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Role of Couple Stresses in Shallow Granular Flows down a Bumpy Incline
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Abstract We extend the micropolar fluid theory of Hayakawa and Mitarai, et al. [B&1174301 (2002)] to

dense, relatively shallow flows of spherical grains down an inclined plane on which spherical bumps have been
affixed. We update the model of Louge [PRE 061303 (2003)], and show the role played by couple stresses

in establishing the solid volume fraction in the core of the flow.

1 Introduction

Steady, fully-developed (SFD) shallow flows of spherical grains down rigid bumpy inclined planes
far away from the confinement of side walls are a convenient laboratory paradigm for more complex
geophysical granular phenomena like rock slides. If the bump size is on the order of the grain diameter
d, these flows are entirely mobilized and the depth-averaged veloatpws with the3/2 power

of the depthh. Pouliquen’s experiments [1] showed that they only exist within a range of angles
of inclination and at a minimum depth,,,, that decreases with the angle of inclinatian The
numerical simulations of Silbergt al [2] further revealed that the ratio/h/? is independent of
normal restitutiore and interparticle friction., that the mean velocity vanishes at the base, that the
granular temperatur@ grows with depth in the region away from the free surface and the bottom
boundary, and that, remarkably, the solid volume fractias independent of depth except within a
grain diameter or so of the free surface.

Louge [3] proposed a theory to capture the observations of Pouliquen [1] and Setbal{2].

To simplify the treatment of the governing equations, he distinguished three regions in the flow: a
thin layer near the free surface where the grains interact only through collisions; a “core” where both
impulsive and enduring particle contacts coexist; and a basal layer within a few grain diameters of the
rigid bottom boundary where the angular momentum balance sets the relative magnitude of impulsive
and enduring stresses. His theory predicted the range of inclination angles at which steady, fully-
developed flows are observed, the corresponding shape of the mean and fluctuation velocity profiles,
the dependence of the flow rate on inclination, flow height, interparticle friction and normal restitution
coefficient, and the dependence of the height of basal flows on inclination. However, Louge [3] could
not explain whyv decreases with while remaining invariant in the depth. Our objective is to do so.

We begin with a summary of Louge’s theory and discuss its closure. Focusing on the core, we
examine alternative explanations for the invariance of volume fraction with depth, and discuss the
paradoxes they raise. We then show how the invariance of couple stresses in the core implies the
invariance ofv there, and how solutions of the governing equations in the basal layer yield the depen-
dence ofv on inclination and its independence on other parameters.

2 Background

In SFD gravitational flow, the momentum balances along the flow and in its depth reduce to

as

— = —prgsina, (1)
dy
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and
dN

dy
whereS and N are, respectively, the shear stress and normal stress on surfaces parallel to the base,
ps 1S the material density of the graing,is the gravitational acceleration, apds the coordinate
perpendicular from the base and pointing toward the free surface. In dense flow, these equations
yield, approximately,

= —psvgcosa, (2)

S =~ psvgsina(h —y) 3

and
N =~ psvgcosa(h —y), 4)

in which the depth-averaged volume fractimmvas substituted for its local value. It follows that the
ratio of shear to normal stress is constant and equal to the tangent of the angle of inclination,

S/N = tana. (5)
Louge [3] followed Savage [4] and others in superposing two components of the stresses,
S=5+S5g (6)

and
N = N; + Ng, (7)

where the subscript refers to impulsive interactions leading to rate-dependent stresses and the sub-
script £/ denotes enduring contacts associated with rate-independent stresses. Louge modeled the
latter with an internal friction.z such that

Sg/Ng = pgp. (8)
For convenience, he also defined the fractjasf the total shear stress that is rate-independent,
n=Sg/S. 9)

For the rate-dependent stresses, he invoked the constitutive relations of Jenkins and Richman [5] for
nearly elastic spheres,

d
Sr = Al(’/)’ﬁguﬂsdﬁ;;, (10)
and
N; = A4(V)V2912P5T7 (11)

where A (v) = (8/5y/7)[1 + (7/12)(1 + 5/8vg12)?], As(v) = 4(1 + 1/4vg12) and gy, is the pair
distribution of Carnahan and Starling [6] corrected by Torquato for high volume fractions [7]. To
determine the depth profile of granular temperature, he wrote the energy balance

dq du
—— +(S1+Sg)——71=0 12
dy+(1+ E)dy 7=70, (12)
which involves the flux of fluctuation energy
ar
q= _AQ(V)UQ.ngdeﬁdiya (13)
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with Ay = (4/+/m)[1 + (97/32)(1 + 5/12vg15)?], and the volumetric rate of energy dissipation
Y= A3V2912,05T3/2/d, (14)

where, in the limit of nearly elastic, nearly frictionless spherés= (24/\/7)(1 — e.rs) ande.s¢
is an effective coefficient of restitution combining the collisional energy dissipation associated with
impact inelasticity and friction [8].

