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Computer simulations of two-dimensional rapid granular flows of uniform smooth inelastic 
disks under simple shear reveal a dynamic microstructure characterized by the local, spatially 
anisotropic agglomeration of disks. A spectral analysis of the concentration field suggests that 
the formation of this inelastic microstructure is correlated with the magnitude of the’total 
stresses in the flow. The simulations confirm the theoretical results of Jenkins and Richman [J. 
Fluid Mech. 192, 3 13 ( 1988) ] for the kinetic stresses in the dilute limit and for the collisional 
stresses in the dense limit, when the size of the periodic domain used in the simulations is a 
small multiple of the disk diameter. However, the kinetic and, to a lesser extent, collisional 
stresses both increase significantly with the size of the periodic domain, thus departing from 
the predictions of the theory that assumes spatial homogeneity and isotropy. 

1. INTRODUCTION 

A granular material is an aggregate of discrete solid par- 
ticles. Rapid flows of granular materials occur in geophysi- 
cal phenomena such as rock slides, debris flows, snow ava- 
lanches, and the motion of the Arctic ice pack and in 
industrial processes involving the bulk transport of coal, 
grain, and powders. Two-dimensional flows of disks are con- 
venient to study and visualize the behavior of rapid granular 
flows undergoing shear. 

Early theories for rapid granular flows were reviewed by 
Jenkins.’ Because these theories concern systems of nearly 
elastic particles, the results resembles the classical solutions 
of the kinetic theory of gases as treated, for example, in 
Chapman and Cowling.* These theories require the knowl- 
edge of the mean kinetic energy associated with the velocity 
fluctuations of the grains-the granular analog of the tem- 
perature of a dense gas-and employ a balance law for its 
determination that incorporates the rate of dissipation in 
collisions. Jenkins and Richman extended the range of these 
theories by treating explicitly the anisotropy of the second 
moment of the velocity fluctuations. The solutions that they 
obtained for rapidly sheared granular flows of disks in the 
dilute and dense limits are, in principle, not limited to nearly 
elastic systems. Although Jenkins and Richman considered 
the anisotropy of the second moment, they retained the as- 
sumption of molecular chaos, which implies that the distri- 
bution of particles in space is isotropic and homogeneous. 

However, Campbell and Brennen4 and Campbell’ ob- 
served the formation of a distinct microstructure created by 
the layering of densely packed disks undergoing shear. In 
molecular dynamics, computer simulations have also re- 
vealed microstructure characterized by anisotropic radial 
distribution functions (e.g., Evans et aL6), which are pertur- 
bations to the equilibrium isotropic radial distribution func- 
tion caused by the imposed mean shear field. In the present 
paper a new microstructure will be described. This funda- 
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mental microstructure, which is present to some degree in all 
granular flows of disks, depends on the dissipation of energy 
by inelastic collisions. We will refer to it as an inelastic mi- 
crostructure. 

The basic feature of inelastic microstructure is the dy- 
namic formation of local, anisotropic regions of particle con- 
centration above and below the bulk average. As a result of 
these fluctuations in concentration, the stresses and other 
statistical measures of the flow may differ significantly from 
the values predicted by theories that postulate spatial homo- 
geneity. Further, the results of computer simulations of sim- 
ple shear flows will depend on the size of the periodic domain 
relative to the size of the microstructure: small domains may 
inhibit the formation of inelastic microstructure. 

Particle simulations have been extensively used in nu- 
merical experiments with granular flows. Walton,‘.’ Camp- 
bell and Gong,’ Hopkins, lo and Campbell’ ’ have performed 
parametric studies of rapidly sheared granular flows. Im- 
plicit in these studies is the assumption that given a reasona- 
ble number of particles, the statistical measures of the flow 
are independent of the size of the periodic domain. In this 
paper, we will discuss the limits of this assumption for two- 
dimensional flows of disks with a range of particle concen- 
trations and coefficients of restitution. In this context, we 
will also test the predictions of Jenkins and Richman for the 
stresses in the dense and dilute limit of inelastic simple shear 
flows. We begin by describing an algorithm capable of pro- 
cessing a number of disks large enough to reveal the forma- 
tion of inelastic microstructure. Then, we outline the two- 
dimensional Fourier analysis used to characterize the 
microstructure. Finally, we correlate the formation of in- 
elastic microstructure with the magnitude of stresses in the 
flow. 

II. THE PARTICLE SIMULATION 

The particle simulation is a computer program that 
models the behavior of a system of discrete particles by com- 
puting the instantaneous position and velocity of every parti- 
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cle in the system. In molecular dynamics, computer simula- 
tions have played an essential role in producing detailed 
information on nonequilibrium flows (e.g., Evans and Hoo- 
ver*’ ) , However, molecular dynamics simulations often re- 
quire ad hoc isothermal resealing to stabilize global system 
variables such as the kinetic energy of the system. In granu- 
lar systems where the particle contacts are dissipative, no 
such resealing is necessary, because the system evolves to- 
ward a granular temperature consistent with the energy in- 
put and the dissipative properties of the particles. In a de- 
forming granular system, contact forces and body forces are 
considered. Existing simulation strategies differ in the time 
required for the execution of three main tasks: a search for 
impending collisions, the execution of a collision, and the 
integration of the equations of motion for each of the Jparti- 
cles in the system. 

