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We use a momentum balance to interpret numerical simulations of dense, steady, fully-developed inclined gran-
ular flows of spheres on an erodible base confined between flat frictional side walls. We observe an exponential
profile of mean volume fraction in the direction perpendicular to the base and suggest a scaling for its charac-
teristic length. We also predict volume fraction and mean velocity profiles in the ballistic region above the free
surface.

1 INTRODUCTION
Taberlet et al. (2003) recently reported experiments
in which grains poured in a channel confined by flat,
frictional side walls establish a rectilinear flowing
layer of fixed height above a deep static heap. Because
the flow inclination is considerably larger than the an-
gle of repose, they referred to this phenomenon as a
“Super Stable Heap” (SSH). In a companion paper ap-
pearing elsewhere in these proceedings, Taberlet et al.
(2005) describe numerical simulations revealing de-
tails that the physical experiments could not record.
Beside reproducing already identified features of the
phenomenon, the simulations prove that the mobi-
lized layer is steady and fully-developed (SFD). In
this article, we interpret the new results with a mo-
mentum balance that is informed by the simulations.
We also outline a theory for the dilute surface layer
where grains undergo ballistic trajectories with rare
collisions. We begin with a summary of observations.

2 OBSERVATIONS
Figure 1 shows simulation profiles for the volume
fractionν and the streamwise velocityux/

√
gd made

dimensionless with the gravitational accelerationg
and the spherical grain diameterd from Taberlet et
al. (2005). These variables are averaged in the direc-
tion z perpendicular to side walls separated by a width
W . Their profiles are shown along the downward di-
rection s perpendicular to the free surface. In SFD
flow, all flow variables are independent of the stream-
wise directionx, and the free surface and erodible
base form a common angleα with the horizontal. In
the simulations, the Coulomb friction coefficient of a
sphere with another sphere or with the side walls isµ.

We locate the free surface where the velocity pro-
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Figure 1. Profiles of dimensionless mean velocity and volume
fraction. Conditions areµ = 0.8, W/d = 20, α = 45◦. We find
νs ∼ 0.62, ν0 ∼ 0.08 andsm/d∼ 48. Flow regions are separated
by vertical dashed lines. The slanted line determines the intercept
h/d ∼ 26. The dashed curve is the model of Eq. 23 fors < 0.
The insert shows a detail ofν near the free surface, with the
superimposed prediction of Eq. 19.
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Figure 2.− log10[(νs− ν0)/(νs− ν)] vs.s/d with conditions of
Fig. 1. We find̀ /d ∼ 17.



file exhibits a sharp change in slope. We place the
origin of our coordinate system(x, s, z) there and on
the centerline of the channel. Above the free surface,
grains are thrown upwards in ballistic trajectories to a
dilute region experiencing rare collisions. In this bal-
listic layer wheres < 0, ux/

√
gd varies little andν de-

creases away from the free surface withd2ν/ds2 > 0.
Below, the mean volume fraction rises exponen-

tially from the volume fractionν0 at the free surface
to the random loose packingνs ≈ 0.62 on a character-
istic length scalè

ν = ν0 + (νs − ν0)[1− exp(−s/`)] (1)

Here, d2ν/ds2 < 0. In this region, the profile of
ux/
√
gd also resembles an exponential decay along

s with characteristic lengthh (Komatsu et al. 2001),
which provides a convenient measure of depth of
the mobilized layer in physical experiments (Taber-
let et al. 2003). Ats = sm where most grains are no
longer mobilized, we expect that the volume fraction
is ν = νm ≈ 0.59 i.e, just above the glass transition for
hard spheresνglass ∼ 0.58. This value ofνm is also
the largest volume fraction that Silbert et al. (2001)
observed in their own simulations.

