1 Executive Summary

The objective of the SiGMA project (“Solids interacting with a Gas in a Microgravity Apparatus”) was to bring unique microgravity experimental insight to the detailed interactions between a gas and dispersed particles. By informing recent theories for those interactions, this work was meant to benefit NASA’s exploration objectives by elucidating In-Situ Resource Utilization (ISRU) processes involving gases and dispersed solids, and by providing practical as well as theoretical insight to a wide array of industrial applications based on gas-solid suspensions.

Conscious of the merits of this investigation, several leading oil, food, chemical, pharmaceutical and mining companies provided additional support through the International Fine Particle Research Institute (IFPRI). Unfortunately, NASA could not commit resources to complete this and other similar projects, which it had regrouped in the Granular Flow Module under development for the International Space Station (ISS) by the NASA-Glenn Research Center (GRC).

This research was made possible by the development of a unique axisymmetric Couette cell producing shearing flows of gas and agitated solids in the absence of gravitational accelerations (Figure 1).
Figure 1: Conceptual sketch of the flight shear cell for the SiGMA project. (a) Exploded view showing possible counter-rotation of the inner and outer moving boundaries (arrows) assisted by cylindrical rollers, circular observation windows arranged around the channel, camera and mirror; (b) Side cut showing the channel, camera and optics, transmission, and underside pressure taps and gas distributors; (c) enlarged view of the channel.

The facility would have permitted gas-particle interactions to be studied over a range of conditions where suspensions are steady and fully-developed.

Unlike Earth-bound flows where the gas velocity must be set to values large enough to defeat the weight of particles, the duration and quality of microgravity on the Space Station would have generated suspensions where the agitation of the particles and the gas flow could be controlled independently by adjusting the gas pressure gradient along the flow, the relative motion of the boundaries, and the absolute pressure of the cell.

We planned two series of space flight tests. The first series, which we called “Viscous Dissipation Experiments,” was meant to characterize the viscous dissipation of particle velocity fluctuation energy, when there is no relative mean velocity between gas and solids. To do so, we would have reduced the boundary speed in successive tests until the inertia of the solid particles became small enough for the particle motion to be affected by viscous forces in the gas. By evacuating the cell partially, we would have also investigated the role of the molecular mean free path in dissipating particle agitation. The Viscous Dissipation experiments would have tested theories predicting the detailed behavior of processes, like fluidized beds, which bring into contact gas and solid particles.

In a second series of tests, which we called “Viscous Drag Experiments,” a gas pressure gradient would have been imposed on the shearing cell. The gradient would have induced a relative velocity between the two phases, while the shearing would have set the solids agitation independently. These Viscous Drag Experiments would have shed unique light on an important regime where particle velocity fluctuations are determined by a mechanism other than interactions with the gas. In this regime, we would have measured the dependence of the drag coefficient on the solid volume fraction...
and agitation of the solid particles. Partial evacuation would have also allowed us to test the effects of particle Reynolds number on the drag coefficient. The Viscous Drag experiments would have tested theories relevant to processes with significant relative velocity between gas and solids, such as pneumatic transport, catalytic cracking, circulating fluidization, and particle separation.

This project passed the Science Concept Review in May 2000. Our role was to refine the Science Requirements and to assist NASA-Glenn in developing flight hardware. Successive delays postponed work on the Requirement Design Review until cancellation of the project in 2005. To inform the design of the experiment, we conceived, manufactured and successfully tested a prototype of the apparatus on the KC-135 microgravity aircraft. Unfortunately, the aircraft could not provide the long-duration and high quality of microgravity required of the experiment, thus making it necessary to fly it on any of the available space platforms such as a sounding rocket, the Space Shuttle, or the ISS. In addition to our own KC-135 trials, NASA briefly devoted resources to create a smaller version of the SiGMA apparatus to be flown in the Microgravity Science Glovebox (MSG). Our proposal to do so was approved in early 2000, but cancelled in November 2001.

To interpret the experiments, we developed a theory predicting the development of the gas-solid flow in the channel. Our prototype demonstrated feasibility of the flight experiments, and suggested ideas for simplifying its operations and measurement techniques.

In summary, we conceived a fundamental gas-solid experiment with relevance to space exploration and industrial applications, derived an appropriate theoretical framework to predict its behavior, published the corresponding results, constructed a prototype, successfully tested the latter on the KC-135, wrote a complete set of science requirements, passed NASA’s Science Concept Review, and trained and assisted the NASA-GRC team and contractors charged with its implementation as a flight experiment.

Despite its sudden cancellation, the SiGMA investigation led to the publication of scientific results, the education of undergraduate and graduate students, and the design of an experiment that remains worthwhile to fly on extended microgravity platforms. This report sums up our efforts and accomplishments in this project. Manuscripts and data published in the open literature are mentioned but not reproduced here for brevity.

2 Chronology

Following the award of our proposal in February 1998, and the project kick-off meeting at NASA-GRC in March, we wrote a Science Requirements Document (SRD) [1] and passed the corresponding Science Concept Review (SCR) in front of a panel of peer-scientists in June 2000. The science requirements were subsequently refined following the panel’s recommendations and presented in an interim “Final” Technical Report [2] closing the first four-year funding period in March 2002. The project was renewed from January 2002 to December 2005 to allow us to finalize the science requirements and to assist NASA-GRC in its development of the flight experiment and procedure.

Conscious of the significance of our research to industrial processes, the International Fine Particle Research Institute, a consortium of the leading companies involved with powder processes, also
provided funding from October 1999 to November 2002 to assist in the development of a prototype apparatus.

In addition, following our proposal of July 1999, NASA decided in February 2000 to develop a smaller prototype apparatus for the MSG. The Science Design Review of this "µSigMA" project took place in June 2001 following the complete design and construction of flight hardware and appropriate controls by the NASA-GRC team led by Ronald Sicker (Fig. 2). Cut-backs forced the µSiGMA project cancellation in November 2001.