Campbell and co-workers4*5,9*11 uses a hard-particle col- 
lision model in which the collisions are assumed to be binary 
and instantaneous. The strategy of Campbell’s simulation is 
to examine the particle trajectories to compile a list of future 
collisions arranged in the order of occurrence. The search 
about each particle may be done in O(J) time. Insertion of 
each future collision in the list using a binary search requires 
0( 1ogJ) time. Therefore, the compilation ofthe collision list 
requires O(J log J) time. Once the list is compiled, the sys- 
tem is moved ahead in time from one collision in the list to 
the next. The post-collision trajectories of each colliding pair 
of particles are calculated, additional future collisions are 
~predicted and inserted in the list in 0( log J) time. Because 
collisions occur at a frequency of O(J) , the maintenance of 
the list also requires a total computing time of O(J log J). In 
addition, moving the system ofJparticles after each collision 
of O(J) frequency requires a total computing time of O(J*). 
Thus the total computing time of Campbell’s simulation lies 
between O(J log J) and O(J2). This simulation strategy 
may be called the predictor strategy. 

Walton7’8 uses a soft-particle contact model in which 
overlaps between particles are interpreted as deformations 
that generate a repulsive force with components proportion- 
al to both the amount of overlap and the relative velocity 
between the particles at the point of contact. In order to 
create the force components, the simulation employs a com- 
bination of springs and dashpots, which are adjusted to make 
the,outcome of the collisions consistent with the specified 
values of the coefficients of restitution e and friction ,L The 
simulation ,proceeds at a constant time step that is small 
enough to permit the integration of the collisional contact 
forces over several time steps and thus depends on the spx‘ing 
stiffness and the mass of the particles. The search for im- 
pending collisions, the integration of these, and the integra- 
tion of the equations of motion are all executed at constant 
intervals in O(J) time. Therefore the total computing time 
using the soft-particle contact model is of O(J). 

Hopkins” developed a hard-particle/overlap technique 
that combines the hard-particle collision model and the 
overlap strategy. This simulation has a computing time of 
O(J) by virtue of the overlap strategy. In both Hopkins’ and 
Walton’s simulations, the execution of colIisions is generally 
the dominant source of computing time. For rapid granular 

fiows where the contact forces are impulsive, the hard-parti- 
cle/overlap strategy is therefore the most efficient, because it 
executes a collision in only one time step. As a result, it can 
simulate systems with large numbers of particles on a rela- 
tively modest computer. However, the soft-particle contact 
model is more suitable for systems with enduring, nonimpul- 
sive contacts found at high particle concentrations. Finally, 
Campbell’s predictor strategy is best for very dilute systems 
where the average time step, which is the reciprocal of the 
collision fcequency, is very large. 

It should be emphasized that the hard-particle/overlap 
technique is approximate in its handling of situations in 
which a particle has more than one contact during a single 
time step. However, except in very dense systems, this situa- 
tion is rare. The main aspects of the hard-particle/overlap 
technique are described below for a two-dimensional system. 

The hard-particle/overlap simulation calculates a time 
series of discrete realizations of a system of J identical disks. 
Each realization consists of the position and velocity of the 
disks, stored in the arraysx(f),y(J), u(f), u(J), andw(f), 
where o is the angular velocity (Fig. 1). An infinite region of 

{a) 

fbl 
FIG. 1. Particle images (a) at a time t = kL,/L,y where the images are 
aligned on the vertical axis, and (b) at an intermediate time 
t = (/cLJL,y) + At. The heavy lines are bounds of the central periodic 
domain. 

48 Phys. Fluids A, Vol. 3, No. 1, January 1991 M, A. Hopkins and M. Y. Louge 48 

Downloaded 10 Jun 2005 to 128.111.9.50. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



simple shear is approximated by a rectangular periodic do- 
main of width L, and height L, (Walton)‘. The left and 
right boundaries of the domain are connected such that a 
disk leaving the domain on one boundary simultaneously 
reenters the domain on the other with the samey coordinate 
and velocities. 

The connection between the top and bottom boundaries 
is more complicated. Periodic images of each disk in do- 
mains above and below the central domain are used to main- 
tain a constant shear rate y = 6’u/dy (Fig. 1). Adjacent do- 
main in the x direction have related images separated by a 
horizontal distance L, . At times t = kL,/L, y, where k is an 
integer, images of the reference disk are arranged in a rectan- 
gular array shown in Fig. 1 (a). The velocities of the two 
images just above and below the central cell are (u f yL,,, v, 
w). At the intermediate time t = (kL,/L, y) + At, where 
At < L,/L,y, the two images have moved a distance 
f AtyL, in the x direction relative to the reference disk 
[Fig. 1 (b) 1, and the array of images has thus been deformed 
by uniform shear. Therefore, when a disk leaves the central 
domain at the top or bottom boundary, its image will appear 
at the opposite boundary at a different x coordinate, unless 
time is an integer multiple of LX/L, y. In this way, the mean 
shear rate y is imposed in they direction without affecting 
the statistics of any higher moment of the velocity field. 

