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1. Supplementary Appendices

This document contains a nomenclature, as well as Ap-
pendices A-H with calculations and discussions in support
of “Frontal dynamics of powder snow avalanches”.

Appendix A: Cloud velocity and static
pressure fields

In the avalanche rest frame, the RHB velocity field below
the interface derives from the stream function

ψ = U ′(−r sin θ + b′θ), (A1)

where 0 6 ψ < πU ′b′ and (r, θ) are polar coordinates about
the source with angle θ counted from the x̂ unit vector point-
ing from source to stagnation (Fig. 1). The curvilinear co-
ordinate s on a streamline ψ with origin at the source is such
that

ds

b′dθ
=

p
(ψ∗ − θ)2 + [1 + (ψ∗ − θ) cot θ]2

sin θ
, (A2)

where ψ∗ ≡ ψ/(U ′b′) is the dimensionless streamfunction.
The resulting velocity field is

u′r =
1

r

∂ψ

∂θ
= U ′(− cos θ + b′/r)

u′θ = −∂ψ
∂r

= U ′ sin θ (A3)

in radial and azimuthal directions, respectively, or

u′ = U ′
»

xb′

(x2 + y2)
− 1

–
x̂ + U ′

»
yb′

(x2 + y2)

–
ŷ (A4)

in cartesian coordinates (x, y) along x̂ and the outward unit
vector ŷ normal to the snowpack surface. (This velocity
field becomes u′ + U x̂ in the mountain frame of reference).
Invoking Bernoulli’s Eqs. in ambient air and cloud, consid-
ering flow to be quasi-steady, and matching static pressure
at the interface, Carroll et al. [2012] calculated the pressure
field within the cloud as

p′ = p∞ + pz + p̄+ pu, (A5)

where z is altitude from the current position of the stag-
nation point, p∞ is a reference atmospheric air pressure at
z = 0,

pz ≡ −ρ′gz, (A6)

p̄ ≡ ρ

2
U2 − ρ′

2
U ′2 =

ρ

2
U2

„
Ri

1 + Ri

«
, (A7)
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and pu is the flow-induced part of static pressure in the pow-
der cloud,

pu
(ρ′/2)U ′2

=
2xb′ − b′2

x2 + y2
=
b′

r

„
2 cos θ − b′

r

«
. (A8)

Appendix B: Size of the frontal region

On any streamline ψ in Eq. (A1) below the interface, the
flow-induced pressure pu in the source fluid is

pus(ψ) =
ρ′

2
U ′2

sin θ

(θ − ψ∗)

„
2 cos θ − sin θ

θ − ψ∗

«
. (B1)

Its gradient along a streamline is “favorable” (∂pus/∂s) < 0
for y > b′ − x, and “adverse” (∂pus/∂s) > 0 for y < b′ − x.
On the interface where ψ = 0 and r = b′θ/ sin θ, pus(ψ = 0)
vanishes at x = b′/2 ahead of the source (θ ' 10π/27), and
is always < 0 downstream of that point. Because the inter-
face has favorable pressure gradient until θ = θf ' 13π/20,
and adverse ∀θ > θf , it is convenient to define the frontal
region as bounded by the exit plane where ∂pus/∂s = 0 or,
equivalently, as the region x > xf with

xf = b′θf/ tan θf < 0. (B2)

With interface described by x = b′θ/ tan θ and y = b′θ, the
volume V of the frontal region is obtained by changing vari-
able from x to θ and integrating,

V = −b′2W
Z θf

θ=0

θ
h 1

tan θ
− θ

sin2 θ

i
dθ. (B3)

Using Jonquière’s polylogarithm function Lin(ε) of the com-
plex argument ε, we find

V =
b′2W

12
ı
h
π2 + 12ıθf

“ θf
tan θf

− ln(1− e2ıθf )
”

(B4)

−6Li2(e2ıθf )− 6θ2
f

i
≡ aV b′2W,

where ı2 = −1. At θf , we calculate aV ' 3.00.

Appendix C: Quasi-steady approximation

For any streamline within the frontal region (0 6 ψ∗ <
π), the residence time from the source (θ = ψ∗) to any ar-
bitrary point on the streamline at θ = θt is

τR(ψ∗, θt) =

Z θt

θ=ψ∗

ds

dθ

dθ

‖u‖ (C1)

= (b′/U ′) [ln(sin θt/ sinψ∗)− (θt − ψ∗)/ tan θt] ,

where ‖u′‖ is the velocity magnitude from Eq. (A3), and
ds/dθ is given by Eq. (A2). Then, the mean residence time
of a particle from source to exit plane is

