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Abstract This paper considers segregation in collisional granular shearing 
ows

from the experimental, computational, and theoretical standpoints. We

focus on a phenomenon of segregation where the separation of grains by

size or mass is driven by spatial gradients in the 
uctuation energy of

the grains.

We report experiments carried out in microgravity with a shear cell

shaped as a race track and containing a mixture of two types of spher-

ical grains. In those experiments, a gradient of 
uctuation energy was

produced between an inner moving boundary driving collisions among

the grains and an outer, more dissipative boundary at the periphery of

the cell. The grain segregation and the velocity statistics were captured

by a rapid video camera and analyzed using computer-vision software.

We brie
y outline a kinetic theory and simulations for these 
ows.

We compare the corresponding pro�les of granular concentration, mean

velocity, and 
uctuation energy with the experimental results.

1. INTRODUCTION

The size segregation of 
owing or shaken grains is a commonly ob-

served phenomenon in industrial processes and in nature. In a gravita-

tional �eld, 
ows are generally dense and dominated by enduring con-

tacts; their segregation mechanisms are diverse and complex (Savage

and Lun 1988, Ha� and Werner 1986, Rosato et al. 1986, 1987). In

reduced gravity, collisional 
ows become possible and the segregation

is driven mainly by spatial gradients in the energy of granular veloc-

ity 
uctuations. In steady, fully-developed 
ows, the balance of mo-

mentum exchanged in collisional interaction among di�erent species of

grains requires that gradients of particle 
uctuation energy be balanced

by concentration gradients, thus giving rise to segregation (Jenkins and

Mancini 1989).
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To observe collisional segregation driven by a 
uctuation energy gra-

dient in the direction perpendicular to the 
ow, we constructed a shear

cell in the form of a race track in which the segregation of a sheared bi-

nary mixture of two di�erent types of sphere is maintained by the motion

of the inner boundary. We conducted experiments on NASA's KC-135

microgravity aircraft. To analyze the resulting images, we developed

appropriate vision software. We then compared the pro�les of volume

fraction and mean and 
uctuation velocities with computer simulations

of the apparatus. The link between the computer simulations and the

physical experiments was achieved by measuring the parameters that

characterize individual impacts (Foerster et al. 1994).

To interpret the results of the simulations and experiments, we solved

equations governing the spatial variation of the mixture 
uctuation

energy and velocity. For simplicity, we employed the approximate

treatment for the mixture segregation and the transport coeÆcients of

Arnarson and Jenkins (2000), and carried out the averaging of Jenkins

and Arnarson (2000) to capture the e�ects of side walls.

We begin with a brief outline of the theory. Then, we summarize

the principle of the simulations, describe the experiments, compare the

results, and discuss their signi�cance.

2. SKETCH OF THE THEORY

Because physical experiments inevitably involve boundaries, their in-

terpretation must be conducted with a theory involving these. We brie
y

outline such a theory for a steady, fully-developed, rectilinear, unidirec-

tional 
ow in a rectangular cross section bounded by two bumpy bound-

aries and two 
at, frictional walls.

In the absence of an interstitial gas, the steady, fully-developed mo-

mentum balance in the 
ow direction is

0 =
@�xy
@y

+
@�xz

@z
; (1)

where �ij is the granular stress tensor.
The directions x; y, and z are shown in Fig. 1. The origin is located

midway between the 
at side walls at an ordinate (d+rAB)=2 above the
centers of the stationary boundary bumps, where rAB is the sum of the

two species radii and d is the bump diameter. Because the kinetic theory

follows the center of interior spheres, its domain occupies a narrower

range than the physical experiment, namely 0 � y � Y 0 and �Z 0=2 �
z � Z 0=2. With bumps of uniform size, Y 0 � Y � d � rAB and Z 0 �
Z � rAB.
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Figure 1 Sketch of the bottom half of the cell. Its straight section (I) has length L,

width Y between centers of cylindrical boundary bumps and depth Z between the two


at side walls. Bumps are aÆxed to both boundaries, including the curved regions

(II) and (IV). The upper straight section (III) and the other halves of regions (II)

and (IV) are omitted for clarity. Fully developed 
ows are simulated using a periodic

boundary condition in the observation region with x1 � x � x2. Dimensions are not

to scale.