The search for particle contacts is central to the simula- 
tion. A straightforward, and inefficient, method would 
search for collisions among each of the J2 possible pairs of 
disks in the system. A considerably faster algorithm consists 
of a global search for neighboring pairs of disks in the sys- 
tem, followed by the local detection of pairs of disks in con- 
tact. In order to facilitate the global search, a grid of Ni 
columns and N, rows is superimposed on the central do- 
main. The width of the resulting square cells is chosen so that 
only one disk center may occupy the cell at any given time. 
The indices of the square cell containing disk k with its cen- 
ter at x(k), y(k) are given by i= 1 + Int[x(k)/w] and 
j = 1 + Int [y(k)/w], where w is the width of the grid cell, 
and the function Int [z] returns the integer part of the real 
number z. At each time step, the algorithm stores the index k 
of the disk present at the grid location (ij) in the two-dimen- 
sional integer array G(ij) = k. Conversely, the integer ar- 
rays I(k) = i and J(k) =j contain the grid position (ij) of 
disk k. These arrays provide a rapid means of finding the grid 
location of a given disk, as well as searching its immediate 
surroundings for neighbors or pending contacts. Because 
each individual grid cell is square, the dimensions of the cen- 
tral periodic domain are such that LX/L, = Ni/Nj. In the 
present simulations, we have only considered a square do- 
main with L, = L, = L and N, = Nj = N. 

If the distance between the centers of a pair of neighbor- 
ing disks iandjis less than the sum of their radii, then a local 
coordinate system (k,t ) is defined with its origin at the point 
of contact (Fig. 2). The normal unit vector k lies in the 
direction of the vector joining the center of disk i to the cen- 
ter of diskj. Before the collision, the relative velocity of the 
two disks is g = (c, - cj ), where ci and cj are the velocities of 
the center of mass of disks i and j, and gk > 0. 

The post-collision velocities, denoted by an asterisk, are 

FIG. 2. A pair of colliding disks. 

derived from the conservation of linear momentum for the 
system of two disks: 

m,c’ + m,ci* = m,c, + mjcj. (1) 
In the present simulations, the disks have identical “mass” 
m s mi = mj and they are smooth (frictionless). As a result, 
their angular momentum and the tangential component of 
their relative velocity are unchanged in a collision. Further, 
the collisional impulse P exerted by disk jon disk i is directed 
along the line of centers: 

Prm(cT -q) = - m(c: - cj). (2) 
Here P is obtained by characterizing the incomplete restitu- 
tion of the normal component of the relative velocity using 
the coefficient of restitution e with O&e < 1: 

g**k = - eg.k, (3) 
Combining Eqs. (2) and (3) with the definition of g, it fol- 
lows that 

P= -(m/2)(1 +e>(gk)k, (4) 
and the velocities of disks i and j after the collision are calcu- 
lated using Eq. (2). 

At the onset of a simulation, the required number of 
identical disks is placed in the periodic cell with a mean ve- 
locity corresponding to their location in the shear field and a 
small random fluctuating component to initiate collisions. 
The disk velocities are adjusted to cancel the net momentum 
of the system, and the initial position of the disks is such that 
the center of mass of the system lies at the center of the 
periodic domain. 

The simulation proceeds at discrete time intervals St 
with computations carried out in double precision. In the 
absence of body forces and with instantaneous collisions, the 
location of particle i at time (n + 1) is given in terms of its 
location at time n using: 

r? + ’ = r: + &cl. (5) 
Unlike the predictor model, the overlap simulation does not 
foresee impending collisions. As a result, colliding particles 
overlap slightly after the time step St. In a rapidly sheared 
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system, St must be chosen carefully because the correspond- 
ing overlap has the same effect as an increase in the colli: 
sional mean-free path or a reduction in the effective particle 
concentration. In relatively dense systems, small changes in 
these quantities can produce large changes in the collisional 
stresses. (A similar effect exists in the soft-particle contact 
model if the particle stiffness is lowered in the interest of 
computational speed. ) In the hard-particle/overlap simula- 
tion, the time step St is readjusted at regular intervals to 
maintain the average overlap between colliding particles at a 
chosen fraction of the particle diameter. In this work, we 
have carried out successive simulations with decreasing val- 
ues of this overlap tolerance until the average stresses be- 
come independent of further reductions. In this way, we find 
the optimal tolerance that will maximize speed of computa- 
tion without sacrificing accuracy. Typically, the average 
overlap is maintained at 2% of the particle diameter for a 
particle concentration (i.e., the fraction of the area occupied 
by the disks) Y = 0.1, 1% for Y = 0.3, and 0.5% for Y = 0.6. 
With these values, the likelihood of a particle undergoing 
more than one collision in a time step is very low. Even at the 
highest densities that we have considered (Y = 0.61, there 
are between 12 and 28 time steps during the average time 
between two successive collisions experienced by a particle. 
At Y = 0.3, the same numbers range between 25 and 56, and 
at Y = 0.1, between 80 and 17.5. 

Beginning with the initial configuration, the simulation 
is run for successive periods, where each particle experiences 
at least 500 collisions. The statistics gathered over successive 
periods are compared to determine whether the system has 
reached steady state. Typically two such periods are re- 
quired. After reaching steady state, the simulation is run for 
one more period where all stress statistics are gathered and 
the microstructure is analyzed. 