τ̄R =
1

π

Z π

ψ∗=0

τR(ψ∗, θt)dψ
∗ ≡ aR(b′/U ′), (C2)
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Figure 1. η1 and η2 vs. (1 − ζ) for Ri = Rin,
λ ' 14% and χ0 ' 8.4, corresponding, for example, to
ρc = 100 kg/m3, ρ = 1.2 kg/m3, α = 30 ◦, and µe = 0.45.
Because the two curves are very close, we plot them vs.
(1−ζ) and we magnify the range 0.1 < (1−ζ) < 1 around
the unstable solution. Inset: fζ vs. ζ. The dashed line
marks the peak at ζ = ζn = 2a1. Symbols correspond to
solutions of Eq. (D5) shown in Fig. (2) of the paper.
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Figure 2. η1 and η2 vs. Ri for (1− ζ) = 0.1, λ ' 19%,
and χ0 ' 8.4. Inset: fRi vs. Ri. The dashed line marks
the peak at Ri = Rin = 2a1/(1 − 2a1). Symbols, see
Fig. 1.

where θt(ψ
∗) is the polar angle of the intersection of dimen-

sionless streamline ψ∗ with the exit face at θf . We calculate
aR ' 0.956.

Turnbull and McElwaine [2007] noted that total
avalanche volume VT was proportional to the cube of time
t from release or, equivalently, d ln VT ∼ 3d ln t [Vallet
et al., 2004]. With uniform slope and width, volume of
the frontal region and total volume are roughly propor-
tional, d lnV ∼ d ln VT . Then, using d ln b′ = (1/2)d lnV ,
we deduce the characteristic time for cloud growth τ̄G ∼
b′/(db′/dt) = (d ln b′/dt)−1 ∼ (2/3)t. Therefore, growth
takes longer than the residence time (τ̄G > τ̄R) after

t > (3aR/2)(b′/U ′). (C3)

Beyond such time, which is typically ∼ 1 s, the size of the
control volume around the frontal region may be regarded
as “quasi-steady” to establish mass and momentum balances
(Fig. 1).

To preserve symmetry and derive Eq. (1) analyti-
cally, Carroll et al. [2012] restricted attention to horizontal
flows. For us to generalize their results to an inclined sus-
pension, the streamwise component (g sinα) of gravity on a
slope of inclination α must produce a particle displacement
along x̂ during the mean residence time τ̄R from source to
exit plane that is negligible compared to H ′, i.e.

(1/2)g sinατ̄2
R � H ′. (C4)

Combining Eqs. (4), (5), (24) and (C2), criterion (C4) may
be written

sinα� 4π2(1− 2a1)/a2
R ' 6.9, (C5)

which is upheld for any slope or conditions.

Appendix D: Stability

We define the quantities η1 and η2 proportional to h′/b′

η1 ≡
χ0

Ria1

“ ζ

1− ζ

”a1
, (D1)

where χ0 is defined in Eq. (21) and

η2 ≡
1

λ
p

(1 + Ri)(1− ζ)
. (D2)

Solutions of Eq. (16) arise when λ, ζ and Ri are such that
η1 = η2 or, equivalently, when the functions

fζ ≡ ζa1(1− ζ)
1
2−a1 (D3)

and

fRi ≡
Ria1√
1 + Ri

(D4)

satisfy
λχ0fζ = fRi. (D5)

As insets in Figs. 1–2 show, fRi and fζ peak, respectively,
at the bulk Richardson Rin in Eq. (17) and the relative den-

sity ζn in Eq. (18) where fζ = fRi = (2a1)a1(1− 2a1)
1
2−a1 .

Inspection of fζ and fRi reveals that Eq. (D5) has zero, one
or two solutions. A single solution is possible when fζ and
fRi peak simultaneously, whereby λ is fixed at the value λn
quoted in Eq. (20). If two solutions exist, the following sta-
bility argument, similar to that invoked in the mass balance
of well-stirred reactors [Strehlow , 1984], can determine to
which solutions the avalanche naturally evolves. Although
we present the argument graphically, it is equivalent to a
linear stability analysis based upon small perturbations of
frontal density or speed about steady solutions of the mass
conservation equation V ∂ρ′/∂t = ṁs − ṁe [Uppal et al.,
1976].