Meanwhile, we designed and built two prototypes of the eventual flight experiments. The first, which we shared with Professor Jenkins’ “Micro-gravity Segregation of Energetic Grains” (µgSEG) flight project, was completed and successfully tested on the KC-135 in February 1998. It consisted of a “racetrack” shear cell with a moving inner bumpy boundary entraining two different kinds of spherical grains around the channel (Fig. 3). Its purpose was to examine the segregation of agitated grains that is driven by gradients of fluctuation energy perpendicular to the moving boundary. The straight section of the track was meant to establish a fully-developed flow that is independent of distance along the track and is not affected by centripetal accelerations.

Because the µgSEG project focused on the dynamics of granular flows with particle inertia much larger than gas-solid interaction forces, it could run with much higher speeds than the SiGMA experiment, for which solid inertia forces had to be of similar or smaller magnitude than drag forces from the surrounding gas. Consequently, unlike the SiGMA project, µgSEG did not require very long microgravity duration, and data acquired on the KC-135 with relatively large boundary speeds did yield meaningful results, albeit somewhat corrupted by g-jitter [3, 4, 5]. Such tests led by the PI took place at Lewis Field of NASA-GRC in February 1998, June 1998, September 1998, June 1999, September 1999, and March 2000. The Cornell µgSEG cell prototype was used in all campaigns except September 1999 when we tested a version designed by the NASA-GRC team led

Figure 2: Photographs of µSiGMA flight hardware. Detail near one the windows showing the channel.
One of the lessons of the racetrack prototype was that granular flows could not develop fully in a straight section. Our numerical simulations and theory revealed that the curved sections of the track had a pervasive influence on the flow [6, 7]. Accordingly, we designed the second prototype for SiGMA with an axisymmetric channel featuring two independent moving boundaries, see Fig. 4. In this case, we showed that centripetal accelerations are negligible as long as the distance between the circular moving boundaries is small compared with their radius [2, 8].

The SiGMA project included two principal test series. The first, which we dubbed “Viscous Dissipation Experiments,” was meant to record the damping of granular agitation by the surrounding air. To do so, it would suffice to shear a single kind of spheres between the inner and outer boundary of the channel at progressively smaller speeds. Inertial forces of the grains would decrease with decreasing speed, and thus begin to be dominated by viscous forces imparted by the surrounding air on the grains. This experiment is impossible to run on Earth, where gravity would promptly force the slow spheres to the bottom of the channel. Instead, long-duration microgravity would maintain the grains in suspension with fluctuation velocities scaling with boundary cell speed. Any departure from that scaling would have revealed the role played by viscous forces of the gas. It is important to understand this role, as it governs the behavior of any gas-solid suspension, such as a fluidized bed of Geldart group A- or C-powder, in which the relative velocity between gas and solids is small.

In another series of experiments, which we called “Viscous Drag Experiments,” we planned to investigate cases where the relative velocity is not small. In traditional models, the role of such relative velocity is captured by an overall drag coefficient that yields the force between the gas and solid phases. However, no experiment has yet revealed whether or how this coefficient is affected by particle agitation. Generally, the coefficient is fit from tests where the solid phase is fixed. More complex experiments, such as fluidized beds, bring into contact agitated particles and a cross-flow of gas. However, because on Earth the gas keeps particles suspended through its mean relative velocity with the solids, and because in doing so it imparts velocity fluctuations to the solids, fluidized bed experiments have hitherto made it impossible to decouple the role played by the relative gas-solid velocity and that of the solid agitation.

Accordingly, we designed the SiGMA experiment to provide solid agitation independently from gas drag. This experiment crucially depended upon accurate measurement of air flowing through all sections of the channel. While it was straightforward to record the overall gas flow rate injected in the cell, it was less so to find out how much gas would choose to flow along the granular flow in the “co-flow” section of the channel, and against it in the “counter-flow” section (Fig. 5).

At the SCR, we had envisioned to measure the gas flow rate by injecting small fluorescent particle tracers along with the air flow, to record local gas velocities from the corresponding tracer streaks visible in each image, and to integrate the resulting gas velocity profile in the width of the cell. In this way, we would have exploited the same high-speed camera system to visualize grain and gas velocities simultaneously. Despite having conducted successful test of this technique in a small laboratory setup at Cornell, it became rapidly evident to us that the development of this system for the entire SiGMA shear cell would be difficult. In particular, we could not easily prevent contamination of the entire cell with a myriad shiny small tracer particles adhering onto grains,
Figure 3: Photographs of μgSEG racetrack. From left to right and top to bottom: top view; Stephen Keast assembling the apparatus for tests; close-up with a mixture of yellow 3mm and purple 4 mm acrylic spheres; apparatus mounted on the KC-135 rig; high-speed camera image of a binary mixture of white 3mm ceramic and 4 mm purple acrylic spheres with superimposed computer vision tracking of the sphere centers over several images; the moving boundary appears at the bottom of this picture.
Figure 4: Photograph of the axisymmetric SiGMA prototype. From left to right and top to bottom: top view showing the circular channel beneath four large glass windows; detail of the channel featuring at its base, from left to right, three static pressure taps, a gas distributor with a mesh filter, another pressure tap, the sensor of a capacitance probe, three pressure taps, another distributor, and another tap. Stephen Keast and his creation. The cell incorporated on the KC-135 rig, including its motor controls for inner and outer boundaries, static pressure measurement and control system, capacitance probe system, gas manifold, high-speed camera system, and computer data acquisition and control.
Figure 5: Sketch of gas distribution along the SiGMA shear cell. The large arrow to the right indicates the general direction of the granular flow, while the smaller black arrows point that of the gas flow. Static pressure taps located at P_i with $i = 1, 10$ are drilled through the base of the narrow channel. Most of the air is introduced through the base with a distributor located at D_1. It can split two ways: to the left along the “co-flow” section; and two the right along the “counter-flow” section. To determine the relative proportion of these two gas streams, enough additional air is injected at distributor D_2 to cancel the static pressure drop between P_1 and P_2 across the “isokinetic” section. There, because the mean drag between gas and solids vanishes, the gas flow rate can be simply inferred from video measurements of mean granular velocity and average solid volume fraction. To record the latter along the channel, capacitance sensors are located at positions C_i with $i = 1, 10$. All gas is withdrawn at distributor D_3.
walls, and windows.

