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Abstract

This paper compares the results of numerical simulations for two-dimensional,

rapid, homogeneous shear flows of identical, smooth, inelastic disks with the predictions

of Jenkins and Richman [JFM 192, 313-328 (1988)] for the relaxation of the second

moments of the velocity distribution function following a homogeneous, but anisotropic

disturbance of their steady values. For nearly elastic disks, the time-history of the

relaxation is in excellent agreement with the theory in both its dense and dilute limits.

However, deviations are observed in the case of inelastic particles.

Discussion

Jenkins and Richman [1] consider rapid granular flows of identical, smooth,

inelastic disks of mass m, diameter a, and coefficient of restitution e. They introduce an

anisotropic MaxweUian velocity distribution function based on the full second moment of

the velocity distribution function K-=-<CC>, and determine approximate analytic solutions

of the balance law for K for steady, simple shear of both dilute and dense systems with

arbitrary values of e. For general flows they write this balance law as

pKal] + + P_tl3 + Ppxt - m x[CaC_] = 0, (1)

where p is the mean mass density, the overdot denotes a time derivative following the meran

flow, the Greek indices take the values 1 and 2, and

Pal5 - pK_ + Oetl3 (2)
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is the stress tensor expressed here as the sum of streaming and collisional components,

respectively. The flux Q_ of second moment also includes streaming and collisional

contributions; however, in homogeneous flows, the divergence of this flux vanishes. The

last term is a collisional source of second moment. Jenkins and Richman [I ] express it as a

sum of three integrals
A A

m z[CaC_] = Aa_ + Ea_ + Ga_, 113)

which they calculate along with O(_ in the dilute and dense limit. In the steady simple

shear that we consider, the mean velocity is directed along the Xl axis of a cartesian

coordinate system and varies linearly with the x2 coordinate. For convenience, we expre,_s

Eq. (I) in dimensionless form. To do this, we take the reference time and distance to be,

respectively, the inverse of the shear rate and the particle diameter. Dimensionless

quantities are denoted by a tilde (~).
A

In the dilute limit, the area fraction v of the particles is small and @a_i =Ga[I = 0.
A

Using Eqs. (60)-(6 I) of Jenkins and Richman for Atx_ and Ea]], F-q.(1) becomes

_)Kl__l
+ 2K,21 = 2G(I+e) 3 -_I/2I(ct)(KII K22) + (l-c)_3/2 T(O0 }

_)_- " _;3/2 { [1 + (1-c)] - , (4a)

2G(l+e) 3 -rl/2 (Kll -_I¢".22~ = + 71:3/2 { [1 + (I-e)] I(ct) - K22) (l-e) T3/2 T(tx) }, (4b)Ot
and

_ 4G(l+e) _1/2
OK.__I.+... K-22 = /g3/2 [1 + 3 (l-e)] I(0t) KEl, (,_c)Ot

where G---v(16-7v)/16(1-v) 2, q"- (Kll + K22)/2 is the granular temperature, and

tX----[(Kll - K22) 2 + d'K212] 1/2/'2"r . 115)

The functions y(ot) and I(00 are given by the integrals

2rc

I(ct)- d sin220 (1 - ct cos2O)l/2 dO , (da)

and
27r

),(ct)- I (1 - ct cos20)3/2 dO . (6b)
O
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In this work, they are evaluated numerically.

In the dense limit, Pct_ = Oct,. We employ Eq. (79) of Jenkins and Richman for
A A

®a_ and their Eqs. (76)-(78) for Atx_, EcxBand Gtx_. Then Eq.(1) becomes

0T = - G(I+e)T1/2 [2(1-e)T y(tx,R) - S(0_,R)/8], (7a)~ _3/20t

and

OK2____!=_ G(1 +e)T
0"t _3/2 IN(a,R)+ (1-e)H(a,R)/4-J(a,R) - I(o_,R)/2], (.Tb)

where R - 1/8"FI/2. In Eqs. (A17)-(A22) of an Appendix, Jenkins and Richman [1]

provide approximate expressions for the integrals y, S, N, H, J and I in terms of R and

a -- ¢x/2_1/2R. Because in the lowest order theory for the dense limit it is assumed that

Kori]and the symmetric part of/_u_/)x lI have the same eigenvectors, the theory in its

present form does not permit the independent variations of K11 and K22 that are possible in
the simulation.

The numerical simulations are carried out using an algorithm described by Hopkins

and Louge [2]• In this scheme, th_. flow domain is periodic in the streamwise direction.

Periodic images of each disk above and below the square central domain of width L are

used to maintain the constant mean shear rate, without affecting the statistics of any higher

moment of the velocity field. After a given time step, the algorithm calculates the position

of each particle from the previous position and velocity at the beginning of the interval.