Taberlet et al. (2003) invoke a force balance assum-
ing constant volume fraction and constant wall fric-
tion to explain their empirical observation of

tanα = µm + µw(h/W ). (2)

They then interpretµw as an effective friction coeffi-
cient at the side walls that accounts for rolling or slid-
ing contacts. Thus, because such interactions produce
a ratio of tangential to normal force no greater thanµ,
these authors expectµw ≤ µ. Simulations confirm the
trends predicted by Eq. 2 (Taberlet et al. 2005). Next,
we refine the force balance by incorporating new in-
formation on the volume fraction profile.

3 MOMENTUM EQUATIONS
We consider the regime in which side walls affect the
flow. Taberlet, et al. (2005) suggest that this is where
ξ ≡ (hµw)/(Wµm)≥ 1. The momentum balances for
this two-dimensional SFD flow are

∂τxs

∂s
+
∂τxz

∂z
= −ρsgν sinα (3)

alongx and, assuming that thes-component of the
contact forces between particles and side walls are
negligible (no “Janssen effect”),

∂τss
∂s

= +ρsgν cosα (4)

alongs. In these Eqs.,τij is the stress tensor alongi
on surfaces of normalj, andρs is the material density
of the grains. We invoke the following assumptions:
the normal stress is isotropic,τss = τzz; ν = ν(s); the

flow surface is flat and perpendicular tos; τxs depends
only ons; and side walls are identical. We define the
ratioµτ (s) of shear to normal stress at the walls such
thatτxz ≡ ∓µτ (s)τzz ≡ ∓µτ (s)τss at z = ±W/2.

Integrating Eq. 3 alongz and Eq. 4 alongs yields

dτxs

ds
= −ρsgν sinα+ 2µτ

τss
W

(5)

and
τss = ρsg cosα

∫ s

−∞
νdθ. (6)

Substituting in Eq. 5, integrating further alongs, and
dividing by Eq. 6, we find the effective friction on
surfaces at constants

µeff ≡ −
τxs

τss
= tanα− σµ

W
, (7)

where we define the “friction depth” as

σµ(s) ≡ 2

∫ s
−∞ µτ (ζ)dζ

∫ ζ
−∞ νdθ∫ s

−∞ νdθ
. (8)

Comparing Eqs. 2 and 7, we identify

µm ≡ µeff (s = sm) (9)

and
hµw ≡ σµ(s = sm). (10)

We evaluate the integrals in Eq. 6 and 8 to estimate
µw. To that end, we invoke further simplifying as-
sumptions. First, because volume fractions are small
in the rarefied ballistic layer, we ignore the contribu-
tion of s ∈] −∞,0] to these integrals. Second, we
take the point of contact at the wall to be engaged in
gross slip throughout the mobilized depth with con-
stantµτ (s) = µτ ,∀s ≤ sm, from which we expect
µτ ≤ µ. Third, we simplify Eq. 1 usingν0 � νs. Ac-
cordingly,

σµ ≈ sµτ

[
1− 2(`/s) + 2(`/s)2(1− e−s/`)

1− (`/s)(1− e−s/`)

]
(11)

for s ≤ sm. Remarkably,σµ is nearly linear ins,
and thus the effective friction decreases with distance
from the free surface. Expanding Eq. 11 nears/`∼ 0,

σµ =
2

3
µτ s

[
1 +

1

12

(s
`

)
− 1

180

(s
`

)2
+O

(s
`

)3]
(12)

with relative error from Eq. 11< 0.5% at s/` ≤ 5.
Thus in general,σµ depends weakly oǹ, νs or ν0.
Combining Eqs. 10 and 11 withν = νm ats = sm,

hµw

`
= µτrm

[
1− (2/rm) + (2/r2

m)(νm/νs)

1− (νm/νs)(1/rm)

]
, (13)

where rm ≡ lnνs − ln(νs − νm). Thus, comparing
the measured value ofhµw/` with the predictions of
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Figure 3. Bottom: Profiles ofux/
√

gd andν for the conditions
shown. We findνs ∼ 0.63, ν0 ∼ 0.09, sm/d∼ 28, h/d∼ 16, and
`/d ∼ 15. Lines and symbols, see Fig. 1. Top:tanα vs.h/W .
The filled circle refers to conditions of the bottom graph. We find
µw ∼ 0.4 andµm ∼ 0.21.

