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We study granular flows on an erodible pile by means of a Molecular Dynamics simulation. Here we show that
the discrepancies observed between the contradictory rheologies can be explained by a non-trivial effect of the
side-walls. Turning on the friction on the side-walls not only increases the stability of the pile but also triggers
fundamental changes in the flow properties. A parameter, independent of the grain size, is proposed for unifying
the seemingly contradictory results.

1 Introduction : granular flows on erodible pile

Due to the fundamental interest as well as the numer-
ous industrial applications (Jaeger et al. 1996), a great
deal of both experimental (Drake 1991; Rajchenbach
2003; Johnson et al. 1990) and theoretical (Louge
2003) work has been devoted to the rheology of dry
granular flows confined in a channel, but full under-
standing is still lacking. Numerous studies (both ex-
perimental (Pouliquen 1996; Azanza et al. 1999) and
numerical (Silbert et al. 2001; Prochnow 2002) dis-
played a wide variety of behaviours, sometimes in-
compatible with one another (Ancey 2002). When a
granular material is poured on a bumpy inclined sur-
face confined between side walls, two limiting flow
regimes are observed. At low flow rates, the mate-
rial is mobilized all the way to the base (Pouliquen
1996; Silbert et al. 2001). Above a minimum flow
rate, a heap resembling a wedge forms at an incli-
nation exceeding the angle of repose of a static pile.
This ”Super Stable Heap” (SSH) is made possible by
a relatively thin rectilinear layer of constant thickness
riding on its surface and confined between the two
frictional walls (Fig. 1a). It was shown in the litera-
ture (Taberlet et al. 2003) that a SSH is dynamically
stabilized by the flow at its surface and that solely
side-wall friction is responsible for its formation. Us-
ing a balance of momentum for a mobilized layer, one
can derive (Taberlet et al. 2003) an approximate lin-
ear scaling law linking the free surface angle, ϕ, the
height of the layer, h, and the width of the channel,
W :
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Figure 1: Velocity based gray scale: black = fastest
grains, white = slowest grains. (a) Full System (FS):
grains are dropped at a constant flow rate Q into a
channel confined between walls. At the exit, grains
experience a free fall. (b) Periodic Boundary Con-
ditions (PBC): grains are placed in a box with the
same bottom and side-walls as the FS. Initially, grains
have no velocity. The cell is then inclined at the angle
ϕ, which triggers a flow that evolves freely toward a
steady state. Fully-developed flow occurs over a wide
range of angles, 38◦ < ϕ < 65◦ for parameters given
in the text.

where µi and µw are effective friction coeffi-
cients (Taberlet et al. 2003). Thus, confining walls
play a major role in the momentum balance if the sec-
ond term on the right side of this equation dominates
the first.

2 Numerical methods
We study the phenomenon with numerical simula-
tions based on the Molecular Dynamics (Schaefer
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et al. 1996). The method is described in a previous
paper (Taberlet et al. 2004) and we briefly recall its
main charactersitic here. It deals with soft spheres
and includes friction and rotation. Let us consider
two overlapping sphere i and j. The overlap δ leads
to a normal force Fn = knδ + γnδ̇, where kn is a
spring constant, γn a viscous damping. The damping
is used to obtain a inelastic collision. The tangential
force used is the well-know regularized Coulomb law
Ft = min(µFn, γtvt) where µ is friction coefficient,
γt a viscous regularization constant and vt the slid-
ing velocity of the contact. The following values of
the parameters are used: particle diameter d = 8 mm,
mass=0.16 g, kn = 40000 N.m−1, γn = 1. kg.s−1, γt =
5 kg.s−1 and µ = 0.8. These values lead to a restitu-
tion coefficient e = 0.4. This value is rather small but
the flow properties were found, for the most part, to
be independant of e. Different values of the latter were
tried but affected only the gaseous ballistic layer close
to the free surface. This is consistent with earlier ob-
servations that, in dense grain assemblies, the effec-
tive restitution coefficient nearly vanishes, regardless
of material properties (Falcon et al. 1998). Impacts
against the sidewalls are treated as collisions with a
sphere of infinite mass and radius, which mimics a
large flat surface. The bottom is made bumpy with
cylinders perpendular to the flow. The granular ma-
terial is made slightly polydisperse (the distribution
of the grain diameter is uniform between 0.8d and
1.2d) to avoid crystallization. Our simulations contain
a very large number of particles, between 105 and 106,
and typically run for 107 time steps.
Although the SSH in Fig. 1a forms on a rigid bumpy
surface that is not inclined as steeply as the flowing
layer, we find that it is possible to carry out analogous
simulations with periodic boundaries perpendicular to
the flow direction (Fig. 1b). This establishes the rec-
tilinear SFD character of the flowing layer, and sug-
gests substantial economies in the number of spheres
necessary to run meaningful simulations.
In the full system of Fig. 1a, as we impose a constant
number flow rate Q above a critical value (Taberlet
et al. 2003), grains get trapped underneath the flow-
ing layer, and the SSH grows slowly (Taberlet et al.
2004) until its free surface reaches a steady angle
ϕ. With periodic boundary conditions (Fig. 1b), we
set the inclination instead, and Q evolves toward the
same steady state than that of the whole SSH. Surpris-
ingly, in the periodic system, grains below the flowing
layer remain nearly immobile despite the steep incli-
nation. Thus, the confining walls permit the establish-
ment of a stable equilibrium on the erodible heap at
an angle far exceeding what is observed without them.
Nonetheless, above an angle ϕmax, grains accelerate,
and, below ϕmin, they come to rest. These critical in-
clinations of the flowing layer are functions of simula-