III. STRESSES 
As in a dense gas, the stress tensor T may be viewed as 

the sum of a kinetic component T, and a collisional compo- 
nent T,. The kinetic stress tensor is given by 

-f-k = py(W, (6) 
where p = 4m/& 2 is the material density of the particles, 
C = c - (c} is the fluctuating velocity of the particles, and d 
is the disk diameter. In kinetic theory, the mean value of a 
quantity Y is calculated using the single-particle velocity dis- 
tribution functionf”’ (c,r,t): 

(Y) -$ s s Y (c)f(‘)(c,r,c)dc*, (71 

wheref”’ is normalized using the particle number density 
n = 4v/n-d 2: n(r,t) = ss f(‘)(c,r,t)dc’. (8) 

In simple shear, the statistics of any intrinsic particle proper- ed as an individual realization of the particle field at regular 
ty are independent of position, except (a>, the horizontal times t = kr, where k is an integer and r is the constant 
component of the average particle velocity. As a result, the period between successive realizations. Figure 3 shows ex- 
mean of an intrinsic property \I! (j,t) may be found by averag- amples of such realizations. As outlined below, each realiza- 
ing over the J particles of the central periodic domain, tion is first converted to a concentration field, which is subse- 

I G&r, and over K successive realizations at times t = kr, 
where 1 <k(K is an integer: 

(y)=LL J K 
J K jz, jz, y(iykr)‘ (9) 

The simulation evaluates the kinetic stress tensor of Eq. (6) 
using this averaging technique. In our comparisons between 
the predictions of kinetic theory and the results of the simu- 
lation, the equivalence of the averaging methods of Eqs. ( 7 ) 
and (9) is implicit. 

The collisional component T, is the average flux of lin- 
ear momentum transferred by collisional impulse across an 
infinitesimal segment by a pair of colliding particles 1 and 2, 
the line of centers of which crosses the segment. In kinetic 
theory, it is evaluated by integrating the collisional impulse 
over the probable number of such collisions per unit time 
and unit length of the segment. Jenkins and Savage” have 
shown that the resulting integral leads to the following 
expression of the collisional stress tensor: 

T, ==$ [ [PkJC2’( wl,c2,r2) (skd)dc, de2 dk, (10) 
LJ J 

where the integration is performed over all impending colli- 
sions with gk> 0 andf’2’(~,,rl,c2,r2) is the complete pair 
distribution function. In simple shear, the time-average 
colhsional stress has the same value everywhere. Thus, in the 
course ofan entire simulation of duration 0, it is convenient 
to add the contribution of all collisions to T, as follows: 

T, = d 2 Pk. 
L,L,@ colliscms 

IV. CHARACTERIZATlON OF THE MICROSTRUCTURE 
A casual inspection reveals striking ditferences between 

systems with high and low values of the coefficient ofrestitu- 
tion e. At high values of e, disks are almost evenly distributed 
[Fig. 3 (a) 1. By contrast, clusters of disks develop at low 
values of e [Fig. 3 (b) 1. In order to characterize this micro- 
structure, a two-dimensional, time-averaged, one-sided spa- 
tial power spectrum of the concentration field is evaluated 
using a fast Fourier transform algorithm (FFT). To this 
end, the two-dimensional grid Gfij) that subdivides the 
square periodic domain of width L is made to contain N2 
individual cells, where N = 2P and p is an integer, Each indi- 
vidual grid cell has a dimensionless width u = w/d. (Note 
that in the simple shear flows under consideration, the basic 
length scale is the disk diameter. ) In the present simulations, 
c1= 0.92/a is a constant. The corresponding dimensionless 
spatial frequency resolution is Af = d/L = f/Na, and the 
dimensionless spatiai frequencies in the Fourier domain are 
given by f, = VNa and fy = j/Na in the directions parallel 
and normal to the plane of shear, where i or 
j= -N/Z ,..., 0 ,..., (1/2)N- 1. 

During the simulation, the position of all disks is record- 
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FIG. 3. Distribution of disks at specific times for the conditions Y = 0.3, 
.L /d = 83, and (a) e = 0.9, (b) e = 0.2. The square represents the bound- 
ary of the central periodic domain. The arrows determine the direction of 
shear. 

quently Fourier transformed. The resulting power of the 
discrete Fourier transform (DFT) is then time averaged 
over all realizations of the simulation. 

Without any spatial filtering, individual realizations 
cannot be readily interpreted as a concentration field, be- 
cause of the abrupt discontinuities of concentration at the 
edge of each disk. In order to avoid aliasing, the realizations 

must therefore be filtered before carrying out the DFT. 
First, the algorithm determines the overlap area S, (ij) of 
each disk of index n with its neighboring grid cells (i, i). 
Given the cell width w = ad, a disk may overlap with up to 
eight adjacent grid cells at a time. For filtering, we state that 
the overlap area S, (ij) is distributed among neighboring 
grid cells, rather than contribute to the concentration field of 
grid cell (ij) alone. In this way, the overlap S, (ij) contrib- 
utesthequantitytii(&=i +k&=j+I)=s,(ij)g(k,l)/ 
w* to the concentration field at the cell (icj,). The filter 
function g( k,l) is 

g(W) = 
sine [k /2i, ] sine [ I /2i, ] 