Collisions occur when a particle overlaps slightly with a neighbor. The velocities of the

particles emerging from a collision are calculated by considering the balance of linear

momentum in the collision. The coefficient of restitution characterizes the incomplete

restitution of translational velocity in the direction paraUel to the line of centers. A constant

simulation time step is chosen so the average overlap does not exceed 0.5% of the particl,:

diameter during each run.

At the onset of a simulation, the required number of identical disks is placed in th,e

periodic cell with a mean velocity corresponding to their location in the shear field and a

small random fluctuating component to initiate collisions. The disk velocities are adjusted to

cancel the net momentum of the system, and the initial position of the disks is such that the

center of mass of the system lies at the center of the periodic domain. First, a typical

simulation is carried out for a dimensionless time tt = 100 designed to create a random

configuration independent of the initial state of the system. Then an artificial imbalance in
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the second moments is produced by rescaling instantaneously the fluctuating velocity Calj)

of each pu,-t_cleof index j in the periodic domain to the new value

where _(o_) is a constant that need not be the same for the two components of the

fluctuating velocity. While they relax back to their steady values, the seconds moments are

computed at regular time intervals by averaging over the J particles of the central periodic

domain, 1< j <J,

1 J

<Ketl3> = ]- j=_l Ca(j) CB(j). (9)

Because for a finite number of particles <I_> exhibits random noise, we carry out several

relaxation runs with different initial configurations, and we average the resulting time-

histories. Typically, the amplitude of the noise grows with particle inelasticity.

A numerical scheme based on a fourth-order Runge-Kutta algorithm is used to

integrate the ordinary differential Eqs. (4) and (7) for the dilute and dense limits,

respectively. First, the algorithm is used to calculate the solution Kal3 to the steady
1

problem. Then initial values of the second moments Kal 3 consistent with the imbalance in

Eq. (8) are imposed, and the subsequent time-histories are compared with the results of the

simulation. For fixed indices ot and 13,

=  (13) *Ka_ Kori3-

As Figs. (1)-(4) indicate, the theory agrees remarkably well with simulations in the

dilute and dense limits for nearly elastic disks. Virtually every feature of the observed time-

histories are captured by the theory for ali values of _(1) and _(2) under consideration.
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_. Dilute,nearlyelasdcrelaxationof I_ tor theconditionsv---0.], e--0.9and

L/(I=83. Initially,_(1) = _(2) = _/2.Theabscissais"t.Forthemodel,theordinate

. 0is 1-__. For the simulation, it is equal to the average of 1- <K_>/<K _>

from ten separate runs. The circles, squares and triangles represent <K1l>, <K22>
and <K21>, respectively. The solid lines are the corresponding predictions of the
theory.
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F_i_. Dilute, nearly elastic relaxation of Kc_13with {(1)=1, {(2)-_. See Fig. 1 for
conditions and symbols.
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Fi_ig_.Dilute, nearly elastic relaxation of I_ with {(1)-_, {(2)=1. See Fig. 1 for
conditions and symbols.
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Fig. 4. Dense, nearly elastic relaxation of T and K21for the conditions v---0.6,e---0.9and

L/a=42 with _(1)--_(2)-_. The circles represent 1- <T>/<'Ig> and the triangles

1- <K21>/<K_I> from ten separate runs. The solid lines are the corresponding

values of 1- T/T* and 1- K21/K21*from the theory.

In dilute flows of inelastic particles, the theory agrees well with results of the

simulation, although the observed streamwise component K 11consistently lags behind the

predictions of the theory (Figs. 5-7).
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Fig, _5.Dilute, inelastic relaxation of Kal3for v=0.1, e---0.2,L/c=83 and _(1)=_(2)-_.
See Fig. 1 for symbols. Thirty separate runs are averaged.
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_. Dilute, inelastic relaxation of Ka_ with identical conditions and symbols as Fig. 5
but _(1)-1, {(2)-_.
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Fig. 7. Dilute, inel_Lsticrelaxation of Kal3 with identical conditions and symbols as Fig. 5
but_(1)=,f2,_(2)=I.

In dense flows of inelastic particles, the observed time-histories exhibit a

pronounced lag behind the predictions of the theory (Fig. 8). These departures for dense

systems of inelastic disks indicate the failure of the assumptions upon which the theory is

founded. These include, in order of increasing generality, that the pair distribution function

for colliding particles is isotropic, that the velocities of a colliding pair of particles are

uncorrelated, that the positions of a colliding pair are not correlated with their velocities,

and that the position and time enter into the complete pair distribution function for a

colliding pair of particles only t/trough the mean fields of interest and not explicitly. Other
evidence of the shortcomings of these assumptions may be found in the substantial

deviations between theory and simulation reported by Hopkins and Louge [2] for steady

collisional stresses when e_<0.5in the dense limit, and in the inelastic microstructure that
they describe.
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Fig. 8. Dense, inelastic relaxation of T and K21 with v---0.6, e----0.2,L/a--42 and

_(1)=_(2)-_. See Fig. 4 for symbols. Ten separate runs are averaged. The heavy
line represents 1- T/T*.
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