The equation governing spatial variations of the mixture 
uctuation

energy is

0 = �@qy
@y

� @qz
@z

+ �xy
@u

@y
+ �xz

@u

@z
� 
 ; (2)

where 
 is the volumetric rate of collisional dissipation and qi is the

energy 
ux. The mixture velocity u along the 
ow is given by

u � �A�AuA + �B�BuB
�A�A + �B�B

; (3)

where ��, ��, and u� are the material density, volume fraction, and mean

velocity of species �, respectively. Similarly, the mixture temperature T
is given by

T � nATA + nBTB

n
; (4)

where T� is (2/3) the average 
uctuation kinetic energy of species �
(Jenkins and Mancini 1989), n� = ����=m� is its number density, m�

is its mass, and n = nA + nB.
The shear stress is related to the velocity gradient through the vis-

cosity �. In fully-developed 
ow,

�xy = �
@u

@y
and �xz = �

@u

@z
: (5)
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Similarly, the 
ux is given by

qi = �� @T
@xi

; (6)

where � is the coeÆcient of thermal conduction. In this work, we adopt

the simpli�ed forms of the transport coeÆcients calculated by Arnarson

and Jenkins (2000) for slight di�erences Ær � rA=rB � 1 and Æm �
(mA �mB)=(mA +mB) in the radii and masses of the two species,

� =
4

5

r
2

�
n rAB

p
mABTG(�)J(�)[1 + ( �fA � 1

2
)(Ær + Æm)] ; (7)

and

� = 4

r
2

�
n rAB

r
T

mAB

G(�)M(�)[1 + ( �fA � 1

2
)(Ær � Æm)] ; (8)

where n is the mixture number density, mAB is the sum of masses, and

G, J , and M are functions of the mixture volume fraction �:

G(�) � �(2� �)

2(1 � �)3
; (9)

J(�) � 1 +
�

12

�
1 +

5

8G(�)

�2
; (10)

M(�) � 1 +
9�

32

�
1 +

5

12G(�)

�2
: (11)

In Eqns. (7) and (8), fA is the number fraction of species A and the

overbar denotes its average value in the cross section. For nearly elastic

spheres, the rate of dissipation per unit volume is


 � 24

r
2

�

nT 3=2

rAB
p
mAB

G(�)(1� ee�)[1� ( �fA � 1

2
)(Ær + Æm)] ; (12)

where, following Zhang (1993), we incorporate the dissipation due to a

modest friction �f in collision between grains using an e�ective restitu-

tion coeÆcient on the order of

ee� � e� �

2
�f : (13)

Finally, the mixture pressure is

P =
24�T

�r3
AB

[1� 3( �fA � 1

2
)Ær]

�
1 +

1

4G(�)

�
G(�) : (14)
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Our experience with the simulations is that the 
at side walls play

a relatively minor role in this 
ow. Thus, rather than carrying out

a numerical integration of Eqns. (1) and (2), we follow Jenkins and

Arnarson (2000) by �rst integrating these along z. For simplicity, we

assume that the mixture kinetic energy and species volume fractions

are uniform in that direction, that the average along z of the square of

the shear stress �xy is equal to the square of its average, and that the

shear stress �xz is proportional to z and vanishes at the centerline by

symmetry. In that case, Eqns. (1) and (2) reduce to

@ h�xyi
@y

+
2

Z 0
�+xz = 0 (15)

and

�@qy
@y

+
h�xyi2
�

� 
 +
1

Z 0
(q�z � q+z ) +

1

3�
�+xz

2
= 0 ; (16)

where h�xyi = �dhui=dy. In these expressions, brackets denote the av-

eraging along z; they are omitted for those variables which, from our

assumptions, are constant along that direction. The superscripts + and

� represent quantities at the 
at side walls at z = +Z 0=2 and �Z 0=2,
respectively. Jenkins (1992) and Jenkins and Louge (1997) derived ex-

pressions for, respectively, the granular stress and the granular 
ux of


uctuation kinetic energy. If all spheres are sliding at the side wall,

��xz = ��+xz = �fP (17)

and

q�z = �q+z = bsP

r
T

mAB

; (18)

where �f is the Coulomb friction coeÆcient of spheres impacting the

walls and bs is a known function of volume fraction and wall impact

parameters. When the spheres roll rather than slide, the stresses and


uxes are functions of the mean relative velocity of the contact point of

the grains with the wall, which we evaluate in terms of the mean center

of mass velocity assuming that the granular spin equals half the granular

vorticity.

