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Abstract We extend the micropolar fluid theory of Hayakawa and Mitarai, et al. [PRL88, 174301 (2002)] to
dense, relatively shallow flows of spherical grains down an inclined plane on which spherical bumps have been
affixed. We update the model of Louge [PRE67, 061303 (2003)], and show the role played by couple stresses
in establishing the solid volume fraction in the core of the flow.

1 Introduction

Steady, fully-developed (SFD) shallow flows of spherical grains down rigid bumpy inclined planes
far away from the confinement of side walls are a convenient laboratory paradigm for more complex
geophysical granular phenomena like rock slides. If the bump size is on the order of the grain diameter
d, these flows are entirely mobilized and the depth-averaged velocityū grows with the3/2 power
of the depthh. Pouliquen’s experiments [1] showed that they only exist within a range of angles
of inclination and at a minimum depthhstop that decreases with the angle of inclinationα. The
numerical simulations of Silbert,et al [2] further revealed that the ratiōu/h3/2 is independent of
normal restitutione and interparticle frictionµ, that the mean velocity vanishes at the base, that the
granular temperatureT grows with depth in the region away from the free surface and the bottom
boundary, and that, remarkably, the solid volume fractionν is independent of depth except within a
grain diameter or so of the free surface.

Louge [3] proposed a theory to capture the observations of Pouliquen [1] and Silbert,et al [2].
To simplify the treatment of the governing equations, he distinguished three regions in the flow: a
thin layer near the free surface where the grains interact only through collisions; a “core” where both
impulsive and enduring particle contacts coexist; and a basal layer within a few grain diameters of the
rigid bottom boundary where the angular momentum balance sets the relative magnitude of impulsive
and enduring stresses. His theory predicted the range of inclination angles at which steady, fully-
developed flows are observed, the corresponding shape of the mean and fluctuation velocity profiles,
the dependence of the flow rate on inclination, flow height, interparticle friction and normal restitution
coefficient, and the dependence of the height of basal flows on inclination. However, Louge [3] could
not explain whyν decreases withα while remaining invariant in the depth. Our objective is to do so.

We begin with a summary of Louge’s theory and discuss its closure. Focusing on the core, we
examine alternative explanations for the invariance of volume fraction with depth, and discuss the
paradoxes they raise. We then show how the invariance of couple stresses in the core implies the
invariance ofν there, and how solutions of the governing equations in the basal layer yield the depen-
dence ofν on inclination and its independence on other parameters.

2 Background

In SFD gravitational flow, the momentum balances along the flow and in its depth reduce to

dS

dy
= −ρsνg sinα, (1)
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and
dN

dy
= −ρsνg cosα, (2)

whereS andN are, respectively, the shear stress and normal stress on surfaces parallel to the base,
ρs is the material density of the grains,g is the gravitational acceleration, andy is the coordinate
perpendicular from the base and pointing toward the free surface. In dense flow, these equations
yield, approximately,

S ≈ ρsν̄g sinα(h− y) (3)

and
N ≈ ρsν̄g cosα(h− y), (4)

in which the depth-averaged volume fractionν was substituted for its local value. It follows that the
ratio of shear to normal stress is constant and equal to the tangent of the angle of inclination,

S/N = tanα. (5)

Louge [3] followed Savage [4] and others in superposing two components of the stresses,

S = SI + SE (6)

and
N = NI +NE, (7)

where the subscriptI refers to impulsive interactions leading to rate-dependent stresses and the sub-
scriptE denotes enduring contacts associated with rate-independent stresses. Louge modeled the
latter with an internal frictionµE such that

SE/NE = µE. (8)

For convenience, he also defined the fractionη of the total shear stress that is rate-independent,

η ≡ SE/S. (9)

For the rate-dependent stresses, he invoked the constitutive relations of Jenkins and Richman [5] for
nearly elastic spheres,

