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On the structure of three-dimensional shear flows
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This paper describes an investigation of structure in moderately dilute three-dimensional shear flows. Structure is defined
as a dynamic inhomogeneity or fluctuation in the spatial concentration field.

Numerical experiments are performed with large numbers of identical, frictionless, inelastic spheres. The spheres are
contained in a fully periodic cubic control volume. A state of shear is maintained in the control volume by moving the upper
periodic image in one direction and the lower image in the opposite direction. As the coefficient of restitution of the spheres
is lowered, conditions in the control volume deviate from a state of simple shear, exhibiting strong wavelike fluctuations in
the concentration, stress, and velocity fields. Visual inspection of the spatial concentration field reveals a strong tendency for
spheres with a low coefficient of restitution to form dense elongated clouds. The major axis of the clouds tends to align itself
in the direction of the mean velocity and perpendicular to the direction of variation in the mean velocity created by the

moving periodic images of the control volume.

Introduction

A granular material is an aggregate of discrete
solid particles. Rapid flows of granular materials
occur in geophysical phenomena such as rock
slides, debris flows, and snow avalanches, in the
motion of the marginal ice zones surrounding the
central Arctic ice pack, and in industrial pro-
cesses involving the bulk transport of coal, grain,
and powders.

Early theoretical treatments of granular flows
(Jenkins and Savage, 1983; Lun et al., 1984) fol-
lowing from the kinetic theory of dense gases
(Chapman and Cowling, 1970) were limited to
nearly elastic flows by their assumption of a
Maxwellian velocity distribution. Recently, Jenk-
ins and Richman (1988) and Chou (1990) have
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developed theories for more inelastic flows using
a joint Maxwellian distribution, by explicitly treat-
ing the anisotropy of the second moment of the
velocity fluctuations. However, both theories re-
tain the assumption of molecular chaos, the cor-
nerstone of the kinetic theory. Implicit in the
chaos assumption is the assumption that the spa-
tial distribution of particles is locally isotropic
and homogeneous.

Campbell (1986) observed the formation of a
distinct layered structure in particle simulations
of very dense shear flows. In two-dimensional
simulations of dilute shear flows using uniform
disks, Hopkins and Louge (1991) observed a dy-
namic micro-structure caused by inelastic colli-
sions. This inelastic micro-structure was charac-
terized by dynamic clusters of disks on the order
of 10 diameters in size. Because many such clus-
ters were distributed throughout a control volume
(see Fig. 1), shear flows of low to medium density
may still be homogeneous on scales of many
particle diameters. Walton et al. (1991) reported
large variations in normal stress ratios in simula-
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tions of dilute shear flows, with large numbers of
highly inelastic spheres, which were attributed to
micro-structure.

In the present work, structure in dilute three-
dimensional shear flows of identical, frictionless
spheres is investigated. The results of this study
differ radically from the results reported by Hop-
kins and Louge for two-dimensional shear flows
of disks.

2. The particle simulation method

The numerical experiments are performed us-
ing a particle simulation method described in

detail by Hopkins and Louge (1991). In this
method, the cubic control volume (CV) of length
L is periodic in all three directions. A sphere that
leaves one face simultaneously re-enters the CV
through the opposite face. A state of shear is
maintained in the CV by moving the upper and
lower periodic images of the CV in opposite
directions. In this work, the moving images of the
CV lie in the y-direction with mean velocities in
the x-direction in a coordinate frame aligned
with the edges of the cubic CV. After each time
step, the position of each sphere is calculated
from its previous position and velocity. Collisions
occur when one sphere slightly overlaps a neigh-
bor. The average overlap in the experiments was

Fig. 1. The distribution of disks in a two-dimensional shear flow for the conditions » = 0.3, L /d = 83, and ¢ =0.2. The square
bounds the periodic control volume of the simulation and the arrows represent the direction of shear (from Hopkins and Louge,
1991).
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held to 1.5% of the sphere diameter d by regu-
larly re-adjusting the simulation time step. The
post-collision velocities are calculated by balanc-
ing linear momentum before and after the colli-
sion and using a coefficient of restitution e to
characterize the incomplete restitution of relative
translational velocity in the direction parallel to
the line connecting the particle centers.

To begin the simulation, the spheres are placed
in a cubic array. They are given an initial velocity
proportional to their y-coordinate and to an as-
sumed linear mean velocity gradient between the
top and bottom periodic images. They are also
given a small, random velocity component. The
total initial momentum of the system is zero in all
directions. The center of mass lies at the center
of the CV and the spheres are evenly distributed
in space. The mean velocity of the upper periodic
image of the CV with respect to the lower image
is U = 1.0 in the x-direction. The unit of length in
the experiments is the width of the CV and the
unit of time is one second. The simulations were
run in double precision and no significant mo-
mentum imbalance was detected after any experi-
ment.

181
3. The variance of the concentration field

Hopkins and Louge used a two-dimensional
Fourier transform of the spatial concentration
field to characterize structure in a rapidly sheared
system of inelastic disks. Unfortunately, the
Fourier transform is a very expensive method,
computationally, with which to measure the struc-
ture of three-dimensional concentration fields.