Z?= -,+, 2E -,sinc[k/2iC]sinc[1/2iC] ’ 
(12) 

where sine(x) =sin( ~x)/rrx, M is a positive integer less 
than 2p - ‘, and i, is a positive integer. The denominator of 
Eq. ( 12) is used for normalization. The concentration in the 
grid cell ( iojO) is the sum of the individual contributions of 
all overlap areas S, (ij) from all disks: 

v(i,jo) = ccc q&i,). (13) 
n i j 

A simpler, but less accurate filter method assumes that, 
because each grid cell may contain only one disk center at a 
time, every disk has its center at the center of a grid cell and 
contributes its entire surface area to that cell. In this case, the 
nth disk present in the grid cell (ij) adds to the concentra- 
tion field of neighboring grid cells (i + kj + I) the quantity 
c, (i + kj f I) = c, g( k,Z), where cO = rr/4a2 is the ratio of 
the area of the nth disk to the area of the grid cell (ij). Thus 
the overall concentration in grid cell ( iojo) is 

v(iojo) = 2 c, cioj,,. (14) 
n 

We have found that, for a wide range of conditions, the filter 
method of Eq. (14) provides an average power spectrum 
nearly identical to that of the considerably more time-con- 
suming method of Eq. ( 13 ) . In the interest of computational 
speed, we have adopted the simpler method in the present 
simulations. 

If a disk was present in each grid cell (a physically im- 
possible situation), then the Fourier transform of the result- 
ing concentration field would be nearly uniform in the rec- 
tangular dimensionless frequency domain 
fxc[ - 1/4ica,1/4ica],fy~[ - 1/4i,a,1/4ica], and nearly 
zero elsewhere. Thus the function g is a sharp low-pass filter 
that eliminates absolute spatial frequencies above the cutoff 
1/4i,a. The filter sharpness increases with (2M -t l)*, the 
number of neighboring cells affected by the presence of a 
disk at cell (ij) . In the present simulations, we have chosen 
M = 5 as a reasonable compromise between sharpness and 
time for computing the concentration field at each realiza- 
tion. If applied before performing the DFT, the filter g 
avoids the aliasing associated with discontinuities at the disk 
edges. In addition, it highlights the formation of microstruc- 
ture with wavelength above 4&a. In the present simulations, 
we have chosen i, = 1 to discern microstructures of typical 
dimension greater than about 4a =: 3 disk diameters. 
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The average concentration in the periodic shear domain 
is 

v. = + T 7 Wjt . 

Using a multidimensional FFT algorithm,14 we calculate 
pN (& f, ), the DFT of the concentration field minus its aver- 
age at each realization: 

i= (l/*)N- 1 j= (l/*)N- 1 

[Wj> - ~~1 
j= -N/2 

Xexp[ - i2T(ki+ @)/Xl, (f6f 
where f, = k/Na, fy = I/iVa, k or I = - N/2 ,..., 0 ,..., 
( 1/2)N - 1, and iz = - 1. According to the Rayleigh-Par- 
ceval theorem, the square of the resulting modulus 
lFN cf,$, ) I2 is related to d, the variance of the concentra- 
tion field for the specific realization using 

Therefore, if the total number of grid cells N* increases, then 
the absolute magnitude of r;l, must decrease to satisfy Eq. 
( 17). As a result, FN is not independent of the number of 
grid cells chosen for the simulation. To avoid this difficulty, 
we define a normalized function F proportional to FN such 
that the integral of F * over the entire frequency domain is 
equal to 05 

($JQ”‘($-$J=“* (18) 

Combining Eqs. (17) and ( 18), we find 

F2 = (Na)‘F$,, (19) 
so that F is independent of N for large N. At this stage, we’ 
define the time average of a quantity x(t) over all K realiza- 
tions at t = kv-: 

CT)=+ 5 x(kT). (20) 

Since the averaging operator commutes with the summation 
of Eqs. ( 17) or ( 18)) the integral of (F ‘) over the frequency 
domain is equal to (d). As a result, the two-dimensional 
function (F2) is a measure of the power spectral distribution 
of the microstructure that becomes independent of iV but 
increasingly detailed for large N. 

Figure 4 is a contour plot of (F*) for typical conditions 
where the microstructure is significant. At the edge of the 
frequency domain, the power is nearly zero, which indicates 
that the filter function has prevented any aliasing effect. The 
low-pass filter creates a steep rise to a square plateau, where 
periodic microstructures of a size greater than approximate- 
ly 4u z 3 disk diameters appear as a pair of symmetric hills. 
The grid cell near the center of the plot (i =j = 1 + N/2) 
representsf, =f, = 0. It has zero power because the algo- 
rithm calculates the DFJJ of the particle concentration mi- 
nus its average. Physically, the peanut-shaped features at the 
center of the plot represent microstructure with a range of 
typical sizes and orientation. Because the contours are not 

-1/a 0 112a 
Dimensionless frequency 

FIG. 4. Contour plot of the two-dimensional function (F*) for the condi- 
tions v = 0.1, e = 0.2, L /d = 167. The contour spacing is 0.02 up to 0.06 
and it is 0.2 from 0.2 to 0.6. The maximum value is 0.74. The four secondary 
peaks around 0.06 are artifacts of the relatively imperfect filter function 
with M  = 5. 

axisymmetric, the microstructures in real space are not iso- 
tropic. 