SI = A1(ν)ν
2g12ρsd

√
T
du

dy
, (10)

and
NI = A4(ν)ν

2g12ρsT, (11)

whereA1(ν) = (8/5
√
π)[1 + (π/12)(1 + 5/8νg12)

2], A4(ν) = 4(1 + 1/4νg12) andg12 is the pair
distribution of Carnahan and Starling [6] corrected by Torquato for high volume fractions [7]. To
determine the depth profile of granular temperature, he wrote the energy balance

−dq
dy

+ (SI + SE)
du

dy
− γ = 0, (12)

which involves the flux of fluctuation energy

q = −A2(ν)ν
2g12ρsd

√
T
dT

dy
, (13)
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with A2 = (4/
√
π)[1 + (9π/32)(1 + 5/12νg12)

2], and the volumetric rate of energy dissipation

γ = A3ν
2g12ρsT

3/2/d, (14)

where, in the limit of nearly elastic, nearly frictionless spheres,A3 = (24/
√
π)(1 − eeff ) andeeff

is an effective coefficient of restitution combining the collisional energy dissipation associated with
impact inelasticity and friction [8].

Unfortunately, combining Eqs. (3) through (14) produces only three independent ordinary dif-
ferential equations (ODE) representing balances for two components of the momentum and for the
fluctuation energy. Thus, because the problem involves four dependent variables (u, T , ν andη), it is
not closed.

To provide closure, Louge [3] assumed thatν is invariant with depth and known in terms ofη
through a empirical expression derived from the simulations of Silbert,et al [2]. Because Louge’s
predictions ofū/h3/2 were relatively insensitive to the actual value ofν, his empirical closure was
sufficient in practice, albeit disappointing.

Other theories circumvented the problem of closure differently. Johnson, Nott and Jackson [9]
postulated an empirical expression for the dependence of the normal stress on volume fraction. Jenk-
ins [10] and others ignored the presence of enduring contacts,η = 0. To recover qualitative features of
the flow in this case, Bocquet,et al [11] adjusted the dependence of transport coefficients on volume
fraction.

Our objective is to update Louge’s theory by explaining the observed invariance ofν with y. We
will frame the discussion in terms of alternative explanations, which, as we will show, only provide
qualitative agreement with observations.

3 The Core

In the dense, relatively shallow flows of Pouliquen [1] and Silbert,et al [2], most of the depth belongs
to the core. Consequently, the overall mass flow rate is dominated by the contribution of that region.
Thus, to understand the behavior of the flow, it is instructive to focus on the core first. There, the flux
gradient term in Eq. (12) is negligible, and the resulting energy balance yields

(1− η) tan2 α

(1− η tanα/µE)2
=
A1A3

A2
4

, (15)

Like Jenkins [10], Louge [3] noted that, because the flow is dense, the functionsA1, A2, A3 and
A4 tend to constants that are independent ofν. In this case, Eq. (15) is a quadratic possessing physical
solutions forη iff the inclination lies within the range

µE

1 + A2
4µ

2
E/(4A1A3)

< tanα ≤
√
A1A3/A4. (16)

There, the core granular temperature and mean velocity profiles are, approximately,

T

gd
' Ξ

A4

A1A3

ν̄ sinα

ν2g12

(h− y

d

)
, (17)

and
u√
gd
' 2

3

A
3/2
4

A1

Ξ3/2

√
ν̄ sinα

A1A3ν2g12

(h
d

)3/2
{

1−
(h− y

h

)3/2
}
, (18)

where

Ξ ≡ SI

NI

=

√
A1A3

A2
4

(1− η). (19)
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andη is the smallest solution of Eq. (15) [3].
The difficulty with Louge’s approach is that the volume fraction remains undetermined [3]. An

alternative is to impose closure by assuming that the flow only involves collisional interactions,η ≡ 0.
However, such assumption leads to paradoxical results.