Unfortunately, combining Eqs. (3) through (14) produces only three independent ordinary dif-
ferential equations (ODE) representing balances for two components of the momentum and for the
fluctuation energy. Thus, because the problem involves four dependent varighles @ndn), it is
not closed.

To provide closure, Louge [3] assumed thais invariant with depth and known in terms pf
through a empirical expression derived from the simulations of Sileer] [2]. Because Louge’s
predictions ofu/h*/? were relatively insensitive to the actual valuergfhis empirical closure was
sufficient in practice, albeit disappointing.

Other theories circumvented the problem of closure differently. Johnson, Nott and Jackson [9]
postulated an empirical expression for the dependence of the normal stress on volume fraction. Jenk-
ins [10] and others ignored the presence of enduring contaets). To recover qualitative features of
the flow in this case, Bocquetdt al [11] adjusted the dependence of transport coefficients on volume
fraction.

Our objective is to update Louge’s theory by explaining the observed invarianceith . We
will frame the discussion in terms of alternative explanations, which, as we will show, only provide
gualitative agreement with observations.

3 The Core

In the dense, relatively shallow flows of Pouliquen [1] and Silbetrgl [2], most of the depth belongs

to the core. Consequently, the overall mass flow rate is dominated by the contribution of that region.
Thus, to understand the behavior of the flow, it is instructive to focus on the core first. There, the flux
gradient term in Eqg. (12) is negligible, and the resulting energy balance yields

(1—n)tan*a A1 A;
(1 —ntana/up)® A7’

(15)
Like Jenkins [10], Louge [3] noted that, because the flow is dense, the functions,, A; and

A, tend to constants that are independent.dh this case, Eq. (15) is a quadratic possessing physical
solutions fory iff the inclination lies within the range

HE
< A A3/A,. 1
T A A Ay) e S VA (16)

There, the core granular temperature and mean velocity profiles are, approximately,

T Ay vsina h—y
g9d A1Az V2g1o ( d )’ (n
and
u 2‘42/2:3/2 vsin o (2)3/2 - (h—y>3/2 (18)
Vgd — 3 A T A Asv?gip Nd h 7
where
—_ S AA
:sz]: %(1—77). (19)
1
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andy is the smallest solution of Eqg. (15) [3].

The difficulty with Louge’s approach is that the volume fraction remains undetermined [3]. An
alternative is to impose closure by assuming that the flow only involves collisional interactiens,
However, such assumption leads to paradoxical results.

First, the dense collisional limit, for whicH,, A, and A, are independent af, makes the right-
hand-side of Eqg. (15) constant, and therefore only permits the last two terms in Eq. (12) to balance at
the single inclinationan o = \/A; A3/ A4. Consequently, the flux gradient term in Eqg.(12) cannot be
neglected in general. Second, Jenkins [10] showed that dense SFD flows only exist at a fixed value of
h, which contradicts observations of SFD flows with a wide range of depths.

To resolve this conundrum, one can keep the full dependenchg,ofl; and A, on v. In this
case, substituting = 0 in Eq. (12) leads to a quadratic equation with unknown variable g,,
and parameter = 57 tan o?/12(1 — e.;;). Encouragingly, the solution farg;, and, consequently,
for v are indeed independent 9f Wheny € [257/3(16 + 37), 1 4+ 7/12], there are two solutions
for 1/4vgy,, but only one agrees with observations thatecreases with steeper inclination. When
¥ € [1+ /12,257 /48], there is only one solution, which is also consistent with the observed trend.
Thus, ifn = 0, Eq. (15) admits physical solutions forsuch that

1 48 — 107 + \/y(4 + 37/4) — 25m/12
Advgrs 257 — 481 ’
iff ¢ € [25m/3(16 + 3), 257 /48] or, equivalently, within the narrow range of inclinations

20 5
1— < <421 - . 21
\/16 n 37T( eepr) < tana < 4( Ceff) (21)

In that range, the producty,» €]0,57/(64 — 87)] is small enough to invoke the Carnahan-Starling
pair distribution forg;, [6]. Unfortunately, this yields volume fractiomse]0, 0.36] that are unrealistic
for dense flows. Consequently, the purely collisional constitutive relations of Jenkins and Richman
[5] are not alone sufficient to capture the dense gravitational flows of interest.