While the GRC design team led by John Caruso persisted in developing a tracer method, we devised a simpler alternative sketched in Fig. 5. Its principle was to operate a control systems that injects enough air into a third distributor to cancel the pressure drop across a small “isokinetic” section of the cell. Such pressure drop can only vanish if there is no relative velocity between grains and gas. In this case, we could use the high-speed camera system to record the transverse profiles of mean granular velocity in the isokinetic section, and infer the corresponding mean velocity of the gas, and then its volume flow rate, using independent measurements of the mean solid volume fraction from capacitance probes.1, 2

We verified the feasibility of the control system and the capacitance probes in the axisymmetric prototype in two campaigns of the KC-135 in March and April 2002. Although the airplane could not produce microgravity long enough for actual SiGMA experiments, we produced again useful data for the \(\mu\)gSEG project and we demonstrated our simpler strategy for recording gas volume flow rates [2].

We spent the remainder of the NASA contract on the following tasks: (1) finalizing the science requirements shown in the Appendix; (2) producing an exhaustive “interactive” test matrix that allowed designers of the apparatus to check any trade-offs against these science requirements and associated minimum success criteria; (3) answering questions and training the NASA-GRC design team and its contractors ZIN Technologies and MK Optics & Vision in their design and testing of optical and mechanical breadboards; (4) refining the theory and numerical codes to predict the behavior of the cell using available correlations for drag and constitutive relations; (5) supporting the design with various calculations, as summarized below; (6) selecting spherical grains of a material minimizing electrostatic charging, parasitic magnetic forces, and energy dissipated in impacts with walls, windows and other spheres; (7) carrying out additional research on granular flows and heat transfer in other configurations of interest to ISRU and industrial applications; and (8) publishing the corresponding results.

3 Accomplishments

Although NASA could not muster resources needed to complete this project, scientific benefits have derived from it. We summarize these in three sub-section below: (3.1) publications; (3.2) student training and outreach; (3.3) supporting calculations and experiments communicated to NASA or relevant to other ISRU contexts.

Briefly put, our principal science results are (1) the first quantitative reconciliation of KC-135 microgravity experiments, molecular dynamic simulations and theory for collisional granular flows and their segregation in a wall-bounded channel; (2) the creation of algorithms for solving the governing equations of the theory; (3) the development of computer vision techniques for measuring granular

temperature and the derivation of a formal theory for predicting the corresponding uncertainties; (4) the design of long-term microgravity experiments to test the theories of Sangani, et al., and others, for the interactions between a gas and agitated grains (SiGMA); (5) the design of similar experiments to test the theories of Jenkins and Mancini, and others, for the segregation of binary mixtures of inelastic spheres (µgSEG); (6) the development of a new theory for granular flows down a rough inclined base and down a flat, frictional plane; the corresponding elucidation of the data of Pouliquen and Silbert et al. for a rough base and of our own experiments on a flat, frictional plane; (7) the development of a new theory for the enhancement of wall heat transfer by agitated solids suspended in a gas. The last two items are relevant to ISRU and industrial applications.

3.1 Publications

Publications resulting from data and models developed in the SiGMA project are marked with an asterisk* in the references below. Other publications of fundamental science relevant to ISRU and acknowledging NASA support are also listed there.

Details of the experiments, its principles, measurement techniques, prototype tests, theory and ancillary calculations appear in the SRD [1], interim final report [2], and Haitao Xu’s PhD thesis [7]. Other documents, such as the final science requirements reproduced in the Appendix, the definition of “success criteria”, and the “interactive” test matrix helping designers of the flight experiment juggle various trade-offs, were communicated and explained to NASA-GRC personnel during the SiGMA project.

We also summarized salient ideas and results in the open literature, albeit with less detail. Topics included the flow development of sheared granular flows along the racetrack cell used in µgSEG [6], the principle of our Viscous Dissipation [8] and other gas-solid experiments [11], comparisons with numerical simulations of our theoretical predictions for the behavior of sheared agitated granular mixtures undergoing segregation [4] or suspended in a viscous gas at low to moderate Reynolds numbers [11, 12], rigorous calculations of uncertainties in granular agitation (or “temperature”) measured from grain positions in consecutive high-speed images [5], selected results revealing anomalies for the impact of spheres on flat walls [13], and other granular mechanics results relevant to ISRU [14]-[22].

3.2 Education and Outreach

The SiGMA project was conducted by the Cornell PI (M. Louge) and co-I (J. Jenkins), by a professor with expertise in computer vision (A. Reeves), by a technician (S. Keast), and by two graduate students (H. Xu and X. Chen) who obtained their PhD with NASA funding.

SiGMA also supported 44 undergraduate and Master of Engineering projects at Cornell. Their role was to record impact parameters for spherical particles used in the experiments and to assist the development and construction of the prototype cells. This team won the 2001 Cornell Society of Engineers award for leadership in undergraduate research.