An alternative method used by Sanders and
Ackermann (1991) is to divide the CV into uni-
form cells, count the number of particle centers
in each cell, and calculate the average variance of
the concentration field. In the following experi-
ments, the CV is divided into a 10 x 10X 10
array of cubic cells. The variance of the concen-
tration field, for a given realization of the system,
is
variance = (1,/1000) ¥ (n, — N/1000)?, (1)

1]
where ¥, is a sum over the cells, n; is the number
of sphere centers in cell i and N is the total
number of spheres in the CV. A series of experi-
ments was performed with 6859 (19%) spheres, in
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Fig. 2. Plots of variance (1) versus time for the conditions v = 0.2, L /d = 26. The scale for e = 0.2 is on the right and the scale for
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Fig. 3. Orientations for viewing slices of the three-dimensional
control volume.

which the coefficient of restitution e was reduced
from 0.9 to 0.2. The solid fraction v was 0.2 and
L /d = 26. Figure 2 shows the variance (1) versus
time for several values of e. The data were
smoothed using a low pass filter with a cut-off

decreases both the mean value of the variance
and the size of the fluctuations in the variance
increase.

The variance of the concentration field, mea-
sured over a grid of cells in which the average
number of spheres per cell is 6.859, is not a direct
measure of large-scale structure in the CV. To
see how the variance correlates with large-scale
structure, the spatial concentration fields were
visually compared during periods of high and low
variance. Three-dimensional snapshots of the
concentration field conceal voids and regions of
high density. Therefore, cross-sections of the con-
centration field are used to reveal three-dimen-
sional structure. The CV is sliced into 40 cross-
sections of equal thickness in each of the three
coordinate directions, that is, normal to each axis.
The average number of sphere centers in each
slice is 171. Figure 3 shows the viewpoints for the
slices.

Figure 4 shows the concentration field at 2100
s with =02, e=0.2, and L/d =26 during a
period of low variance in Fig. 2. Seven of the 40
slices in each of the three directions are arranged
in three strips corresponding to views in the x-

frequency of 0.01 s™!. The plot shows that as e (top strip), y- (middle), and z- (bottom) direc-
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Fig. 4. Slices of the three-dimensional control volume in each of the three coordinate directions at time = 2100 s for the conditions
v=02e=02,L/d=26.
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tions. The number beneath each slice gives the
distance of the slice from the origin measured
along the axis parallel to the viewing direction.
Although the concentration field is not homoge-
neous, there is no well defined structure.

Figure 5 shows the concentration field, at 2500
s of the same experiment, during the following
period of high variance in Fig. 2. The slices show
two large cloudlike structures of high density
surrounded by very dilute regions. The slices in
the top strip, views of the CV looking in the
x-direction, show little variation. The second and
third strips show views of the CV looking in the
y- and z-directions, respectively. The structure
shown in both strips is paraliel to the x-direction.
Interestingly, there is no evidence of the charac-
teristic diagonal structure seen in similar two-di-
mensional shear flows of identical disks by Hop-
kins and Louge (see fig. 1). The diagonal struc-
ture was caused by rotation and stretching of
clusters by the mean shear field. Examination of
other times of high and low variance in Fig. 2
shows a similar qualitative agreement with the

structure of the concentration field in visualiza-
tions of the CV.

4. The probability density of the concentration
field

A smooth spatial concentration field is created
(Hopkins and Louge, 1991) by dividing the CV
into cubic cells. The cells have a dimensionless
width a =w/d, where w is the cell width and d
is the sphere diameter. In the present experi-
ments a =0.92/v2. Each cell may contain no
more than one sphere center. The volume of each
sphere is assigned to the cell in the three-dimen-
sional grid in which its center lies. This produces
a binary concentration ficld in which a cell either
contains a sphere or it does not. Therefore, the
concentration field is smoothed using a low pass
filter with a transition frequency of 1/12a4. The
smoothing filter has the effect of distributing the
volume of each sphere over its immediate neigh-
borhood. Since the neighborhood is small com-
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Fig. 5. Slices of the three-dimensional control volume in each of the three coordinate directions at time = 2500 s for the conditions
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(Refer to Fig. 5 for the coordinate directions in the lower strip.)

pared to the CV, the local concentration field is
accurately represented. The smoothing function
is g(p, q, r):

g(p,q,r)=sin c(p/6) sin c(q/6) sin c(r/6)

x(Z T Tsin c(p/6)

Xsin ¢(gq/6) sin c(r/6))~l, 2)

where the integers p, g and r correspond to the
x-, y-, and z-directions, sin c(x) = sin(wx)/wx,
and the summations are performed from —35 to
+35, that is, on the 11 X 11 X 11 cell region sur-
rounding the cell in which the sphere’s center is
located.

The probability density of the concentration

lookmg in the d1rect1on of the negatlve Z-

field is shown in Fig. 6 for the two realizations
whose cross-sections are shown in Figs. 4 and 5.
The mean concentration was v =0.2. The two
realizations show qualitatively different distribu-
tions of particle concentration. The distribution
at 2100 s corresponds to a period of low variance.
At 2500 s, in a period of high variance, the
distribution is nearly bimodal, with large areas of
dilute concentration and areas of high density
approaching random solid packing.