Bocquet,et al [11] adopted instead other constitutive relations that diverge more rapidlyvith
and thus managed to capture qualitative features of the flows. However, because the relations of Jenk-
ins and Richman [5] have succeeded in relatively dense microgravity experiments and in numerical
simulations where enduring contacts are absent [12], it is not appropriate to dismiss them so casually.
Instead, it is likely that the assumption of a purely collisional flow is inappropriate for dense flows
down inclines.

In this context, we seek another explanation for the invariance of the volume fraction in the core.

(20)

4 Couple Stresses

Because contact forces are not exerted on the center of mass of individual grains, but rather on their
external surfaces, it is possible for the mean spin of individual particles to differ from the rotation
rate of the mean velocity field. In this case, the usual stress tensor is augmented by an asymmetric
part that is proportional to this difference. For SFD flows, the mean angular momentum of the grains
involves a balance between the gradient of couple stresses and the torque due to the asymmetric part
of the stress tensor [13]. The stress tenspand the couple stress tenggy; represent, respectively,
the j-component of the surface force and surface torque acting on the plane of rigrenainit area.

Mitarai, et al[13] wrote the balances of linear and angular momentum for dilute SFD flows down
an incline. Extending their results to dense flows with both impulsive and enduring contacts, we
modify Egs. (1) as

d

du .
cljng[+SE+#R(clg/+2w>] = —psVgsinq, (22)

—-4-
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wherepr is the microrotation viscosity and is the mean granular spin. In SFD flows, the balance
of angular momentum reduces to

dC,.
dy

d
— 2up <“ + 2w> . (23)
dy
Although the mean grain spin exhibits spatial oscillations near boundaries that correspond to the
counter-rotation of adjacent granular layers [14, 15], we adopt the simple constitutive relation for the
couple stress that Mitaraet al used for dilute flows,

dw
= up— 24
Cyz KUB dy ) ( )

wherey g is one of three coefficients of angular viscosity [13].

We assume that the translation and rotation temperatures are equal, and that the dissipation in Eq.
(14) accounts for the dissipation of rotational fluctuation energy [8]. Then, we simply augment the
fluctuation energy balance in Eq. (12) with a term that captures the production of fluctuation energy
by the working of the couple stress through the gradient of the mean granular spin,

dq du dw

dy+de +Cyzdy
In the core, this additional term is much smaller tttafu/dy. However, it is significant in the basal
layer.

Lun [16] calculated:y for dense, inelastic, slightly rough spheres. Unfortunately, he assumed
an impact model based upon a constant tangential restitution coeffitieather than the constant
friction that is observed with actual spherical grains. To translate his expression to more common pa-
rameters, we calculate = min(5,, —1+ (7/2)u(1+¢€) /¥, ), whereg, is the coefficient of tangential
restitution for rolling impactse is the coefficient of normal restitutiop,is the coefficient of friction,
and ¥, is the tangent of the incident impact angle [17], which we estimate,as |w|d/+/T. With
these assumptions, we find

—~v=0. (25)

V2g12\/_ u(l+e) 2
~ Tmin |52 Z(1+ 5y)]. 26
KR ﬁ min \w\d/ﬁ 7( ﬂO) ( )
In the absence of calculations fpg, we adopt

(B ~ ppd’. (27)

In the core, we expect that the mean granular spin and the rotation rate of the mean velocity field
are equal,

1du
- -7 28
Y= 5 (28)
Then, Eq. (23) implies that the couple stress is invariant there. Combining Egs. (24) and (28), itis
1 d%u
Cyzcore = _iuBTyQ (29)

This invariance agrees with the expected dependengg@tu/dy?® with y; becausgis < VT
Vvh —y anddu/dy o« /h —y, the producuzd?u/dy? is indeed invariant in the depth. Combining
Egs. (17), (18), (19) and (27) then yields, in the dense limit,

A
T = nmin | (1), 201+ )| (30)

Cyzcore = psng Sln Q

-5-
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To infer the core volume fraction from this expression, we must evalligte .. We do so by
writing a system of ODEs fou, w, T', ¢ andC),, in the base layer, from which we extrac}, = C,
at the locationy = b just beneath the core.

First, we combine Egs. (2), (22) and (23), integrate the result betweehdown to anyy € [0, b]
and, becausg = N tan a anddC),,/dy = 0 aty = b, we find

Zcore

1dC,,

S
+2 dy

= N tana. (32)

This result indicates that the couple stress gradient reduces the shear stress necessary to balance the
streamwise component of gravity.
Next, from Egs. (6), (7), (10), (23) and (31), we extract the two ODEs

du 1

o _ N(tana — pg) + ppNy — 2 32

dy <MI+,UR>[ ran =) e 2 .
and ic

yz:2< MR )[N(tan&—ME)+MENI+2MIW], (33)

dy M1+ 1R

wherepu; = Al(V)l/2glgpsd\/T is the granular shear viscosity, and the magnitude¥ @ind V; are
given by Egs. (4) and (11).

