S.F. Foerster, M.Y. Louge, H. Chang, and K. Allia: "Measurements of the collision properties of Small Spheres," *Phys. Fluids* **6**(3), 1108-1115 (1994).

We describe an experiment to measure the properties of the collisions between two small spheres or between a small sphere and a semi-infinite flat wall. The apparatus releases the particles in a free-fall without initial spin. The impacts are modeled in terms of three coefficients. The first is the coefficient of normal restitution. The second represents the frictional properties of the contact surfaces. The last characterizes the restitution of the tangential components of the velocity of the contact point for impacts that do not involve sliding. The coefficients are calculated from stroboscopic photographs of the ballistics of the particles near the collision. The results establish that the collision model provides an accurate description of the dynamics of the impacts.

Figure excerpts

Results for binary collisions of 6mm acetate spheres.

		-					
Material		Soda lime glass			Cellulose acetate		
Finish		polished, grade "200"			ashed		
Diameter (mm)		3.18 ± 0.03			5.99 ± 0.03		
Density (g/cc)		2.5			1.319		
Poisson's ratio		0.22			0.28 †		
Young's modulus (N/m ²)		7.1 10 ¹⁰			<u> </u>		
binary collisions	e	0.97 ± 0.01			0.87 ± 0.02		
	μ	0.092 ± 0.006			0.25 ± 0.02		
	0	0.44 ± 0.07			0.43 ± 0.06		
Relative contact velocities		0.64	g.n	1.2 m/sec	0.29	g.n	1.2 m/sec
		0.06	g .t	0.41 m/sec	0.14	g.t	0.86 m/sec
	e	0.831 ± 0.009			0.891 ± 0.003		
wall collisions	μ	0.125 ± 0.007			0.208 ± 0.007		
	0	0.31 ± 0.06			0.39 ± 0.07		
Relative contact velocities		1.0	g . n	1.7 m/sec	0.67	g.n	1.7 m/sec
		0.24	g.t	0.81 m/sec	0.06	g.t	1.2 m/sec
Manufacturer		Winsted Precision Ball Co.			Engineering Laboratories		
Í	Density = 2.7 g/cc						
Aluminum Plate	Young's modulus = 6.9 10^{10} N/m ²						
	Poisson's ratio $= 0.33$						
ļ <u> </u>	Machine finish						
[†] Estimates, see Drake ⁶							

Table 1. Sphere Properties