5. The dependence of the variance on number
density

The dependence of the variance of the concen-
tration field on the number of spheres in the unit
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Fig. 9. The gradient of the mean velocity u(y) for the cross-sections shown in Fig. 5, looking in the direction of the negative z-axis.
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CV was examined by performing experiments with
v=0.2 and e =10.2 for ratios of L/d of 20, 33,
and 40. The plots of variance versus time ob-
tained in these experiments are compared in Fig.
7 with the variance at L /d of 26 shown in Fig. 2.
The variances in Fig. 7 are normalized by the
square of the average number of spheres per cell
in each experiment. The experiment at L /d =20
used an 8 X 8 X 8 array of cells, while the remain-
der used a 10 X 10 X 10 array. The mean/vari-
ance of the plotted variances for L /d of 20, 26,
33, and 40 are, respectively, 0.323/0.001,
0.440/0.008, 0.460,0.011, and 0.483/0.015. Al-
though the time series appear periodic, their
Fourier power spectrums do not exhibit clear
peaks.

6. Mean velocity gradients

The mean velocity field in the CV is main-
tained by the relative motion of the upper (in the
y-direction) periodic image of the CV with re-
spect to the lower image. In a simulation with
nearly elastic spheres, the mean velocity gradient
is approximately linear, even when averaged over
small time intervals. However, because of the
effects of particle clouds, the gradients in the
inelastic shear flows studied here are highly non-

linear. Figure 8 shows the variation in the mean
of the x-component of velocity u(z), in each of
the cross-sections in Fig. 5, looking in the direc-
tion of the y-axis. Figure 9 shows the variation in
the mean of the x-component of velocity u(y), in
each of the cross-sections in Fig. 5, looking in the
direction of the z-axis. In Figs. 8 and 9 the mean
velocity profile in each cross-section is plotted on
a scale of —0.75 to +0.75. In a homogeneous
simple shear flow, the mean velocity u(z) in Fig.
8 would be zero and the mean velocity u(y) in
Fig. 9 would be linear from —0.5 to +0.5. In
both figures, the mean velocity profile shows large
variation in the z-direction and the mean velocity
gradient through the clouds is nearly flat.

7. The granular temperature field

The fluctuating velocity field, defined in terms
of the local mean velocities, defines the granular
temperature field. Intuitively, one expects spheres
in the dense regions in Fig. 5 to have a lower
granular temperature (smaller velocity fluctua-
tions) than spheres in the surrounding dilute re-
gions. The granular temperature field in a cross-
section can be found by first calculating the
smoothed concentration field in the CV using the
method described above.
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The granular temperature field is calculated in
a similar manner. The fluctuating kinetic energy
(ke) of a sphere k ‘

ke, = (1, — Cw)) + (0) + (W), (3)

is assigned to the cell in which its center lies. The
symbols u, v, w denote velocity components in
the x-, y-, and z-directions. The mean velocity
(u) is averaged over strips normal to the y-direc-
tion as in Fig. 9. The granular temperature field
is smoothed using (2). The value of the smoothed
temperature field in a cell is divided by the value
of the smoothed concentration field in the cell to
obtain the specific temperature field. The specific
temperature field shows the temperature of the
spheres in a region rather than the total energy
contained in the region. Figure 10 shows, qualita-
tively, the specific granular temperature field for
the cross-section at z =0.237 in the bottom row
in Fig. 5 using the corresponding mean velocity
gradient in Fig. 9. The densely contoured areas of
the figure denote temperature peaks in the dilute
region.

8. Conclusion

In this work, the structure of three-dimen-
sional shear flows was investigated. The variance
of the concentration field on a medium scale
between the length of the control volume L and
the sphere diameter d was used to describe the
time history of structure formation and disinte-
gration. The periods of high and low variance
were found to correlate with structure shown in
cross-sectional snapshots of the simulation. The
size of the fluctuations in the variance was shown
to depend on the coefficient of restitution e and
on the ratio L /d. Dependence on the solid frac-
tion » was not investigated.

The mean velocity gradient was shown to be
highly non-linear. The presence of particle clouds
caused variations in mean velocity in the trans-
verse (z) direction as well as in the direction (y)
of the imposed shear. The granular temperature
in cross-sections calculated using the local mean
velocity was qualitatively investigated and found

to be much higher in the dilute regions surround-
ing the clouds than in the clouds themselves.

Traditionally, fully periodic simulations have
been performed to determine the effects of varia-
tions in important parameters such as solid frac-
tion v, restitution e, and friction w on the stresses
in the CV. In these simulations, with relatively
small numbers of particles, deviations from sim-
ple shear occur over very short periods relative to
the duration of the simulation. In the experi-
ments reported here, using much larger systems
of particles, profound deviations from simple
shear are observed to persist for long periods.

The diagonally periodic structure (see Fig. 1)
composed of relatively small clusters of particles,
which dominated the two-dimensional flows in-
vestigated by Hopkins and Louge (1991), was not
observed in cross-sectional snapshots of the
three-dimensional shear flows.
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