tion parameters. Remarkably, they also depend on the
relative channel width (W/d), even though the grain
diameter d does not appear explicitly in Eq. (1). Under
present conditions ϕmin = 38◦ and ϕmax = 65◦ with
W = 5d. In both systems, Q is measured by counting
the number of grains flowing through a surface per-
pendicular to the confining walls per unit time. Note
that, in periodic simulations, we observed that flow
properties became insensitive to the domain length L
along the streamwise direction when L > 10d. There-
fore, all the periodic simulations were run using L =
25d.
As Fig. 2 shows, the full system and its periodic
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Figure 2: Flow rate Q vs. tangent of the angle of
inclination of the free surface for W = 5d. Beside
falling on the same curve, the FS and PBC simula-
tions exhibit the same depth profiles of velocity and
solid packing fraction. Therefore, the two techniques
are equivalent. Here, the jamming transition occurs at
µjam = tan38◦.

counterpart have equivalent overall flow characteris-
tics. The flow rate vanishes for ϕ < ϕmin. At steeper
inclinations, Q becomes a linear function of tanϕ.
This behaviour resembles a jamming transition (Liu
and Nagel 1998; O’Hern et al. 2003), near which
the system can exhibit both hysteretic and intermit-
tent behaviors (Lemieux and Durian 2000). Thus,
µjam may be related to the angle of repose, the
angle of avalanche (maximum angle of stability),
hstop (Pouliquen 1996) or hfreeze (Courrech du Pont
et al. 2003). The equivalence of the full system and
its periodic counterpart demonstrates that the flow-
ing layer is SFD. Without periodic boundaries, which
mimic an infinitely long flow, it is always unclear
whether a physical experiment or its complete sim-
ulation have reached such condition. Here instead, we
find that all parameters of the periodic system, includ-
ing its overall kinetic energy, reach a steady state. To
our knowledge, this work is the first numerical simu-
lation of steady flows over an erodible base using pe-
riodic boundary conditions. This last statement raises
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a question: is the presence of frictional side-walls nec-
essary to obtain steady and fully-developed flows over
erodible piles?

3 Flow Regimes
Figure 3 shows profiles of streamwise velocity Vx

and solid packing fraction φ averaged over time and
channel width. While the velocity, made dimension-
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Figure 3: Velocity and solid packing fraction profiles
for ϕ = 45◦ and W = 20d. The velocity profile ex-
hibits three regions: it levels off in a tenuous region
above the free surface (y > 23d), stays mostly lin-
ear in the flowing layer (0 < y < 23d), and decays
exponentially within the SSH (y < 0). A fit to the
linear part of the flowing layer defines the height h
of the flow. The packing fraction decreases smoothly
througout the whole flowing layer and is nearly con-
stant within the SSH where it corresponds approxi-
mately to the random close packing. Note that Φ can
be fitted by an exponential law (see Louge et al. in this
volume).