First, the dense collisional limit, for whichA1, A2 andA4 are independent ofν, makes the right-
hand-side of Eq. (15) constant, and therefore only permits the last two terms in Eq. (12) to balance at
the single inclinationtanα =

√
A1A3/A4. Consequently, the flux gradient term in Eq.(12) cannot be

neglected in general. Second, Jenkins [10] showed that dense SFD flows only exist at a fixed value of
h, which contradicts observations of SFD flows with a wide range of depths.

To resolve this conundrum, one can keep the full dependence ofA1, A2 andA4 on ν. In this
case, substitutingη ≡ 0 in Eq. (12) leads to a quadratic equation with unknown variable1/4νg12

and parameterψ ≡ 5π tanα2/12(1− eeff ). Encouragingly, the solution forνg12 and, consequently,
for ν are indeed independent ofy. Whenψ ∈ [25π/3(16 + 3π), 1 + π/12[, there are two solutions
for 1/4νg12, but only one agrees with observations thatν decreases with steeper inclination. When
ψ ∈ [1 + π/12, 25π/48[, there is only one solution, which is also consistent with the observed trend.
Thus, ifη ≡ 0, Eq. (15) admits physical solutions forν such that

1

4νg12

=
48ψ − 10π +

√
ψ(4 + 3π/4)− 25π/12

25π − 48ψ
, (20)

iff ψ ∈ [25π/3(16 + 3π), 25π/48[ or, equivalently, within the narrow range of inclinations√
20

16 + 3π
(1− eeff ) ≤ tanα ≤

√
5

4
(1− eeff ). (21)

In that range, the productνg12 ∈]0, 5π/(64 − 8π)] is small enough to invoke the Carnahan-Starling
pair distribution forg12 [6]. Unfortunately, this yields volume fractionsν ∈]0, 0.36] that are unrealistic
for dense flows. Consequently, the purely collisional constitutive relations of Jenkins and Richman
[5] are not alone sufficient to capture the dense gravitational flows of interest.

Bocquet,et al [11] adopted instead other constitutive relations that diverge more rapidly withν,
and thus managed to capture qualitative features of the flows. However, because the relations of Jenk-
ins and Richman [5] have succeeded in relatively dense microgravity experiments and in numerical
simulations where enduring contacts are absent [12], it is not appropriate to dismiss them so casually.
Instead, it is likely that the assumption of a purely collisional flow is inappropriate for dense flows
down inclines.

In this context, we seek another explanation for the invariance of the volume fraction in the core.

4 Couple Stresses

Because contact forces are not exerted on the center of mass of individual grains, but rather on their
external surfaces, it is possible for the mean spin of individual particles to differ from the rotation
rate of the mean velocity field. In this case, the usual stress tensor is augmented by an asymmetric
part that is proportional to this difference. For SFD flows, the mean angular momentum of the grains
involves a balance between the gradient of couple stresses and the torque due to the asymmetric part
of the stress tensor [13]. The stress tensorτij and the couple stress tensorCij represent, respectively,
thej-component of the surface force and surface torque acting on the plane of normali per unit area.

Mitarai, et al [13] wrote the balances of linear and angular momentum for dilute SFD flows down
an incline. Extending their results to dense flows with both impulsive and enduring contacts, we
modify Eqs. (1) as

d

dy

[
SI + SE + µR

(du
dy

+ 2ω
)]

= −ρsνg sinα, (22)
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whereµR is the microrotation viscosity andω is the mean granular spin. In SFD flows, the balance
of angular momentum reduces to

dCyz

dy
= 2µR

(
du

dy
+ 2ω

)
. (23)

Although the mean grain spin exhibits spatial oscillations near boundaries that correspond to the
counter-rotation of adjacent granular layers [14, 15], we adopt the simple constitutive relation for the
couple stress that Mitarai,et alused for dilute flows,

Cyz = µB
dω

dy
, (24)

whereµB is one of three coefficients of angular viscosity [13].
We assume that the translation and rotation temperatures are equal, and that the dissipation in Eq.