At the bumpy boundaries, we employ the conditions derived by

Jenkins, Myagchilov, and Xu (2000), who re�ned the conditions calcu-

lated by Richman and Chou (1988) for smooth bumps by adding nonlin-

ear corrections in the slip velocity that remain accurate when the latter

becomes large. We incorporate frictional interactions on the bumps in

the simple way proposed by Jenkins and Arnarson (2000). Then, the
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boundary conditions for the temperature are found from a balance of


uctuation energy at the stationary wall,

dT

dy
= �2b0

T

rAB
; (19)

and at the moving wall,

dT

dy
= +2bY

T

rAB
; (20)

where b0 and bY are complicated functions of the parameters of impact

with the bumps, the stress ratio h�xyi =P , and the wall bumpiness

� � sin�1
�

d+ s

d+ rAB

�
; (21)

which is an average measure of the penetration of a sphere of either

species in bumps of spacing s between adjacent cylinder edges. Similarly,

the velocity boundary conditions are derived from a momentum balance

near the stationary boundary,

dhui
dy

=
P

�

r
mAB

�T (0)
f0
�
hu(0)i

�
; (22)

and the boundary moving with speed U ,

dhui
dy

=
P

�

r
mAB

�T (Y )
fY
�
U � hu(Y )i

�
; (23)

where f0 and fY are complicated functions of bump impact parameters,

wall bumpiness and relative velocity.

To capture the segregation, we adopt the one-dimensional form of the

simpli�ed transport equation for fA proposed by Arnarson and Jenkins

(2000). In the absence of gravity,

dfA

dy
= �fA(1� fA)

1

T

dT

dy
[R(�)Ær + �(�)Æm] ; (24)

where

�(�) � 179

29
G(�) +

105

116
; (25)

R(�) � 5

58

�
2 +

�(3� �)

2� �
� 12

5
G(�)

�

+ 2G(�)

�
3 +

�(3� �)

2� �

�
� 12�H(�)[1 + 4G(�)]

1 + 4G(�) + 4�H(�)
;

(26)
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and

H(�) � dG(�)

d�
: (27)

Here, we determine lateral pro�les of hui, T , and fA by solving

Eqns. (15), (16), and (24) numerically subject to conditions (19), (20),

(22), and (23), and for given values of the mean volume fraction �� and

mean number fraction �fA.

3. SIMULATIONS

The simulations follow the dynamics of an ensemble of two species of

spheres interacting with the boundaries and among themselves through

individual impacts. They are based on the algorithm described by

Hopkins and Louge (1991). In that algorithm, collisions occur when

a sphere overlaps slightly with another sphere or with the wall. The

algorithm adjusts its time step periodically to ensure that the mean

overlap is kept below a negligible tolerance. In addition, a search grid

is superimposed on the 
ow domain to permit fast identi�cation of near

neighbors. Because this method makes it super
uous to maintain a list

of future impacts, its computing time is merely proportional to the num-

ber of spheres and, consequently, it can simulate the entire shear cell on

a relatively small workstation.

Pro�les of solid volume fraction, velocity, and temperature for the two

grain species are measured by dividing the 
ow domain into a number

of averaging slices (Fig. 1). The average value h i of an intrinsic grain

property  in a slice is calculated by considering a number Nj of instan-

taneous realizations of the 
ow, by summing all contributions from Nk

spheres passing through the slice over all realizations, and by dividing

the result by Nj and Nk. This center-averaging is consistent with the

theory outlined earlier. In the absence of gravity, all grain velocities

scale with the velocity U of the boundary. In addition, we make the


uctuation energy dimensionless with U2 and mAB=2. Dimensionless

quantities are denoted by a dagger (y).
Because any rigid boundary tends to order spheres in its neighbor-

hood, the transverse pro�les of solid volume fraction exhibit spatial os-

cillations near the bumpy inner and outer walls with wavelength on the

order of a sphere diameter. Because the kinetic theory ignores these 
uc-

tuations, their presence can hinder comparisons of the measured segre-

gation with the corresponding theoretical predictions. In grain mixtures,

we alleviate this diÆculty by focusing on the relative number fraction �
rather than the volume fractions of each individual species. For example,
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for species A,

�A �
fA
�fA

=
(rB=rA)

3 + ��B=��A
(rB=rA)3 + �B=�A

: (28)

Values of �A above unity indicate a local surplus of species A spheres.

As long as the radii of the two species are not greatly di�erent, the

relative number fractions incorporate ratios of volume fractions that

nearly oscillate in phase and, consequently, their own spatial 
uctuations

are considerably reduced.