Figure 5 is a detailed view constructed with the grid of 
32 x 32 cells located around the center of Fig. 4. It illustrates 
the meaning of the parameters chosen to characterize the 
microstructure in Table I. In physical space, the distance 
d//z is the dimensionless wave number of the concentration 
waves of maximum power and the angle a is the angle be- 
tween the vertical axis and the direction ofthe wave vector of 
the corresponding microstructures. In order to clarify the 
significance of these parameters, the following example may 
be helpful. Consider the hypothetical, continuous concen- 
tration pattern forming a series of parallel ripples, whose 
normal makes an angle (Y with they axis: 

- 0.08 -0.04 0.00 0.04 0.08 
Dimensionless Frequency 

FIG. 5. Contour plot of the function (F2) near the center of Fig. 4. The 
distance between the peaks is 2d/L The shaded atea&,, is bound by the 
contour (F’),,,,,/4. 
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z TABLE I. Stresses and microstructure. 

4 
‘=i 
-n 

Dimensionless stresses 
Kinetic Collisional Microstructure 

Conditions Simulation Tl=m Simulation Tf=w A 015 PFo,, 
Y e L/d T, , - TX r,, 7-1, - TX r,, T,, - 7-2, Tm T,, = TX - r,, I/d a0 (F2)m, Xld (96) 

c 
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0.10 

P 
$ 
w 0.10 

G 

c 
5 0.10 

5 

8 
0.30 

0.2 

0.5 

0.9 

0.2 

0.5 

0.9 

0.2 

0.5 

0.9 

0.2 

0.5 

0.9 

21 0.457 0.136 0.115 0.478 0.151 0.133 0.061 0.017 
42 0.579 0.156 0.127 0.067 0.018 
83 0.661 0.165 0.135 0.070 0.019 

167 0.703 0.166 0.134 0.071 0.020 
21 0.767 0.274 0.331 0.723 0.253 0.312 0.128 0.036 
42 0.891 0.303 0.352 0.136 0.037 
83 0.965 0.304 0.353 0.136 0.037 

167 1.039 0.310 0.360 0.138 0.038 
21 4.057 1.083 3.473 3.548 0.950 2.933 0.904 0.157 
42 4.671 1.284 3.892 0.993 0.170 
83 4.713 1.285 3.878 1.003 0.170 

167 4.886 1.317 3.961 1.019 0.173 
10 0.149 0.054 0.057 0.109 0.050 
21 0.199 0.062 0.065 0.119 0.054 
42 0.224 0.064 0.068 0.125 0.057 
83 0.258 0.066 0.069 0.127 0.058 
10 0.226 0.089 0.124 0.189 0.081 
21 0.269 0.100 0.136 0.202 0.086 
42 0.299 0.102 0.138 0.206 0.088 
83 0.320 0.102 0.139 0.206 0.088 
10 1.417 0.355 1.277 1.411 0.352 
21 1.525 0.399 1.341 1.476 0.355 
42 1.574 0.417 1.374 1.512 0.359 
83 1.605 0.420 1.374 1.522 0.358 
10 0.122 0.044 0.072 0.340 0.181 
21 0.160 0.053 0.081 0.355 0.188 
42 0.191 0.059 0.090 0.366 0.192 
83 0.202 0.058 0.089 0.370 0.193 
10 0.170 0.061 0.119 0.508 0.256 
21 0.185 0.066 0.127 0.487 0.245 
42 0.205 0.070 0.130 0.483 0.241 
83 0.230 0.071 0.134 0.494 0.246 
10 1.092 0.232 1.029 3.779 1.038 
21 1.154 0.240 1.090 3.516 0.975 
42 1.183 0.261 1.114 3.480 0.967 
83 1.201 0.264 1.119 3.500 0.973 
21 0.159 0.051 0.106 0.687 0.362 
42 0.190 0.056 0.112 0.722 0.378 
83 0.206 0.058 0.115 0.736 0.385 
21 0.183 0.056 0.142 0.843 0.432 
42 0.213 0.065 0.150 0.910 0.457 
83 0.228 0.067 0.153 0.920 0.461 
21 1.201 0.210 1.159 6.279 1.807 
42 1.223 0.222 1.167 6.315 1.824 
83 1.222 0.222 1.166 6.352 1.829 

0.036 
0.039 
0.041 
0.041 
0.091 
0.095 
0.095 
0.096 
0.834 
0.919 
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0.938 
0.075 
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0.086 
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0.163 
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1.447 
0.276 
0.290 
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0.300 
0.449 
0.430 
0.423 
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3.631 
3.428 
3.397 
3.415 
0.589 
0.624 
0.640 
0.782 
0.828 
0.836 
6.047 
6.201 
6.233 
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26 f 2 19f4 0.74 

29 f 10 45 f 20 0.45 
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30 f 3 22* 5 0.62 
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74& 16 27* 13 0.44 
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1 
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where K is a constant. In dimensionless frequency space, the 
resulting two-dimensional Fourier transform Fcf, f,) re- 
duces to a pair of two-dimensional delta functions ‘6 located 
a distance 2d /;1 apart on a line that contains the originand 
makes the angle a with the vertical axis,i5 

In the context of our work, this hypothetical concentration 
pattern would constitute a microstructure of infinite 
strength. 