(14) accounts for the dissipation of rotational fluctuation energy [8]. Then, we simply augment the
fluctuation energy balance in Eq. (12) with a term that captures the production of fluctuation energy
by the working of the couple stress through the gradient of the mean granular spin,

−dq
dy

+ S
du

dy
+ Cyz

dω

dy
− γ = 0. (25)

In the core, this additional term is much smaller thanSdu/dy. However, it is significant in the basal
layer.

Lun [16] calculatedµR for dense, inelastic, slightly rough spheres. Unfortunately, he assumed
an impact model based upon a constant tangential restitution coefficientβ, rather than the constant
friction that is observed with actual spherical grains. To translate his expression to more common pa-
rameters, we calculateβ = min(β0,−1+(7/2)µ(1+e)/Ψ1), whereβ0 is the coefficient of tangential
restitution for rolling impacts,e is the coefficient of normal restitution,µ is the coefficient of friction,
andΨ1 is the tangent of the incident impact angle [17], which we estimate asΨ1 ' |ω|d/

√
T . With

these assumptions, we find

µR '
ν2g12√
π

√
T min

[
µ(1 + e)

|ω|d/
√
T
,
2

7
(1 + β0)

]
. (26)

In the absence of calculations forµB, we adopt

µB ' µRd
2. (27)

In the core, we expect that the mean granular spin and the rotation rate of the mean velocity field
are equal,

ω = −1

2

du

dy
. (28)

Then, Eq. (23) implies that the couple stress is invariant there. Combining Eqs. (24) and (28), it is

Cyzcore = −1

2
µB

d2u

dy2
. (29)

This invariance agrees with the expected dependence ofµBd
2u/dy2 with y; becauseµB ∝

√
T ∝√

h− y anddu/dy ∝
√
h− y, the productµBd

2u/dy2 is indeed invariant in the depth. Combining
Eqs. (17), (18), (19) and (27) then yields, in the dense limit,

Cyzcore = ρsgd
2 sinα

ν

4A1

√
π

(1− η) min

[
A1

2Ξ
µ(1 + e),

2

7
(1 + β0)

]
. (30)
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To infer the core volume fraction from this expression, we must evaluateCyzcore. We do so by
writing a system of ODEs foru,ω, T , q andCyz in the base layer, from which we extractCyz = Cyzcore

at the locationy = b just beneath the core.
First, we combine Eqs. (2), (22) and (23), integrate the result betweeny = b down to anyy ∈ [0, b]

and, becauseS = N tanα anddCyz/dy = 0 aty = b, we find

S +
1

2

dCyz

dy
= N tanα. (31)

This result indicates that the couple stress gradient reduces the shear stress necessary to balance the
streamwise component of gravity.

Next, from Eqs. (6), (7), (10), (23) and (31), we extract the two ODEs

du

dy
=

(
1

µI + µR

)
[N(tanα− µE) + µENI − 2µRω] (32)

and
dCyz

dy
= 2

(
µR

µI + µR

)
[N(tanα− µE) + µENI + 2µIω], (33)

whereµI ≡ A1(ν)ν
2g12ρsd

√
T is the granular shear viscosity, and the magnitudes ofN andNI are

given by Eqs. (4) and (11).
In principle, ifν is allowed to vary in the basal layer, one equation is still lacking to close the prob-

lem in that region. However, the simulations of Silbert,et al [2] indicate that, apart from inevitable
spatial oscillations from the ordering near the wall,ν is nearly invariant in the basal layer as well,
except at inclinations that are close to the maximum angle for SFD flow. In two-dimensional flow,
ν is invariant all the way to the base at any angle [2]. Thus, rather than writing another governing
equation, we assume that the value ofν in the core persists in the basal layer.