less with the gravitational acceleration g and the
grain diameter, is similar to that observed experimen-
tally (Taberlet et al. 2003), an important new result is
that the packing fraction decreases steadily through-
out the flowing layer until it nearly vanishes in the ag-
itated surface layer. This behaviour is fundamentally
different from granular flows mobilized on a rigid,
bumpy base without confining walls, which are SFD
at much lower angles than the SSH, and for which Φ
is invariant through most of the depth, but vanishes
abruptly near the free surface (Silbert et al. 2001;
Prochnow 2002).
Because the simulations of Silbert (Silbert et al. 2001)
and Prochnow (Prochnow 2002) only differ from our
periodic system by their absence of confining walls,
the new regime described here must derive from the
latter. Moreover, because our simulations with fric-
tionless walls produce flows at low angles 15◦ <
ϕ < 25◦ that are identical to those of Silbert (Sil-
bert et al. 2001), except in a narrow region near the
walls where geometrical exclusion plays a role, we

conclude that the walls affect the flow mainly through
friction, rather than through the confinement that they
impose. In short, it is friction on the confining walls
that stabilizes a heap at high inclinations, and that pro-
duces the peculiar profiles reported in Fig. 3.
Ancey (Ancey 2002) observed similar packing frac-
tion profiles in experiments on confined flows over a
rigid bumpy base, but did not recognize their origin in
side wall friction. By involving a small enough num-
ber of grains to mobilize the full or periodic systems
all the way to the base, we can reproduce Ancey’s ob-
servations in our simulations as well. Like their coun-
terparts on the erodible heap, these flows depend cru-
cially on wall friction and, as in Fig. 3, display pack-
ing fractions that increase with distance from the free
surface. Such variations are therefore not intrinsic to
an erodible base. Therefore, any model aiming to de-
scribe a flow with confining walls should explicitly
take their presence into account.

4 Flow regime criterion
The major adjustments in packing fraction that
wall friction provokes are accompanied by equally
significant changes in the relation between Q and h.
For flows mobilized on a bumpy surface unaffected
by side walls, there is a range h > hstop in which SFD
flows exist and where the flow rate satisfies Q ∝ h5/2,
which was confirmed experimentally (Pouliquen
1996) in the case of wide systems. Here instead, Fig.
4 shows that, in agreement with Eq. (1), tanϕ is a
linear function of h/W above the jamming transition
h > hjam, and that Q is a linear function of height,
Q ∝ (h − hjam). It should be pointed out that this
curve is obtained for a very thin channel (W/d = 5)
for which strong geometrical effects are expected.
Equation (1) can be used to delineate the two kinds
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Figure 4: (a) tanϕ versus h for W = 5d. The critical
value µjam found in Fig. 2 corresponds to h = hjam.
The solid line is a linear fit to the curve with µw =
0.40 and µi = 0.21. (b) Q versus h. Above the critical
value hjam, Q is a linear function of h. The solid line
is a linear fit to this part of the curve.

of flows. To that end, we introduce the parameter
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ξ = (µwh)/(µiW ). When ξ � 1, confining walls are
unimportant, and the flow behaves as described by
Pouliquen (Pouliquen 1996), Silbert (Silbert et al.
2001), and Louge (Louge 2003). On the other hand,
when ξ = 1, the flow has the character shown in Figs.
1-4. Such behaviour can be achieved by increasing
friction on the confining walls, by raising the flow
height, or narrowing the channel.

5 Conclusion
In this article, we have attributed the peculiar sta-
bilization of a steep pile by a flowing surface layer
to the friction exerted by the confining walls on
the flow. Our periodic simulations over an erodible
bed have established that the flow in the layer is
fully-developed and steady. In this regime, we have
shown that the depth profiles of velocity and solid
packing fraction, as well as the relation between
flow rate and flow height, differ fundamentally from
flows on a rigid bumpy base without confining walls.
One can easily conceive that frictional side-walls
are responsible for an increase in the stability of
granular piles (Courrech du Pont et al. 2003; Liu
et al. 1991) and flows (Taberlet et al. 2003). Yet, the
fundamental and non-trivial changes that they induce
in the properties of the flow and in the rheology
remain a puzzling question. Theoretical attempts to
understand and describe this phenomenon should
explicitly include the friction on the side-walls.
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