First, we note that causality matters. η1 represents the
fluidized depth that an avalanche can produce. In other
words, frontal operational parameters (Ri, ζ) set η1,

(Ri, ζ)⇒ η1. (D6)

Conversely, η2 determines the avalanche size that such flu-
idization engenders,

η2 ⇒ (Ri, ζ, λ). (D7)

These relations imply that, of two possible solutions, the
stable one has the largest Ri and/or ζ (solid symbols in
Figs. 1 and 2). To show this, consider the solution at fixed
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Ri and λ denoted by an open square in Fig. 1. Any small
perturbation resulting in a lower (1 − ζ) (illustrated by a
curved arrow) produces a larger η1. In turn, because the
new value of η2 = η1 implies yet a lower (1 − ζ), the state
of the avalanche diverges away from the original solution.
Similarly, any excursion to a higher (1− ζ) also strays away
from the solution. Therefore, the solution is unstable. Con-
versely, the solid square in Fig. 1 marks a stable solution,
to which the mass balance always returns despite small per-
turbations. A similar reasoning at fixed ζ and λ in Fig. 2
shows that the open triangle at low Ri is unstable, while its
filled counterpart at higher Ri is stable.

In general, solutions with ζ < ζn (low frontal density)
or Ri < Rin (small avalanche height) are unstable. Con-
versely, solutions with high frontal density (ζ > ζn) and tall
avalanches (Ri > Rin) are stable. As in well-stirred reac-
tors [Strehlow , 1984], “ignition” toward larger ζ or Ri occurs
as soon as either Ri or ζ exceeds an unstable solution. If
such ignition can be achieved, dynamics progressively raise
ζ and Ri toward higher frontal density and size, until the
avalanche reaches the solution with Richardson Rin and rel-
ative density ζn in Eqs. (17) and (18).

Appendix E: Force and momentum integrals

The first derivative term on the right of Eq. (31) is

∂

∂t

Z
V (t)

ρ′UdV = aV
∂

∂t
(ρ′Ub′2W ), (E1)

where W is cloud width and aV is calculated in Appendix A.
(Note that, because λnh

′
n/H

′ = ρ/(ρc cosα) � 1, we ne-
glect any contribution from the scoured top layer of the
snowpack to frontal volume or dynamics). In the avalanche
frame, the overall momentum of the frontal region along x̂
is Z

V

ρ′(u′ · x̂)dV = −aMρ′b′2WU ′. (E2)

Integrating Eq. (A4), the x-momentum in an infinitesimal
section dx of the frontal region vanishes in front of the source
∀x > 0, but is equal to −πρ′U ′b′W behind it, ∀x < 0. So,
with xf < 0,

aM =
1

b′

Z b′

xf

πH(−x)dx = − πθf
tan θf

' 3.28. (E3)

where the Heaviside function H equates unity for positive
argument and vanishes otherwise. Because x-velocities ex-
ist in equal measure along ±x̂ ahead of the source, the nose
section with 0 < x < b′ possesses no net x-momentum in
the rest frame of the avalanche.

We now consider forces in Eq. (31). First, we dismiss the
shear force per unit width exerted by the turbulent suspen-
sion on the surface of the snowpack within the frontal region.
Assuming at worst a uniform turbulent shear stress ρ′u2

shear

over the entire snowpack length b′(1− θf/ tan θf ) below the
frontal region, where ushear ∼ aSU ′ is a shear velocity, basal
shear is negligible compared to weight (ρ′V g sinα) along x̂,
as long as

sinα� 2π
a2
S

aV
(1− 2a1)

“
1− θf

tan θf

”
. (E4)

We estimate aS by approximating the flow from snowpack to
interface as a turbulent boundary layer [Kays et al., 2005],
for which 1/aS = U ′/ushear ' 5.5 + 2.5 ln(H+

n ), where
H+
n = ρ′nH

′
nushear/µf is the “wall coordinate” of the in-

terface and µf is the dynamic viscosity of air. Substituting

Eqs. (24) and (30), we find 0.02 < aS < 0.03 for frontal
speeds 10 < U < 60 m/s. Substituting in criterion (E4), ne-
glecting basal shear requires sinα� 6.10−4, which is clearly
satisfied over any typical slope.

Next, we consider the resistance Fµ of ambient air to
frontal acceleration, which acts as an added mass ρaµb

′2W .
Because the frontal region is part of a larger body of dense
fluid, we estimate its share of added mass by noting that
it closely resembles the quarter of a cylindrical ellipse with
semi-minor axis θfb

′ in the y-direction,

Fµ · x̂ = −ρaµb′2W
dU

dt
, (E5)

where aµ ' πθ2
f/4. Because Fµ is proportional to frontal

acceleration, we group it with rate expressions in Eqs. (E1)–
(E2) to form the left-hand side of Eq. (33). The right-hand
side of that Eq. is the resultant of all forces on the frontal
region minus the momentum output through its surfaces.
Next, we show that it vanishes in the potential theory.