Students included Edward Balaban, Taro Banno, Chris Salvestrini, Sam Vonderheide, Greg Aloe†, Josh Freeh, Lance Hazer, Rowin Andruscavage, Patrick Florit, Claudio Bazzichelli, Rami Sabanegh, Steven Gutierrez, Amelia Dudley†, Michael Garon, Priscilla Carreon, Peter Weisz‡, Brooks Haxton, Michael Adams†, Jenny Moose, Musyoka Munyoki†, James Buckly, Reno Giordano, James Chun, Farshid Azad, Sean McCann OBrien, Siddharth Sinha, Sharon Ang, Attakrit Asvanunt, Donald Casey, Andrew Seow, Sewan Kim, Kiril Savov, Yuenan Wang, Joonil Kwak, Matthew Crozier, Andrew Lapsa, Ed Palermo, Dave Tagatac, Victoria Law, Renee Hillaire, Christopher Fontana, Emmanuel Franjul, Matthew Robb, and Cheryl Sorace.7

Professor Louge also ran a program in which undergraduates teach Technology Education to eighth graders at Ithaca’s DeWitt Middle School. Thirty Cornell students have done so since 2000. He also advised the Odysseus undergraduate team, which competed in NASA projects related to Space Exploration. The team was the “Technical Runner-up” in 2001, and a finalist in 2002, 2003 and 2004.

In another outreach program, Professor Louge led the US delegation to the Second International Conference on the Formation and Migration of Dunes in Nouakchott, Mauritania (2001). The delegation, which was sponsored by NASA, discussed Martian and terrestrial dunes, and held conversations with cabinet ministers on education and dune remediation techniques. He also chaired the Second Gordon Conference on Granular and Granular-Fluid Flow in Colby College, Maine, June 27 to July 2, 2004.

The PI delivered talks publicizing the SiGMA and µgSEG projects, as well as other research sponsored by NASA. We provide here a selection of invited seminars, excluding contributed talks:

7Students marked with † took part in the microgravity tests on the KC-135.
Department, New Jersey Institute of Technology, September 18, 2002.

[16] “Granular flows, and surface density on desert dunes,” invited seminar, University of Chicago, Franck Institute, October 9, 2006.

Figure 6: A typical picture of a binary mixture of shiny spheres and the corresponding trajectories computed by the vision software from successive position of ring light reflections in the racetrack prototype operated on the KC-135.

Figure 7: Output of the simulations of the racetrack shear cell. Left: detail near the observation window. Right: view of the entire cell. Bottom: the corresponding experiment on the KC-135.
3.3 Supporting calculations

We supported NASA’s engineering team by predicting the performance of the SiGMA and μgSEG shear cell, and by providing calculations on crucial design items. These included:

[1] The development of fully-functional software and graphical user interfaces for the tracking of spheres from digital video images. The calculation of the resulting profiles of mean and fluctuation velocities [4, 5] (Figs. 3, 6).

[2] The development of a ring-light system to visualize reflective spheres. Calculations of the ring produced on each sphere and incorporation of the corresponding model in the computer vision software (Fig. 6).

[3] The creation of software permitting the simulation of actual flows in the entire “racetrack” and axisymmetric microgravity shear cells, with realistic description of all boundaries and interparticle interactions (Fig. 7). The writing of a suite of subroutines to extract volume fraction oscillations, as well as all moments of angular and linear momenta up to the second order.

[4] The operation by undergraduate students of a unique facility to measure impact parameters among spheres, and between spheres and all types of walls used in the SiGMA and μgSEG experiments (Fig. 8).

[5] The development and successful tests of specialized capacitance instruments capable of recording the time-dependent solid volume fraction in the SiGMA cell, in the presence of conductive or dielectric spheres. The first implementation of such quantitative capacitance system with observation windows that are ITO-coated to act as reference voltage for the probes (Fig. 9).

[6] The development of a unique “isokinetic” system to record simultaneously the profiles of solid velocities up to the second moment of their fluctuations and the mean gas flow in the cell channel [7]. The demonstration of the system with Enrique Ramé’s help at NASA-GRC in August 2002 and on the KC-135.
A challenge to the capacitance technique is our use of conductive metal spheres for the experiments. The metal spheres were chosen to minimize electrostatic charging. Because the electrical potential is constant on their surface, each of them behaves as a material of infinite dielectric permittivity. In an earlier study of the effective dielectric constant of suspensions, Louge and Opie (1990) found that a practical upper limit for the volume fraction of conductive metal grit was approximately 20% by volume. Above this limit, they found that the particles created long contact chains that would either short-circuit the surfaces of the probes or raise the effective dielectric constant to values too large for the processing electronics to handle.

Figure 19. Effective dielectric constant of a shaken suspension of steel spheres at several average solid volume fractions \(\nu \). The symbols are experimental data.

Fortunately, in situations like ours where spheres are exclusively engaged in collisional interactions, contacts are too ephemeral to permit such long “percolation” chains. To test this, we designed a small metal box simulating the cross-sectional dimensions of the channel and its respective electrical surfaces. The box was filled with 2 mm steel spheres at several volume fractions and shaken on a vibration table at 60Hz with a 2.5 mm peak-to-peak amplitude. As Fig. 19 shows, the results agreed almost perfectly with the semi-empirical model of Meredith and Tobias (1960) for the effective dielectric constant \(K_e \) of spheres at a volume fraction \(\nu \),

\[
K_e = \frac{B_1 - 2\nu + B_2 - 2.133B_3}{B_1 + \nu + B_2 - 0.906B_3},
\]

(49)

Figure 9: Left: sketch of the capacitance instrument in a cross-section of the SiGMA channel. Right: comparison between model (line) and test data (symbols) for the effective dielectric constant of shaken steel spheres.

[7] Calculations of the gas flow rate bypassing the main SiGMA cell channel through the clearance between stator and rotor. Derivation of the corresponding requirements and demonstration of the relative unimportance of this effect in the SiGMA prototype shear cell [2].