In the simulations, impacts are characterized in terms of three coef-

�cients (Walton 1988). The �rst is the coeÆcient of normal restitution

e. The second is the coeÆcient of friction �f for sliding impacts. The

last is the coeÆcient of tangential restitution �0 for impacts that do

not involve sliding. For collisions between two free spheres or between a

sphere and one of the 
at side walls, we measured these parameters with

the facility described by Foerster et al. (1994); for collisions with a cylin-

drical boundary bump, we adopted the method of Lorenz et al. (1997).

Table 1 summarizes the impact parameters.

Table 1 Impact properties

Sphere r1 �1 Sphere 2, r2 �2
1 (mm) (g/cm3) bump or wall (mm) (g/cm3) e �f �0

Acrylic 1.6/1.98 1.22 Acrylic 1.6/1.98 1.22 0.93 0.12 0.35

Ceramic 1.59 3.86 Ceramic 1.59 3.86 0.97 0.10 0.24

Acrylic 1.6/1.98 1.22 Ceramic 1.59 3.86 0.93 0.11 0.10

Acrylic 1.6/1.98 1.22 Fixed bump 1.59 | 0.97 0.22 0.28

Ceramic 1.59 3.86 Fixed bump 1.59 | 0.68 0.08 0.29

Acrylic 1.6/1.98 1.22 Aluminum 1 | 0.94 0.14 0.51

Ceramic 1.59 3.86 Aluminum 1 | 0.61 0.10 0.14

Acrylic 1.6/1.98 1.22 Glass 1 | 0.83 0.12 0.34

Ceramic 1.59 3.86 Glass 1 | 0.96 0.09 0.00

4. EXPERIMENTS

The apparatus is shaped as a race track. Its straight sections have

dimensions L = 419mm, Y = 29mm and Z = 40mm; they permit gran-

ular segregation in a rectilinear shearing 
ow without signi�cant body

forces. The grains are recycled through circular regions of a similar cross

section and an inner radius of 62mm. The moving boundary consists of

a chain to which closely spaced hemi-cylindrical stainless steel rods with

d = 3.2mm are aÆxed. The chain is driven by a direct-current motor

connected to one of the sprockets through a timing belt.
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The surface of the outer stationary boundary is made bumpy with

similar hemi-cylinders. In the curved regions, these cylinders are closely

spaced (s = 0). In the upstream half of the straight regions, the separa-

tion gradually increases to s = 1.6mm, and it remains at this value in

the downstream half where observations were carried out. The texture

of the stationary boundary is meant to maintain the grains as agitated

as possible in the curved sections, while providing a smooth transition

to a steep temperature pro�le in the neighborhood of the observation

window.

Flat side walls provide lateral containment and allow the 
ow to be

viewed through glass windows. A digital Kodak EktaPro R0 camera

images a 25mm wide region of the cell with abscissa from the upstream

sprocket axis in the range x1 � x � x2, where x1 = 292mm and x2 =

326mm. The spheres exhibit excellent sphericity and narrow size distri-

bution. Their �nish allows the vision software to track their movement

with accuracy. Louge et al. (2000) describe the computer image analysis.

A typical image is shown in Fig. 2. As long as the displacement between

two consecutive frames remains less than a sphere radius, this method

Figure 2 A typical image for the conditions of Test I. Circles and lines are super-

imposed to indicate the location and trajectory of detected spheres. The moving

boundary can be discerned at the bottom of the picture.

permits unambiguous tracking of the moving spheres. Adequate lighting

is an important condition for success of the computer vision. The �eld

of view is illuminated with two optical-�ber light guides. The shutter

speed of the camera, the opening of the lens, and the illumination level

are tuned by trial and error until grains are reliably detected.
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Table 2 Experimental conditions

U F Species rA ��A Species rB ��B t0

Test (m/s) (Hz) A (mm) % B (mm) % ty (s)

I 1.4 1000 Ceramic 1.59 10 Acrylic 1.98 30 300 10

II 0.9 500 Acrylic 1.6 28 Acrylic 1.98 5 250 10

The vision algorithm typically detects grains located within a sphere

diameter from the window. The two species are then distinguished ac-

cording to their distinct gray scale or size. Each frame is subdivided into

ten horizontal strips of constant width spanning the entire length of the

image. By incrementing the observed sphere cross-sectional area inter-

secting each strip, the vision algorithm calculates the fraction of the strip

surface occupied by each species within the �eld of view and estimates

the corresponding relative number fraction by substituting this fraction

for � in Eqn. (28). The simulations showed that transverse pro�les of

� produced by this method closely represent the state of segregation

in the interior. Sphere velocities are then calculated from the positions

of each sphere center in two consecutive images and the corresponding

center-averaging statistics are incremented as in the simulations. They

are made dimensionless with the chain speed directly measured from the

image sequence.