In Table I, we compile other characteristic parameters 
of these spectra that can serve to measure the “strength” of 
the microstructure: (F*),,,, the peak value of the power 
associated with the wavelength /2; Aazs, the dimensionless 
area in frequency space bound by the contour with 
(F2> = V’*lmax 14; and PF,,,, , the fraction of the total inte- 
grated power contained within this area: 

Wm = C GJ).)~~,Ls 
The parameter PF0,25 may be regarded as a measure of the’ 
coherence of the microstructure. For a given size of the cen- 
tral periodic domain L/d, systems with a stronger micro- 
structure will typically exhibit larger values of (F2)msx or 
PEm 9 as more power is concentrated in the dominant mi- 
crostructures. Perhaps less obviously, weaker microstruc- 
tures, correspond to larger values of the dimensionless con- 
centration wavelength R /d: weaker microstructures arise in 
more homogeneous concentration fields, where variations of 
the concentration occur over larger distances, 

As Table I indicates, it is occasionally difficult to mea- 
sure the microstructure parameters with sufficient accuracy. 
This effect is the result of the discrete nature of the Fourier 
transform. At low values of L /d, a relatively small number 
of grid cells is used: N = L /da. From the corresponding di- 
mensionless frequency resolution ( l/Na) , we estimate the 
uncertainty in the dimensionless wavelength il /d as 
A(/z /d) = (;1 /d>*/2Na and that in the angle a as 
Aa = (R /d)/ZNu. The only way to minimize these uncer- 
tainties is to decrease the dimensionless frequency resolution 
d /L = I/J%, so that microstructures near the origin are rep- 
resented with finer grid cells in the frequency domain. De- 
creasing the ceII size in physical space has no effect on the 
frequency resolution, rather it affects the total frequency 
span. Hence it is impossible to improve the wavelength mea- 
surement unless L /d is increased. This effect complicates the 
study of the dependence of the microstructure parameters an 
L /d when A /d is large. 

V. RESULTS AND DISCUSSION 
In the simple shear flow under consideration, the refer- 

ence mass ifpd ‘, the only time scale is the inverse of the shear 
rate f/y, and the basic length scale is the particle diameter d. 

The simulation adds another, artificial, length scale to the 
system, which is t-he size L of the central periodic domain. 
Because the ratio t /d is the only dimensionless combination 
of the reference parameterspd 2, ry, d, and L, a specific flow 
regime is determined by the three numbers e, Y, and (L /d). 
Therefore, the size, shape, or strength of the microstructures 
do not depend on the shear rate y. Further, the stresses are 
made dimensionless using the combination p(dy)‘, 

Figures G-10 show the collision~l and kinetic stresses 
predicted by our simulations for disk concentrations of 0.1 
and 0.6, for coefficients of restitution in the range 0.04.9, 
and for the central periodic domains of relatively small size, 
Table I summarizes stress and microstructure results for 
various combinations of Y, e, and L /d, In the dilute and 
dense limits, our stress results are compared with the predic- 
tions of Jenkins and Richman To this end, we have used 
numerical solutions of Eqs. (67), ( 80)) and (8 1) in Jenkins 
and Richman, rather than their analytical approximations 
(70)and(83)-(86).Fory=O.l,thekineticstressesarein 
good agreement with the predictions of Jenkins and Rich- 
man for the dilutelimit (Figs. 6-8). In particular, the anisot- 
ropy of the second moment of the velocity fluctuations is 
well reproduced over the whole range of coefficients of resti- 
tution (Fig. 8 ). As expected, the collisional stresses are 
smaller than the kinetic stresses at Y = 0, I, but they are not 
entirely negligible (Figs, 4 and 71, For Y = 0.6 and e20.5, 
the collisional stresses agree well with the predictions of Jen- 
kins and Richman for the dense limit. However, substantial 
deviations are observed below e = 0.5 (Figs. 9 and 10). At 
Y = 0.6, the kinetic stresses are smaller than the collisional 
stresses, but they are not altogether negligible. In addition, 
they are considerably more isotropic than at v = 0.1 (Table 
I). At Y = 0.3, the kinetic and collisional stresses have com- 
parable magnitudes, but the combined stresses are signifi- 
cantly smaller than either the diiute or dense limit (Table I). 
At v = 0.5, the system behaves largely as in the dense limit, 

e 
FIG. 6. Dimensionless normal stresses for the conditions v = 0.1 and 
L/d = 21. The solid and dashed lines are the predictions of Jenkins and 
Richman for TIIl and TLLk in the dilute limit. The solid circles are T, II, the 
solid squares Tzzl, and the solid triangles T, IC =: TLLc from the simulation. 
The open circles are values of T,,, obtained with t/d = 167. 
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FIG, 7. Dimensionless shear stresses for the conditions v’= 0.1 and FIG. 9. Dimensionless normal stresses for the conditions Y = 0.6 and 
L/d = 21. The solid line is the prediction of Jenkins and Richman for L /d = 2 1. The solid line is the prediction of Jenkins and Richman for T, ,( 
- r,,, in the dilute limit. The solid circles are - T,,, and the open trian- = Tz2< in the dense limit. The solid triangles are T, ,<, the open triangles 

gles are - T,,, from the simulation. Tzzr, and the solid circles are T, ,* z  TzzA from the simulation. 
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e  

although the collisional stresses deviate more from the theo- 10, , I . I I . I . 
ry of Jenkins and Richman than at Y = 0.6 (Table I). 