[8] ANSYS numerical simulations of deflections of the top and bottom SiGMA shear cell plates and windows under partial evacuation (Fig. 10), carried out by a Cornell MEng student.

[9] The development of an alternative optical technique to record the solid volume fraction profile from high-speed camera pictures using a limited depth of focus. Interpretation of the data using a new theory based on the HAB pair-distribution framework for spatial oscillations of the center-average solid volume fraction near a flat wall (Fig. 11). This method was proposed to the leadership of the engineering team as an alternative solid volume fraction measurement that would supercede the capacitance instrumentation, with which NASA lacked experience.

[10] The design and operation of a simple free-floating microgravity apparatus to evaluate qualitatively the propensity of various spheres to acquire static electrical charges (Fig. 12).

4 Acknowledgments

We are grateful to NASA for its funding and to the NASA personnel that made progress on the SiGMA project possible. It was a pleasure to work with NASA-GRC.

The SiGMA Project Scientist was Enrique Ramé, and the Project Managers were Joseph Balombin until January 2001 and then John Caruso. Ronald Sicker led the \(\mu \)SiGMA effort. They were assisted by engineers, managers and experts who included F. Gati, R. Butcher, C. Gallo, G. Haddad, T. Jacobson, J. Juergens, J. Kolis, R. Kortis, D. Kozłowski, R. Sicker, J. Larko, R. Manella, P. Mellor, B. Motil, E. Nelson, B. Ovryn, L. Rasberry, R. Snyder, K. Sukel, J. Withrow, G. Wroten, J. Yaniec, D. Noren, R. Helmick, M. Babula, R. Hakimzadeh, J. Mackey, R. Werner, F. Kmiecik,
Figure 10: Left: ANSYS model of the top plate of the SiGMA shear cell; right: corresponding deflections. Bottom: Three-dimensional modeling of stresses in glass windows.

Figure 11: Number of detectable spheres with centers located within the window distance y such that $\zeta = \left(\frac{y}{\sigma} - \frac{1}{2} \right) \in [0, \zeta_1]$, made relative to the sphere diameter and the area of the window, versus bulk solid volume fraction ν^* for the values of ζ_1 shown and camera view angle $\alpha = 0$ (left); versus ζ_1 for $\alpha = 0$ and, from bottom to top, $\nu^* = 0.1, 0.2, 0.3, 0.4, 0.5$ and 0.6 (center); versus ζ_1 at $\nu^* = 0.3$ for the values of α shown (right).
Figure 12: Left: Michael Adams, a Cornell Mechanical Engineering undergraduate, releases the free-float experiment on the KC-135 during a period of microgravity. Right: A typical view from the video camera showing agitated steel spheres (left) and a denser collection of ceramic spheres (right).

References

Appendix EXPERIMENTAL REQUIREMENTS

5.1. Science Requirement Summary Table -- Revised 5/20/04

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Section</th>
<th>Requirements</th>
</tr>
</thead>
</table>
| **Shear cell** | 5.2.1 | Axisymmetric, rectangular test section, independently moving bumpy boundaries, flat metal base, clear windows, \(Y'/R \leq 1/15 \).
Viscous Drag: controlled gas injection and withdrawal, pressure taps. |
| **Dimensions** | 5.2.2 | \(R_i/d = 104.1 \pm 1\% \); \(R_o/d = 113.2 \pm 1\% \); \(Z/d = 10 \pm 1\% \);
\((R_o-R_i)/d = 9.1 \pm 2\% \);
\(d_i/d = 1.0 \pm 1\% \); \(d_o/d = 1.0 \pm 1\% \).
\(\Delta_i /d = 0.5 \pm 1\% \), \(\Delta_o /d = 0 \pm 1\% \).
Record design dimensions to within 25µm.
Provide a sample with a single bump to Cornell for impact testing and approval. |
| **Conditions** | 5.2.3 | \(\bar{v}, p_g, \omega_i, \omega_o, Q \) see test matrix workbook “SiGMA_mgSEG_testmat_5-20-04.xls”. Viscous dissipation: worksheet “VisDiss”; Viscous Drag: worksheet “VisDrag3dist”). |
| **Moving boundaries** | 5.2.4 | Set \(\omega_i \) and \(\omega_o \) as shown in the test matrix \(\pm 5\% \). Stability better than \(\pm 2\% \). Record at 1 Hz with accuracy \(\pm 0.5\% \).
Viscous Dissipation Experiments, \(|\omega_i + \omega_o| < 2\% \) \(|\omega_o| \).
Viscous Drag Experiments, \(\omega_i \) error < \(\pm 2\% \), counterclockwise, \(\omega_o = 0 \).
Conductive, non-magnetic, hard: \(e_w - (\pi/2)\mu_w > 0.6 \).
Maintain internal gas bypass rate in the viscous drag experiments: assuming that a small clearance gap between stationary and moving boundaries, maintain \(\sum \frac{\xi_i^3}{L_i} \leq 0.004 \text{ mm}^2 \), where \(\xi_i \) is the gap thickness of path (i) in mm and \(L_i \) is the length of the bypass path in mm.
Inscribe marks on selected inner and outer boundary bumps such that one (and only one) mark on each boundary can be seen in the field of view of camera B at any given time. The marks should be straight and aligned with the radial direction. Their edges should be sharp; their width should be imaged on at least 5 pixels and at most 20 pixels. Their length in the radial direction should span the distance between center and crest of the boundary bump on which they are inscribed. |
| **Top plates and windows** | 5.2.5 | Asperities \(\leq 10\lambda g \); \(e_w \geq 0.75 \); \(\mu_w \leq 0.20 \); conductive, non-magnetic; coating resistivity of windows on the flow side \(\leq 2000 \text{ ohm/square} \).
Windows should permit observations of the spheres and the gas flow using camera B at locations shown in Table 4 \(\pm 2° \) and should allow a rectangular field of view defined in 5.6.
Provide samples of windows and plates no smaller than 4x4 cm² to Cornell for impact testing and approval. |
| Flat base | 5.2.6 | Asperities \(\leq 10 \lambda \frac{\varepsilon_w}{\mu_w} \leq 0.8, \mu_w \leq 0.15 \). Conductive, non-magnetic. Provide a sample no smaller than 4x4 cm² to Cornell for impact testing and approval.