In principle, ifv is allowed to vary in the basal layer, one equation is still lacking to close the prob-
lem in that region. However, the simulations of Silbettal [2] indicate that, apart from inevitable
spatial oscillations from the ordering near the wallis nearly invariant in the basal layer as well,
except at inclinations that are close to the maximum angle for SFD flow. In two-dimensional flow,
v is invariant all the way to the base at any angle [2]. Thus, rather than writing another governing
equation, we assume that the value-af the core persists in the basal layer.

With this assumption, we solve the coupled set of ODEs (13), (24), (25), (32), and (33) by shooting
downward fromy = b, whereu = w,, andq, T', w andC,, are matched to their respective values
calculated in the core from Eqgs. (13), (17), (28), and (30). We fix the velagity settingu = 0
where the base is reached. We find the thickihegghe base layer when the integration satisfies the
flux boundary condition at the bumpy base. There, because there is no relative velocity between the
base and the flowing grains, the fluctuation energy flux reduces to

qg=—D, (34)

whereD is a rate of fluctuation energy dissipation per unit surface of the base. For purely collisional
flows, Jenkins and Richman [18] calculated

D:2¢ia—e@l%¢7 (35)

1+ cos@’

wheresin = (d — d, + A)/(d + dp) is a measure of the bumpiness of the boundary with spherical
bumps of diameted,, A is the mean separation between the centers of two adjacent bumps, and

is the coefficient of normal restitution in the impact of a flow sphere with a bump. As Louge [3]
noted, because grains experience enduring contacts with the base, Eqg. (35) probably under-predicts
the surface dissipation. Combining Eq. (13), (34) and (35), we find the boundary condition

dvT VT
Ty - bl?; (36)

-6-
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where

b, = 4./2 (1_6“’> (37)

a: 7\ 1+ cosd

It remains to determine the solid volume fraction. We do so by applying the boundary condition
for couple stress at the base. By shrinking the thickness of a pillbox control volume, Jenkins [19]
established that the couple stress on the base is equal to the rate of supply of angular momentum per
unit are of the wall, or
Oyz =L, (38)

wherel is the product of the rate of collisions per unit surface of the wall and the angular momentum
lost in a collision,

L~ AL [ygo\f} (pod" VT min[p, (1 + €4,), (2/7)(1 + Bo,,)])- (39)

In this expressiong,(v) is the pair distribution function of spheres and wall bumps,andj, are,
respectively, the friction and tangential restitution for their impacts, Apds a constant of order
one. Because wall collisions involve the contacts of two spheres, we invokg #xdense correction

to the Carnahan and Starling pair distribution [6] similar to Torquato’s [7]. However, we expect the
wall-induced layering to make, rise faster withv thang;,. Thus, we adopt

2—v

go(v) = S0 op for0 <v<uy (40)
and o
go(v) = (22? : ZJ;)>3> <((V;C__Vyf)>> forvy < v <, (41)

wherev; = 0.49 andy, = 0.64.

To find the solid volume fraction, we guess a value, solve the set of ODEs as outlined above,
compare the resulting couple stress at the base withEq. (39), and iterate until the boundary
condition (38) is satisfied.

Figure 1 shows typical profiles through the depth. It confirms that the energy flux is small in the
core. Consistent with the observations of Silbettal [2], the temperature reaches a maximum in the
basal layer. Unlike what Louge assumed [3], this maximum does not occur at the edge of the core.
The couple stress is smaller in the core than it is in the base layer.

Figure 2 compares our prediction for the dependencemt angle of inclination with the obser-
vations of Silbertet al [2]. Other calculations, which are not reported here, indicate that the core
solid volume fraction is nearly independent of the overall depth and of the interparticle frigtion
once again in agreement with the simulations of Silketrg|.
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Figure 1: Profiles of dimensionless mean velocity, angular velocity, fluctuation velocity, energy flux

and couple stress for conditions of Pouliquen’s “system 1” [1] with = 0.67, ugp = 0.42, o = 25°.
We adoptd; = 1.5, Ay = 8.5, i = u,, = 0.525, b7 = 1.5 andA;, = 1.8. We calculater = 0.59. The
ordinate represents the upward coordinate normal to the base. The dashed line indicates the boundary

between the core and the basal layer.
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Figure 2: Predictions of solid volume fraction versus angle of inclination for the overall depth and
friction shown. The symbols are data from system L3 of Silkergl and the solid line represent our
predictions withe.;s = 0.83 andyug = 0.40. We adoptd; = 2, Ay = 8.5, 4 = i,y = 0.5, 01 = 1.5
andA; = 2.4.
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