Studies of Gas-Particle Interactions in a Microgravity Flow Cell
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ABSTRACT: We are developing an axisymmetric shearing cell in which to study the interaction of a flowing gas with relatively massive particles that collide with each other and with the moving boundaries of the cell.  Microgravity in the International Space Station will permit suspensions to be studied over a range of laminar, steady, fully developed conditions where viscous forces dominate the gas flow and inertial forces proportional to the gas density are nearly eliminated.  To analyze the corresponding flows, we extend the simple shear theory of Sangani et al. (1996) by introducing energy transport due to spatial gradients and extending boundary conditions for bumpy frictional walls to systems with large slip velocity at the boundaries.

Introduction

An appreciation has developed for the influence of collisional interac​tions among particles in gas-solid suspensions. A crucial parameter is the “granular temperature” 
[image: image30..pict] where 
[image: image2.wmf] is the fluctuation velocity of the particles and overbars denote time-averaging. It is with this parameter that the solid phase can transmit momentum through an effective viscosity.

Sangani et al. (1996) have determined the contribution of the viscous forces of the gas to the dissipation of particle fluctuation energy in random flights of particles between collisions.  They do this over a range of concentrations for simple shearing flows in which the particle Reynolds number is small and the Stokes number is greater than one.

To test this theory, we have designed an axisymmetric Couette shearing cell allowing the control of the speeds of the moving inner and outer boundaries.  Unlike terrestrial flows, where the gas velocity must be set to a value large enough to support the weight of particles, the microgravity on the International Space Station will permit us to achieve suspensions in which the agitation of the particles can be small without causing the granular phase to lose its collisional character.

After a literature review and a description of the apparatus, we show theoretical predictions for granular agitation in the cell and for the sensitivity of our measurements to the viscous dissipation mechanism of Sangani et al. (1996).

Literature Review

Studies of fluid-particle interactions have often focused on suspensions in liquids.  However, because these suspensions involve forces proportional to the fluid density such as lift, added mass or history, their interpretation has been complicated by fluid inertia at any but the smallest particle Reynolds numbers.  Moreover, lubrication forces in the fluid generally prohibit direct particle contact, and, consequently, they obscure the mechanisms of granular interaction.

Bagnold (1954) was the first to consider suspensions of grains in a viscous liquid.  From experiments in a Couette shearing apparatus with neutrally buoyant spheres, he distinguished two asymptotic flow regimes delimited by a parameter proportional to the Stokes number
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which measures the relative importance of the inertia of the grains and the viscous forces from the fluid. In Eq. (1), (s(sd2/18(gis the viscous relaxation time, where s, d and µg are, respectively, the density of the spheres, their diameter and the gas viscosity, and ( is the mean shear rate. At low Stokes number, Bagnold’s suspension behaved as an “macro-viscous” fluid with effective viscosity independent of . At high Stokes number, the shear and normal stresses measured in his apparatus were dominated by grain inertia and thus were proportional to the square of the shear rate. Jenkins & McTigue (1990), Nott & Brady (1994) and Zenit et al. (1997) also studied liquid-solid suspensions at low Stokes and Reynolds numbers.

Challenges associated with fluid inertia can be mitigated by suspending solids in a gas. However, on earth, such suspensions require large gas velocities to balance gravity or, to maintain the particle Reynolds number below unity, small particles, which often experience uncertain surface forces and prohibit control of granular agitation.

We focus on the regime where grain inertia and fluid viscosity both play a role. Thus, we borrow from theories of dry granular materials to describe the solid phase. To capture flows of a dry granular material interacting through inelastic impacts, Lun et al. (1984) and Jenkins & Richman (1985) added collisional dissipation of fluctuation energy to the kinetic theory of dense gases. For a collisional flow of spheres, they calculated the solid pressure
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where  is the solid volume fraction, G((g12(() incorporates the Carnahan & Starling (1979) pair distribution function g12(()=(2-()/2(1-()3 and T is the granular temperature. Jenkins & Richman (1985) then evaluated the granular stress tensor
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where 
[image: image6.wmf]is the granular bulk viscosity; 
[image: image7.wmf]is the granular shear viscosity; (ij is the Kronecker delta and 
[image: image8.wmf] is the rate-of-strain tensor for the grains with deviatoric part 
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To predict profiles of the granular temperature, they wrote a balance of the fluctuation kinetic energy of the spheres involving the flux
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the volumetric rate of collisional dissipation
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and a production term capturing the working of shear stresses through the mean velocity gradient. In simple shear, this production term is
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The symbol e in Eq. (5) is the coefficient of normal restitution in a binary impact of flow spheres. Zhang (1993) generalized this coefficient by introducing an effective coefficient of restitution eeff incorporating frictional dissipation of fluctuating energy. To leading order in the Coulomb friction coefficient µ, the effective restitution is eeff(e-((/2)(. Zhang (1993) provided more complicated expressions for higher µ.

Louge et al. (2000) showed that computer simulations incorporating collision parameters measured in their laboratory agreed well with profiles of mean velocity and fluctuation energy recorded in a microgravity apparatus.