Eq. 13 lets us relateµτ to µ. We expectµτ ∼ µ for
W/d � 5. However, we find sharp reductions inµτ

whenW/d ≤ 5 (Taberlet et al. 2003). For example,
we findµτ ∼ 0.18� µ with W/d = 5 (Fig. 3), which
may betray the presence of rolling contacts at the side
walls, or fluctuations in the direction of the contact
velocity leading to a smaller projection alongx of the
average friction force.

We now discuss the origin of the interceptµm

in Eq. 2. To that end, we first refer to experiments
(Pouliquen 1999) and simulations (Silbert et al. 2001)
for inclined flows on a bumpy base without side walls.
Those SFD flows only exist above a minimum inclina-
tion tanαmin, which Louge (2003) calculated using a
SFD energy balance of fluctuation energy in the core,

−∇ · q + τ :∇u− γ = 0, (14)

where the gradient of the fluctuation energy fluxq
is negligible compared with the working of the shear
stressτ through the velocity gradient∇u or with the
volumetric dissipation rate of fluctuation energyγ.
Louge (2003) then expressedtanαmin in terms of the
internal frictionµE of the granular assembly and co-
efficients of the dense kinetic theory that appear in
the granular viscosity,a1 = 8(1 + π/12)/(5

√
5); in

the volumetric dissipation rate of fluctuation energy,
a3 = (12/

√
π)(1− e2), wheree is a restitution coeffi-

cient; and in the equation of state,a4 = 4,

tanαmin =
µE

1 +
µ2

Ea2
4

4a1a3

. (15)
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Figure 4. Granular temperature in thex-direction made dimen-
sionless with

√
gd vs.s/d for conditions of Fig. 1. Simulations

of Taberlet, et al. (2005).

In the absence of side walls, the effective friction on
planes parallel to the base is constant,µeff = tanα
(Louge 2003). As Eq. 7 shows, the side walls mod-
ify the force balance by subtracting the friction depth
σµ, which is roughly proportional tos. Thus, the side
walls progressively reduce the effective friction from
tanα at the free surface down to the minimum value
µm at which the flow begins to be mobilized. In this
light, our conjecture is thatµm is nearly given by
Eq. 15,

µm ∼ tanαmin. (16)

However,µm may be somewhat smaller. The reason
is that, while the term−∇q ∼ 0 in the core of a flow
without side walls, it is positive nears ∼ sm in the
SSH,−∇q ∝ d2T/ds2 > 0, as Fig.4 suggests. Thus,
the flux gradient term in Eq. 14 may contribute to
grain mobilization at effective friction< tanαmin.

4 BALLISTIC LAYER
The steep inclination of SSH flows produces an agi-
tated free surface from which spheres are ejected to
a “ballistic” layer where they undergo mostly inde-
pendent trajectories. Our objective is not to calculate
boundary conditions for momentum and energy at the
interface between a dense collisional flow and a re-
gion of freely flying grains (Jenkins & Hanes 1993).
Here, we seek profiles of volume fraction and mean
velocity in the ballistic layer. To model the latter, we
ignore collisions and assume that the free surface has
a number densityn0 = 6ν0/πd

3 with Maxwellian ve-
locity distributionM0

M0 =
n0

(2πT ′0)
3/2
e
−

u′2
0x

2T ′
0 e
−

u′2
0y

2T ′
0 e
−

u′2
0z

2T ′
0 (17)

such that the average of a quantityψ is

< ψ >=
1

n

∫ ∫ ∫
ψM0du

′
0xdu

′
0ydu

′
0z (18)