For the Viscous Drag Experiments:

Distributors: arrays of holes \(\leq d/2 \) spanning at least 80% of the entire width, no longer than 5d in the flow direction, with pressure drop \(\geq 2 \Delta p_g \) at positions shown in Table 3. Static pressure taps: (d/4) diameter holes at positions shown in Table 3 (±2°). Adjust line response time (see 5.9).

| Gases | 5.2.7 | Molecular weight: 28±2 g/mole; viscosity at STP: 1.8 \(10^{-5} \) kg/m.s ± 10%. Provide actual gas composition.

| Manifold | 5.2.8 | For the Viscous Drag Experiments:

Provide gas flow rates shown in the test matrix. Mass flow controller to \(D_1 \) and \(D_2 \) with relative accuracy better than \(\pm \Delta Q/Q \) shown in the test matrix for the co-flow region.

During operations of the “isokinetic” region, maintain the pressure difference across it (\(P_{D_1} - P_{D_2} \)) < (1/20)(45/180)(\(P_{D_1} - P_{D_3} \)).

| Mean solid volume fraction | 5.2.9 | Determine/verify flow development by recording the mean solid volume fraction at least at the 10 locations shown in Table 4.

Measure the cross-sectional averaged solid volume fraction \(\bar{\nu} \) with absolute accuracy better than ±1.5%. Provide at least 90 samples at \(\bar{\nu} = 10\% \), 250 at \(\bar{\nu} = 20\% \), 630 at \(\bar{\nu} = 30\% \), 1490 at \(\bar{\nu} = 40\% \), 2980 at \(\bar{\nu} = 50\% \) and 4100 at \(\bar{\nu} = 55\% \) acquired at a rate no faster than \(\omega \).

| Spheres | 5.3 | Non-magnetic, hard, conductive spheres. Asphericity < 1% d.

Asperities \(\delta < 10 \lambda \frac{\varepsilon_w}{\mu_w} \),

\[e_{\text{eff}} = e - (\pi/2)\mu > 0.7. \]

Relative error in \(\bar{\nu} \) \(< 1\% \bar{\nu} \). Know the actual number of spheres in each experiment within ±0.1%. Provide sphere samples to Cornell for impact testing and approval. Samples should have a diameter in the range 2.5 mm \(\leq d_{\text{sample}} \leq 3.5 \) mm.

| Atmosphere | 5.4 | Absolute pressure and temperature recorded to ±2% at a minimum rate of \(\omega/10 \). Absolute temperature steady to within ±1.5% and in the range 285ºK to 300ºK. Absolute cell pressure steady to within ±1.5%.

| Microgravity | 5.5 | Maximum quasisteady acceleration, see test matrix.

Maximum rms accelerations: \(\max(g_{\text{rms}}/2\pi f) < \sqrt{T} \), see test matrix. Ignore data for \(\theta_{ss} \) following a transient, see test matrix.

Measure accelerations along three axes at a rate ≥ 400 Hz. |
Cameras

5.6

Camera A:
Standard digital video, image the entire cell and download to ground.

Camera B:
Can be positioned at least over the 10 locations shown in Table 4.
Field of view: The camera should be oriented to take “portrait” images with long axis spanning the distance between the two moving boundaries; it should visualize the flow between the center of bumps on the inner moving boundary and the center of bumps on the moving outer boundary.
Field of focus within \(\frac{d}{2} \leq z \leq \frac{3d}{2} \) from the window.
Resolution: \(N_y \geq 45 \frac{Y}{d}, N_x \geq 8.5 \frac{N_y}{d} \).

Field of view:
The camera should be oriented to take “portrait” images with long axis spanning the distance between the two moving boundaries; it should visualize the flow between the center of bumps on the inner moving boundary and the center of bumps on the moving outer boundary.

Field of focus:
Within \(\frac{d}{2} \leq z \leq \frac{3d}{2} \) from the window.
Resolution:
\(N_y \geq 45 \frac{Y}{d}, N_x \geq 8.5 \frac{N_y}{d} \).

Lighting

5.7

Sufficient to detect spheres using the vision algorithm without image saturation; use a ring light with distortion of circle on image < 20%

Mean gas volume flow rate

5.8.2

Measure the mean gas volume flow rate in the co-flow and counter flow regions within the precision shown in the test matrix, which is consistent with a relative error in \(R_{drag} < \pm 14\% \).

Gas pressure

5.9

Local gradient measured with uncertainty < ±2%; acquisition frequency \(\omega/10 \); response tuned to satisfy \(\frac{1}{\pi} \omega \leq \tau \leq \theta_{ss,min} \).

Table 3 - angular positions of distributors and pressure taps through the channel base

\(\theta \) is measured clockwise from the inlet distributor \(D_1 \)

<table>
<thead>
<tr>
<th>hole</th>
<th>(D_1)</th>
<th>(D_2^*)</th>
<th>(D_3)</th>
<th>(P_1)</th>
<th>(P_2)</th>
<th>(P_3)</th>
<th>(P_4)</th>
<th>(P_5)</th>
<th>(P_6)</th>
<th>(P_7)</th>
<th>(P_8)</th>
<th>(P_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta \ (\degree))</td>
<td>0</td>
<td>45</td>
<td>180</td>
<td>5.625</td>
<td>39.375</td>
<td>78.75</td>
<td>112.5</td>
<td>146.25</td>
<td>216</td>
<td>252</td>
<td>288</td>
<td>324</td>
</tr>
</tbody>
</table>

* Distributor \(D_2 \) is only used if the mean gas volume flow rate is inferred isokinetically from solid velocities and volume fraction.