With this assumption, we solve the coupled set of ODEs (13), (24), (25), (32), and (33) by shooting
downward fromy = b, whereu = ub, andq, T , ω andCyz are matched to their respective values
calculated in the core from Eqs. (13), (17), (28), and (30). We fix the velocityub by settingu = 0
where the base is reached. We find the thicknessb of the base layer when the integration satisfies the
flux boundary condition at the bumpy base. There, because there is no relative velocity between the
base and the flowing grains, the fluctuation energy flux reduces to

q = −D, (34)

whereD is a rate of fluctuation energy dissipation per unit surface of the base. For purely collisional
flows, Jenkins and Richman [18] calculated

D = 2

√
2

π
(1− ew)

NI

√
T

1 + cos θ
, (35)

wheresin θ ≡ (d − db + ∆)/(d + db) is a measure of the bumpiness of the boundary with spherical
bumps of diameterdb, ∆ is the mean separation between the centers of two adjacent bumps, andew

is the coefficient of normal restitution in the impact of a flow sphere with a bump. As Louge [3]
noted, because grains experience enduring contacts with the base, Eq. (35) probably under-predicts
the surface dissipation. Combining Eq. (13), (34) and (35), we find the boundary condition

d
√
T

dy
= b1

√
T

d
, (36)
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where

b1 =
4

a2

√
2

π

(
1− ew

1 + cos θ

)
. (37)

It remains to determine the solid volume fraction. We do so by applying the boundary condition
for couple stress at the base. By shrinking the thickness of a pillbox control volume, Jenkins [19]
established that the couple stress on the base is equal to the rate of supply of angular momentum per
unit are of the wall, or

Cyz = L, (38)

whereL is the product of the rate of collisions per unit surface of the wall and the angular momentum
lost in a collision,

L ∼ AL

[
νg0

√
T

d3

](
ρsd

4
√
T min[µw(1 + ew), (2/7)(1 + β0w)]

)
. (39)

In this expression,g0(ν) is the pair distribution function of spheres and wall bumps,µw andβ0 are,
respectively, the friction and tangential restitution for their impacts, andAL is a constant of order
one. Because wall collisions involve the contacts of two spheres, we invoke forg0 a dense correction
to the Carnahan and Starling pair distribution [6] similar to Torquato’s [7]. However, we expect the
wall-induced layering to makeg0 rise faster withν thang12. Thus, we adopt

g0(ν) =
2− ν

2(1− ν)3
for 0 ≤ ν ≤ νf (40)

and

g0(ν) =

(
(2− νf )

2(1− νf )3

)(
(νc − νf )

(νc − ν)

)1.3

for νf < ν < νc, (41)

whereνf = 0.49 andνc = 0.64.
To find the solid volume fraction, we guess a value, solve the set of ODEs as outlined above,

compare the resulting couple stress at the base withL in Eq. (39), and iterateν until the boundary
condition (38) is satisfied.

Figure 1 shows typical profiles through the depth. It confirms that the energy flux is small in the
core. Consistent with the observations of Silbert,et al [2], the temperature reaches a maximum in the
basal layer. Unlike what Louge assumed [3], this maximum does not occur at the edge of the core.
The couple stress is smaller in the core than it is in the base layer.

Figure 2 compares our prediction for the dependence ofν on angle of inclination with the obser-
vations of Silbert,et al [2]. Other calculations, which are not reported here, indicate that the core
solid volume fraction is nearly independent of the overall depth and of the interparticle frictionµ,
once again in agreement with the simulations of Silbert,et al.
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Figure 1: Profiles of dimensionless mean velocity, angular velocity, fluctuation velocity, energy flux
and couple stress for conditions of Pouliquen’s “system 1” [1] witheeff = 0.67, µE = 0.42, α = 25◦.
We adoptA1 = 1.5, A2 = 8.5, µ = µw = 0.525, b1 = 1.5 andAL = 1.8. We calculateν = 0.59. The
ordinate represents the upward coordinate normal to the base. The dashed line indicates the boundary
between the core and the basal layer.
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Figure 2: Predictions of solid volume fraction versus angle of inclination for the overall depth and
friction shown. The symbols are data from system L3 of Silbert,et aland the solid line represent our
predictions witheeff = 0.83 andµE = 0.40. We adoptA1 = 2, A2 = 8.5, µ = µw = 0.5, b1 = 1.5
andAL = 2.4.
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