In these expressions,x, y ≡ −s, z represent the three
cartesian directions, and the subscript0 indicates con-
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Michel Louge
Figure 3 has the wrong value of l/d.  See paper "Explain the exponential nature of the SSH volume fraction profile" of 3/4/05 on pp. N15-N18 (paper SSH-3).  The procedure for finding the actual value of l/d and for plotting the results is shown in the wb "wb_SSH_sim_Rennes_data.xls" in its worksheet called "data".  The actual value of l/d for this case is l/d = 10.  The actual value of n0 is 17% and the origin must be shifted to the right by 3 grain diameters.  The actual value of h/d=13.5 and vx/√gd = 9.9 @ s/d=0.  The value of sm/d is 24; the actual value of \mu_{\tau} is 0.255, see paper above.  The new graph corresponding to the lower figure are found in profiles_w5.gr.

Michel Louge
Note
Dana Smith's data suggests that \mu_m ~ 0.59, which corresponds to the maximum angle at which Pouliquen did measurements...  So can \mu_m be identified with \tan\alpha_{min} from the bumpy chute model?



ditions at the free surface. For convenience, we sub-
tracted the mean velocityu0 of the free surface to find
M0. Our objective is to derive the corresponding dis-
tributionM at a distanceη from that surface. To reach
such distance, spheres must haveu0y ≥

√
2gη cosα.

Primes in Eqs. 17 denote velocities and temperature
made dimensionless with

√
gη cosα andgη cosα, re-

spectively. Thus, the number density atη is

n =
∫ +∞
√

2

n0

(2πT ′0)
1/2
e
−

u′2
0y

2T ′
0 du′0y =

n0

2
erfc

(√
1

T ′0

)
(19)

We relate the dimensionless velocities at the free sur-
face to those at the distanceη using ballistic relations

u′0x = u′x −
2 tanα

u′y +
√
u′2y + 2

(20)

and
u′0y =

√
u′2y + 2. (21)

We then carry out the change of variables in Eqs. 17
and 18 and normalize the result to find

M(η) =
n

(2πT ′0)
3/2

exp[− 1

T ′0
]

1

erfc(1/
√
T ′0)

×

exp
[
− u′2x

2T ′0

]
exp

[
+

(2 tanα/T ′0)u
′
x

u′y +
√
u′2y + 2

]
×

|u′y|√
u′2y + 2

exp
[
− 2 tan2α/T ′0

(u′y +
√
u′2y + 2)2

]
×

exp
[
−
u′2y
2T ′0

]
exp

[
− u′2z

2T ′0

]
. (22)

From the first moment of this distribution, we calcu-
late the mean velocity in thex-direction aty = η,

< ux >√
T0

=

√
2

π
tanα

exp[−gη cosα/T0]

erfc
(√

gη cosα/T0

) , (23)

to which we add the mean velocityu0x of the free
surface that we omitted from Eq. 17. Although the
corresponding momentum per unit volume decreases
as exp[−gη cosα/T0] from the free surface, Eq. 23
predicts a slight increase in the mean velocity. We
plot the corresponding predictions forν and ux in
the ballistic layer in Fig. 1 usingT0/gd ∼ 4.5 (Fig 4)
andν0 ∼ 0.08 (Fig. 1) from simulations. Despite in-
evitable discontinuities at the free surface, both pre-
dictions agree reasonably well with data, although it is
unclear whether the actual velocity remains constant
or increases slightly withη as this model predicts.

5 CONCLUSIONS
We have begun to refine the momentum balance of
the “Super Stable Heap” of Taberlet et al. (2003). In
doing so, we pointed out the exponential form of the
volume fraction profile in the depth, and related its
characteristic length to that of the velocity profile. We
also proposed a simple model for the ballistic layer
above the flow. It remains to explain why the volume
fraction exhibits this behavior, to check the predic-
tions of Eqs. 13 and 16 with additional simulations,
and to predict profiles of velocity and temperature in
terms of particle properties.
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Note
This calculation must be updated following discussions with Javier Brey and Jim Dufty. It is the distribution of the flux that should replace M0, see seminar notebook p. 23.

Michel Louge
Note
This calculation should be replaced by an integration of the Boltzmann equation.