Table 2 summarizes experimental conditions for the 
ight tests in the

KC-135 microgravity aircraft. A typical KC-135 trajectory included a

gravitational pull of order 18m/s2 followed by a parabolic 
ight yielding

20 s of reduced gravity. We began each test by starting the motor at the

onset of the parabola. Peak-to-peak gravity 
uctuations remained typ-

ically below � 0.1m/s2. The simulations helped us prescribe mixtures

for which these 
uctuations had minimal e�ects on the 
ow, and pro-

vided estimates of the dimensionless time ty = tU=Y required for each

experiment to re-establish steady segregation after canceling that level

of residual acceleration. Based on those estimates, we waited a time t0
after the onset of reduced gravity to acquire images with the camera.

Electrostatic charging of the dielectric 
ow spheres was mitigated by

maintaining high relative humidity in the apparatus. With this precau-

tion, no evidence of such charging could be observed.

5. RESULTS AND DISCUSSION

The opacity of the grain assembly and the 
ow development in the

straight section make it challenging to compare experiments and theory
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directly. While the latter predicts average quantities in the interior of

a fully-developed 
ow, the former observe these quantities through side

walls in a developing 
ow. Although 
ow variables vary little in the z
direction, thus making lateral observations representative of the state in

the interior, the 
ow development remains a more serious impediment

to direct comparisons between experiments and theory (Fig. 3).

Window

Region I Region II

0.5

0.4

0.3

0.2

ν

Figure 3 Development of the cross-sectional averaged solid volume fraction along the

cell for the conditions of Test I.

In contrast, the simulations can be matched separately with exper-

iments or theory. For comparisons with experiments, we simulate the


ow in the entire cell while reproducing the method of imaging, as fol-

lows. Because the vision software detects spheres within a depth of focus

on the order of rAB, the simulations calculate observable quantities only
from spheres centered within that distance from the window. To evalu-

ate the corresponding statistics, the simulations ignore their knowledge

of sphere velocities. Instead, they collect the locations (x; y) of visible
sphere centers from virtual images generated at the frame rate of the

camera. From these, they infer two components of the center velocity

and proceed to calculate strip statistics in the same manner as in the

experiments.

As Figs. 4 and 5 illustrate with Test II, the simulations reproduce well

the 
uctuation velocities and segregation observed in the experiments.

Louge et al. (2000) reported similar results with Test I. This agreement

demonstrates the utility of the simulations as an equal partner to theory

and physical experiment. In this event, fewer physical experiments need

be done, and the simulations can be used to evaluate the accuracy of

the theoretical modeling.
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Figure 4 Transverse pro�les of the dimensionless 
uctuation velocities for the con-

ditions of Test II. The symbols and lines are experimental measurements and predic-

tions of the simulations, respectively. The open symbols and thin lines refer to the

x direction, while the closed symbols and thick lines refer to the y direction. The

squares and circles represent small and large acrylic spheres, respectively.

Small

2

1

0

Large

0 1
y/Y'

φα

Figure 5 Transverse pro�les of the relative number fraction for the conditions of

Test II. For symbols and lines, see Fig. 4.

Such an evaluation is shown in Fig. 6. Here, after simulating the entire

cell, we extracted an observation region in the range x1 � x � x2, to
which we imposed the periodic boundary condition sketched in Fig. 1.

The spheres contained in this region thus experienced a fully developed


ow, which could be matched with results of the theory. Note that,

because the periodic simulations were carried out with an actual sample

of the developing 
ow, their species volume fractions were not necessarily

equal to those in the entire cell.

As this �gure illustrates, the theory captures segregation better at

low solid volume fraction. Our conjecture is that higher particle num-

ber densities introduce geometric obstacles that the continuum kinetic

theory ignores.
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Figure 6 Transverse pro�les of dimensionless mixture mean velocity, mixture 
uc-

tuation velocity, and relative number fraction for the conditions of Test I (left) and

II (right). Triangles and lines represent simulations and theoretical predictions, re-

spectively. In the bottom graphs, circles, diamonds, and squares are simulations

results for large acrylic, ceramic, and small acrylic spheres, respectively. In these
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