Delannay, O. Artières, PRE 92, 022204 (2015)

Fiber-Bragg-grating geotextile

$$\Delta \varepsilon = \frac{\left(\tan \alpha - \mu\right)}{\kappa} g \cos \alpha \left(H^{\dagger} - H_{\text{stop}}^{\dagger}\right) \left(L_{m} - x\right)$$
$$\Delta H^{\dagger} \equiv H^{\dagger} - H_{\text{stop}}^{\dagger} = \int_{h_{0}}^{h} v \frac{dy}{d}$$

Erodible base

low mean volume fraction

ML, A. Valance, P. Lancelot, R. Delannay, O. Artières, PRE 92, 022204 (2015)

Erodible base

ML, A. Valance, P. Lancelot, R. Delannay, O. Artières, PRE 92, 022204 (2015)

like a flat wall

like a bumpy wall

Mass flow rate versus flowing depth

flow type	n
soft, dissipative base > α_r	3/2
Newtonian fluid, turbulent	3/2
flat, frictional base	3/2
soft, dissipative base $< \alpha_r$	5/2
core over a bumpy base	5/2
Newtonian fluid, laminar	3

$$\frac{\dot{m}}{W} \propto H^n$$

channel width W, flowing depth H

Boundaries matter.

http://grainflowresearch.mae.cornell.edu