Table 4 - angular positions of window centers

\(\theta \) is measured clockwise from the inlet distributor \(D_1 \)

<table>
<thead>
<tr>
<th>window</th>
<th>(W_1)</th>
<th>(W_2)</th>
<th>(W_3)</th>
<th>(W_4)</th>
<th>(W_5)</th>
<th>(W_6)</th>
<th>(W_7)</th>
<th>(W_8)</th>
<th>(W_9)</th>
<th>(W_{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta \ (\degree))</td>
<td>22.5</td>
<td>61.875</td>
<td>95.625</td>
<td>129.375</td>
<td>163.125</td>
<td>198</td>
<td>234</td>
<td>270</td>
<td>306</td>
<td>342</td>
</tr>
</tbody>
</table>

NOMENCLATURE

\(a_t \) Student’s t-distribution parameter

\(A_f \) exposed filter cross-section area

\(A_{void} \) cross-section of void between stationary & moving walls
b_s boundary granular energy flux coefficient
B_1, B_2, B_3 coefficients in Eq. (49)
c coefficient in Eq. (73)
C, C_0 capacitances
d flow sphere diameter
d_i inner boundary bump diameter
d_t line diameter leading to a pressure transducer
D_{inelastic} volumetric rate of collisional dissipation
d_o outer boundary bump diameter
d_{sensor} capacitance sensor diameter
d_{tracer} tracer diameter
D_{viscous} volumetric rate of viscous dissipation
E Young’s modulus
e coefficient of normal restitution
E’ E/2(1-\sigma^2)
E_{CCD} minimum detectable emissivity
e_{eff} effective coefficient of restitution
e_t tolerated error from the vision algorithm
e_w wall normal restitution
F camera frame rate for granular tracking
F_{min} minimum acceptable camera frame rate
f vibrational frequency, capacitance amplifier frequency
F_{#} lens F-stop
f_{-3dB} -3dB cut-off frequency
F_{drag} volumetric drag force
F_{reff} Froude number based on g_{eff}
F_{ri} Froude number in the direction i
F_{simul} virtual frame rate in numerical simulations
f_s boundary granular stress coefficient
F_{tracer} camera frame rate for tracer measurements
G(v) v g_{12}(v)
g_{12}(v) Carnahan and Starling pair distribution function
g_{eff} effective acceleration
g_i gravitational acceleration vector
g_{rms} rms vibrational acceleration
h_c limiting interstitial gap (Eq. 19)
h_d limiting interstitial gap (Eq. 20)
h, h_-, h_+ functions in Eqs. (50) and (51)
k_1(v) Eq. (15)
k_2(v) Eq. (14)
K_e effective dielectric constant
K_h dielectric constant of the host fluid; in air, K_h = 1
K_{ng} gas Knudsen number (Eq. 32)
K_{ns} solid Knudsen number (Eq. 36)
K_p material dielectric constant of the flow spheres
L race track cell straight section length
l_i characteristic length of the capacitance probe
\ell_i thickness of an internal gas bypass path
\ell_{eq} equivalent thickness of the internal gas bypass paths
L_i length of an internal gas bypass path
L_{eq} equivalent length of the internal gas bypass paths
\ell_t length of line connected a pressure transducer
\ell_s boundary coefficient (Eq. 62)
M lens magnification
N_1, N_2 integers
N_{actual} actual number of images for granular tracking (Eq. 59)
N number of voids between stationary & moving walls
n_i normal unit vector
N_{images} number of images for gas velocity measurement
N_{min} minimum number of images for granular tracking (Eq. 58)
n_{tracer} number of tracers in a strip
N_x number of pixels in the x-direction
N_y number of pixels in the y-direction
p pixel size on the CCD
p' spatial resolution on the CCD with sub-pixel tracking accuracy
P_{coll} volumetric rate of collisional production
p_g gas static pressure
P filter permeability coefficient (kg/m^2.s)
P_{D1} pressure at distributor D_1
P_{laser} laser power
P_{rel} volumetric rate of viscous production
p_s granular pressure
P_{void} cross-sectional perimeter of void between stationary & moving walls
q_i granular fluctuation energy flux
Q_{1}, Q_{2}, Q_{3} gas volume flow rates (vfr) through distributors D_1, D_2 and D_3
Q_{g1}, Q_{g2}, Q_{g3} gas vfr through the co-flow, counter-flow and isokinetic regions
Q_{void} gas flow rate through voids between stationary & moving walls
Q_{void} \sim N [A_{\text{void}}^3 / P_{\text{void}}^2] |dp/\bar{R} d\theta|/\bar{\mu}_{\text{g}}
Q_{rel} gas volume flow rate relative to the solid velocity
Q_{rel} \sim |u_{\text{g-us}} v_{\bar{\nu}} Z \sim [Y Z d^2 / 18 \bar{\mu}_{\text{g}} v_{\text{drag}}] |dp/\bar{R} d\theta|
Q_{g3} estimator of gas flow rate in the isokinetic section
Q_f gas vfr across a filter
Q_{bypass} internal gas bypass vfr
Q_{test} gas vfr in an internal gas bypass test
r, \theta, z cylindrical coordinates
\(\tilde{R} \) mean radius \(\equiv (R_o + R_i)/2 \)
\(R_{diss} \) viscous dissipation coefficient
\(R_{drag} \) drag coefficient
\(Re \) Reynolds number based on shear rate \(\equiv \rho \dot{\gamma}d^2/\mu_g \)
\(Re_{rel} \) Reynolds number based on gas-solid relative velocity
\(Re_T \) Reynolds number based on \(\sqrt{T} \)
\(R_i \) cell radius to inner boundary bump centers
\(R_o \) cell radius to outer boundary bump centers
\(R_T \) dimensionless gas pressure gradient (Eq. 23)
\(s \) curvilinear distance
\(S^\prime \) viscous production coefficient
\(\hat{S}_{ij} \) deviatoric part of \(S_{ij} \)
\(S_{ij} \) rate of strain tensor
\(St \) Stokes number (generic)
\(\hat{St} \) mean Stokes number \(\equiv \theta_s \Delta U/Y' \)
\(St_c \) critical Stokes number for nearly Maxwellian distribution (Eq. 28)
\(St_{local} \) local Stokes number (Eq. 26)
\(St_{rel} \) Stokes number based on gas-solid relative velocity
\(T \) granular temperature
\(T_{\theta\theta} \) granular temperature in the flow direction
\(T_{rr} \) granular temperature across the moving boundaries
\(t \) time
\(t_i \) tangent unit vector
\(T_{bs} \) beam splitter transmission
\(T_{m_i}(j) \) mass weighted granular temperature of species \(j \) in \(i \)-direction
\(t_{sh0} \) shutter opening time (manufacturer specification)
\(t_{shutter} \) shutter opening time
\(U \) boundary velocity
\(u_g \) gas velocity in the flow direction
\(u_{g,max} \) maximum detectable tracer velocity
\(U_i, U_o \) linear velocities of the inner and outer boundaries
\(U_{\max} = \max(U_i, U_o) \)
\(u_s \) granular velocity in the flow direction
\(u_{s,0}, u_{s,1} \) granular velocity at the two moving boundaries
\(u_{scrit} \) critical impact velocity (Eq. 76)
\(\tilde{u}_s(r) \) estimator of the mean solid velocity
\(v, V, V_0 \) voltages
\(V_{rel} \) mean relative gas-solid velocity
\(v_s \) granular velocity in the transverse direction
\(V_1, V_2 \) volumes on two sides of a differential pressure transducer
\(x, y, z \) cartesian coordinates (Fig. 8)
\(x_i \): coordinate direction \(i \)