In order to understand the dynamics of fluidized suspensions, Koch and collaborators added detailed gas-solid interactions to the formalism of Jenkins & Richman (1985). Koch (1990) first investigated the particle velocity distribution function of elastic spheres suspended in a gas at low Reynolds number. Tsao & Koch (1995) then considered homogeneous, simple shear flows of dilute suspensions of smooth spheres experiencing collisional interactions and Stokes gas drag. Using computer simulations, Sangani et al. (1996) then extended the work to denser suspensions of smooth spheres in simple shear flows with small particle Reynolds number, finite Stokes number, and no relative mean velocity between the spheres and the gas. Their simulations included Stokes flow interactions except for spheres separated by a gap comparable to the gas mean free path (g, for which the continuum lubrication theory failed. For finite Stokes numbers, they derived the volumetric rate of dissipation of particle fluctuation energy due to viscous interactions with the gas:
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where
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and they fitted the dependence of k1 on  using the numerical simulations. To incorporate the failure of the Stokes equations to predict the lubrication force at gaps comparable to (g,  Sangani et al. (1996) considered that the force remains constant for a gap < (md). By studying the non-continuum lubrication flows between smooth spheres colliding in a gas, Sundararajakumar & Koch (1996) then calculated
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Experiments

We are developing the axisymmetric shear cell sketched in Figure 1. It consists of two counter-rotating boundaries to which half-cylindrical bumps are affixed. Observations will be made through the top window using a digital video camera. The velocity of the spheres will be inferred using computer vision techniques developed in an earlier project (Louge et al. 2000). To evaluate the role of non-continuum lubrication, we will evacuate the apparatus partially and measure Rdiss at increasing (g. Finally, we will run experiments at Stokes and Reynolds numbers where the theory is valid and also, to inform future work, at values when it is not.

Figure 1. Detail of the axisymmetric shear cell. Dimensions are not to scale and the top window is omitted.

Without a gas, individual impacts are so fast that the only time scale is the inverse of the shear rate. At small particle Reynolds numbers, the gas adds the viscous relaxation time s. In simple shear flows, Sangani et al. (1996) have calculated values of the limiting Stokes number at which the particle fluctuation energy is equally dissipated by viscous and colli​sional interactions. Far above this limit, the shear rate is sufficient to ignore the viscous drag.

In contrast, we will reduce the boundary speed in successive tests until the Stokes number becomes small enough for the gas to affect the granular fluctuation energy. We will control the particle Reynolds number by adjusting the absolute pressure in the cell. We will then infer Rdiss by recording transverse profiles of granular temperature and comparing these with theoretical predictions.

Because the continuum theories of Sangani et al. (1996) and Koch & Sangani (1999) concern unbounded simple shearing flows of constant agitation, they must be extended to allow interpretation of our experiments. To that end, we have developed a theory for inhomogeneous, fully developed, steady shearing collisional granular flows interacting with a gas in a curved channel bounded by two moving bumpy boundaries and two flat, frictional walls.

A difficulty with the curved cell is that the centripetal accelerations cannot be balanced by radial gradients of the normal stress alone.  Thus, the underlying flow is not merely axisymmetric. Instead, the momentum balances along the three cylindrical coordinates involve stress gradients and convective terms that drive secondary flows with velocities in the radial and axial directions. However, our simulations of the underlying granular flows indicate that these flows are small if the ratio of the width and mean radius of the channel is kept below 1/15.

Ignoring such flows, the streamwise solids and gas momentum balances are, respectively,


[image: image16.wmf],
      (10)

[image: image1.wmf]
[image: image17.wmf],
      (11)

where (r, , z) are radial, azimuthal and axial cylindrical coordinates. The gas shear stress is
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where ug is the mean gas velocity. The drag is proportional to((18(g(1-)2Rdrag()/d2, where Rdrag() is a correction to Stokes drag on a sphere that accounts for the presence of neighbors and increases with  (Koch & Sangani 1999).

In the radial direction, the solids momentum balance reduces to the granular pressure gradient
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This approximate radial momentum balance leads to radial variations of the granular pressure, which in turn affect the relation between  and T.

To determine the granular temperature, we write the balance of fluctuation energy
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We solve Eqs.(11)-(14) subject to boundary conditions at the flat side walls and at the moving bumpy boundaries. For flat, frictional walls, Jenkins (1992) derived the corresponding conditions for the slip velocity, while Jenkins & Louge (1997) did so for the flux of fluctuation kinetic energy. Richman & Chou (1988) derived boundary conditions for the slip velocity s and flux of fluctuation energy for a wall consisting of smooth inelastic bumps attached to a flat wall with unit normal ni,
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where s is the granular shear stress at the wall and fs and bs are functions of normal restitution and a parameter capturing the bumpiness of the boundary. We refined these conditions by adding non-linear corrections in the slip velocity that remain accurate when the latter is large. We also incorporated bump friction by adding the results of Jenkins (1992) and Jenkins & Louge (1997) to the boundary conditions for stress and flux.

Finally, we solved the elliptical system of non-linear PDEs (11)-(14) in a two-dimensional grid (r, z) using the method of Peaceman & Rachford (1955). We found that, in this flow, the relative velocity (ug-us) between gas and solids is small everywhere except within a distance on the order of a sphere diameter from the boundaries. Figure 2 shows the predicted granular temperature profiles averaged along z. Finally, Figure 3 indicates that our projected temperature measurements are sufficiently sensitive to Rdiss to permit an accurate determination of its magnitude at Stokes numbers of about 50.

[image: image26.wmf]
Figure 2. Radial profiles of the depth-averaged 
[image: image23.wmf] made dimensionless with the relative boundary velocity 
[image: image24.wmf]for the Stokes numbers shown. Centers of the inner bumps (right) and outer bumps (left) are at radial positions of 105d and 114d, respectively.  The cell depth is 10d.  The normal restitution, friction and tangential restitution coefficients are (0.95,0.1,0.4) for binary impacts and (0.85,0.1,0.4) for impacts with bumps or flat wall, respectively.  The solid volume fraction is 40%.

[image: image27.wmf]Figure 3. Relative variations in 
[image: image25.wmf] from changing Rdiss by ±20% from the theoretical value of Sangani et al. (1996) for the conditions of Fig. 2 and =5% (circles) and 40% (triangles).
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