As the relative size of the central periodic domain L /d 
increases, the kinetic and (to a lesser degree) the collisional N 
stresses increase significantly. Figures 11 and 12 illustrates F  

, 

this effect for Y = 0.1. For a small periodic domain, the ki- E 

netic stresses agree well with the predictions of Jenkins and ,” 0 
Richman, but increasing disagreements arise with larger val- . 
ues of L /d. Table I shows similar trends for both kinds of . l 

stress over the entire range of conditions studied. Note that 
, .aOma 

these increasing values of stress are accompanied by similar 
changes in the microstructure. As Table I indicates, the .Oi 
stresses and the dimensionless wavelength2 /d both increase 0.0 0.2 0.4 0.6 6.8 1.0 

with e; both also increase with L /d. Further, stresses and e 
/z /d have nearly identical dependence on particle concentra- 
tion (Fig. 13). In addition, for a given value of L /d, weak 
stresses are accompanied by a strong microstructure with 

FIG. 10. Dimensionless shear stresses for the conditions Y = 0.6 and 
L/d = 21. The solid line is the prediction of Jenkins and Richman for 
- T,,,. in the dense limit. The open triangles are - Tzlr. and the solid cir- 

cles are - T2, I from the simulation. 

d 
f 
E E u 
E 
f 
i? 
z 
B 

0.0 0.2 0.4 0.6 0.8 1.0 
e  

FIG. 8. Anisotropy of the second moment of the velocity Buctuations for 
the conditions 1’ = 0.1 and L /d = 21. The solid lines are the predictions of 
Jenkins and Richman for the dilute limit. The solid circles represent 
(uu)/((uu) + (uu)),thesolidsquares(uu)/((uu) + (uu)),andtheopen 
circles - (uu)/( (UU) + (uu)) from the simulation. 
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FIG. 11. Relative excursion of the kinetic stresses from the theory of Jen- 
kins and Richman ( T,, - Tteory)/TF for the conditions Y = 0.1 and 
e = 0.2. The solid circles represent changes in T, ,*, the solid squares Tzzp 
and the open diamonds - T,,, 
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FIG. 12. Relative excursion of the kinetic stresses (T,, - Tp)/T]llln,r 
for theconditions Y = 0.1 and e = 0.9. Symbols have the same meaning as in 
Fig. 11. 

large values of (F2),ax and PF,,,, . This effect is evident for 
small values of e and for concentrations near Y = 0.3. Con- 
versely, large stresses seem to forestall the growth of signifi- 
cant microstructure, e.g., at large values of e. Therefore, 
there is an apparent correlation between the magnitude of 
the stresses and the formation of inelastic microstructure. 

When the coefficient of restitution is low, the relative 
veIocity in the direction normal to the point of contact is 
reduced after a collision. In this case, disks tend to remain 
together after collisions. Thus they tend to cluster at low 
concentration or open voids at high concentration. At low 
concentration, the clusters are perhaps regions of lower ki- 
netic stress surrounded by more dilute regions of energetic 
disks that work to break the clusters apart. At high concen- 
tration, dilute regions are surrounded by denser aggregates, 
which, perhaps, tend to fill the voids by exerting collisional 
pressure upon them. At intermediate concentrations where 
both kinetic and collisional stresses are low, strong inelastic 
microstructures develop (Fig. 3). 

Thus it appears that the ability of a system to create and 
maintain a significant microstructure depends on the magni- 
tude of the stresses. Conversely, if there were no microstruc- 
ture, the stresses wouId remain largely independent of the 
size of the periodic domain L/d for given values of e and Y. 
For small values of L /d, microstructures are constrained to 
form within the size of the periodic domain, Le., /z /d < L /d. 
As L /d decreases, their strength, as measured with (F2jma,, 
becomes smaller, they tend to disappear, and, at the same 
time, the stresses are better predicted by theories that assume 
spatial homogeneity. As the size of the periodic domain in- 
creases, microstructure are free to develop, their strength 
measured using ( F2) ma* is greater, and both kinetic and 
collisional stresses increase. Unfortunately, because of the 
finite computer resources available, it is unclear whether the 
size and strength of the microstructure and the magnitude of 
the stresses will truly reach asymptotic values independent 
of L /d. 

FIG. 13. Relative excursion of the total particle pressure ( q,, + T,,, ) and 
the wavelength 1 /d from their values at v = 0.3 for P = 0.2 and .L /d = 83. 
The open circles represent pressure and the solid circles /1 /d. 

VI. CQNC~~SlQNS 

In this paper, we have described the formation of a dis- 
tinct inelastic microstructure in rapid granular flows of disks 
undergoing simple shear. Using a two-dimensional Fourier 
analysis of the concentration field, we have shown that the 
size and strength of these microstructures is correlated with 
the magnitude of the stresses that work to break them apart. 
A consequence of their existence is the significant depend- 
ence of the magnitude of stresses on the relative size of the 
periodic domain used to perform computer simulations. An- 
other consequence is the need to revise existing theories to 
account for the spatial inhomogeneity and anisotropy that 
these microstructures create. 
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