\(Y \): distance separating the centers of two opposite boundary bumps

\(y_m \): height of the capacitance probe measurement volume, see Fig. 17

\(Y' \): interior sphere center separation = \(Y - (d_o + d_i)/2 - d \)

\(Z \): distance between flat side walls

\(Z_a \): impedance

Greek

\(\beta \): \(= 18\mu_g\nu(1-\nu)^2R_{\text{drag}}(\nu)/d^2 \)

\(\beta_0 \): coefficient of tangential restitution

\(\delta \): asperity size

\(\delta_{0,99} \): gas boundary layer thickness

\(\delta_{ij} \): Kronecker delta

\(\varepsilon_m \): dimensionless lubrication cut-off (Eq. 16)

\(\varepsilon_0 \): permittivity of free space = \(8.854 \times 10^{-12} \) \(\text{F/m} \)

\(\gamma \): shear rate

\(\eta \): granular shear viscosity (Eq. 5)

\(\eta_{f1} \): tracer fluorescent efficiency

\(\kappa \): granular bulk viscosity (Eq. 4)

\(\lambda_g \): gas molecular mean free path

\(\lambda_s \): granular mean free path (Eq. 33)

\(\nu \): solid volume fraction

\(\bar{\nu}, \nu_{\text{ave}} \): \(\nu \) averaged at a cell cross-section \(\nu \) over the entire cell

\(\nu_{\text{FD}1}, \nu_{\text{FD}2}, \nu_{\text{FD}3} \): fully-dev. \(\nu \) in the co-flow, counter-flow and isokinetic regions

\(\nu_c \): critical volume fraction for multiple solutions

\(\tilde{\nu} \): estimator of the mean solid volume fraction

\(\Theta \): estimated experiment duration (Eqs. 94 to 96)

\(\theta \): circumferential angle

\(\theta_b \): bumpiness coefficient

\(\theta_s \): Stokes relaxation time

\(\theta_{ss} \): time to steady-state

\(\theta_{\mu} \): required duration of microgravity

\(\rho_g \): gas density

\(\rho_s \): solid material density

\(\sigma \): Poisson’s ratio

\(\sigma_c \): compressive yield strength

\(\tau \): transducer response time

\(\tau_{g} \), \(\tau_{gij} \): gas shear stress

\(\tau_{s} \), \(\tau_{sij} \): granular shear stress

\(\tau_{s0}, \tau_{s1} \): granular shear stresses at the two moving boundaries

\(\omega \): granular collision frequency

\(\omega_i \): inner boundary angular velocity
ω_o outer boundary angular velocity
ξ_s granular boundary slip velocity
ψ intrinsic granular property
μ coefficient of friction (binary impacts)
μ_g gas viscosity
μ_w wall friction coefficient
Δ_i gap separating cylindrical bumps of the inner boundary
Δ_o gap separating cylindrical bumps of the outer boundary
$\Delta\theta$ angular distributor separation
Δp_g gas pressure loss
Δp_{test} gas pressure drop in internal gas bypass tests
$\Delta Q/Q$ prescribed maximum relative error in mean gas volume flow rate
ΔU boundary relative velocity $= U_i - U_o$
$\Delta u_{g,\text{max}}$ maximum allowed error in the gas velocity measurement
$\Delta u_{c,\dagger}$ additional granular centerline velocity (Eq. 76)
$\Delta u_{s,\dagger}$ additional granular velocity (Eq. 79)
$\Delta \xi_{s,\dagger}$ additional granular boundary slip velocity (Eq. 78)

Superscripts

\dagger dimensionless quantity