Static pressure applied on all surfaces of the frontal re-
gion, collectively called S, produces a force with contribu-
tions from the four components in Eq. (A5). Because p∞
and p̄ are constant, their surface integrals over S vanish.
The resultant of pu on S generates pressure drag. Although
the latter vanishes on the entire RHB interface, it is finite
on the frontal region,

Fp · x̂ =

I
S

−pun̂ · x̂dS, (E6)

and consists of the forces F⊥ , Fs and Fo exerted, respec-
tively, on the exit plane, the interface, and a semi-circular
region of infinitesimal radius around the source. Because
θf > π/2, the net pressure suction on the exit plane

F⊥ · x̂ =

−
„
ρ′

2
U ′2b′W

«
[(π − θf )(2− tan θf/θf )] < 0 (E7)

resists frontal motion with a constant in brackets ' 3.251.
To find Fs, we calculate the outward normal projected along
x̂

n̂ · x̂ =
n

1 + [(1/ tan θ)− θ/ sin2 θ]2
o−1/2

, (E8)

and combine with curvilinear coordinate in Eq. (A2) and
pressure in Eq. (B1). Then,

Fs · x̂ = −
„
ρ′

2
U ′2b′W

«»
sin2 θf
θf

–
< 0 (E9)

resists frontal motion with a constant in brackets ' 0.388.
Finally, at an arbitrary small radius around the source, pres-
sure drag along x̂ is independent of such radius

Fo · x̂ =
ρ′

2
U ′2b′W

Z π

θ=0

“
2 cos θ − b′

r

”
cos θdθ (E10)

= π

„
ρ′

2
U ′2b′W

«
> 0,

and thus it accelerates the front.
Before considering the remaining pressure pz applied on

S, we first evaluate momentum lost through surfaces of the
frontal region. Because velocity is aligned with the bound-
ary at the interface and snowpack surfaces, the only con-
tributions to the surface integral in Eq. (31) are from
the exit plane and the near vicinity of the source, where
urel · n̂ does not vanish. The resulting momentum loss pro-
duces an equal and opposite reaction force on the frontal
region. On any small radius about the origin, dS = Wrdθ,



X - 4 CARROLL ET AL.: SUPPLEMENTARY MATERIAL

u′ · x̂ = (b′ cos θ/r−1), and urel · n̂ = U ′(cos θ− b′/r), so the
source momentum reaction force slows the frontal region,

Mo · x̂ = −x̂ ·
Z π

θ=0

(ρ′u′)(urel · n̂)dS

= −3π

„
ρ′

2
U ′2b′W

«
< 0. (E11)

In the quasi-steady approximation, the relative flow velocity
at the exit plane with n̂ = −x̂ is urel = u′, so the corre-
sponding momentum reaction force accelerates the frontal
region,

M⊥ · x̂ = −
Z b′θf

y=0

ρ′
`
u′ · x̂

´
(urel · n̂)Wdy =„
ρ′

2
U ′2b′W

«
×h sin2 θf

θf
+ 4π − 2θf − (π − θf )

tan θf
θf

i
, (E12)

where the constant in brackets is ' 9.92. As expected
from potential flow theory, the total pressure drag from
Eqs. (E9)-(E10) cancels the net reaction forces from
Eq. (E11)–(E12). Finally, the projected buoyancy surface
integral of pz on S is, with x̂ · ẑ = − sinα,

Fb · x̂ =

I
S

−pzn̂ · x̂dS = aV b
′2Wρ′gẑ · x̂. (E13)

As expected from the divergence theorem, it cancels frontal
weight along x̂,

Fg · x̂ = aV ρ
′b′2Wg sinα. (E14)

Therefore, the resultant of all steady forces vanishes on the
frontal region, leading to a paradox similar to d’Alembert
[1752].

Appendix F: Resolution of d’Alembert’s
paradox

For boundary layers and wakes, Prandtl [1904] resolved
d’Alembert’s paradox by focusing on flow near solid walls
and by introducing viscosity. Recently, Hoffman and John-
son [2010] did so while underlining the drawbacks of the
inviscid Euler formulation; they indicated that the introduc-
tion of viscosity in the presence of slip degenerates into tur-
bulence, thus producing substantial drag without the need
to invoke a boundary layer. Unfortunately, flows possess-
ing a turbulent wake cannot resolve d’Alembert’s paradox
ab initio, but must instead rely on empirical observations to
some degree. In the cylinder wake, for instance, base suc-
tion pressure and vortex dynamics can be analyzed at low
Reynolds number, but exhibit complex behavior at higher
values, requiring experiments or numerical simulations to
capture quantitatively [Williamson, 1996].

In this context, we now suggest how d’Alembert’s paradox
may be resolved to impart forward acceleration on a homo-
geneous frontal region. Within the control volume shaded
in light grey in Fig. (1) of the paper, the actual static pres-
sure field shares the same background p∞, pz and p̄ as in
Eqs. (A6) and (A7), but differs in its flow-induced pressure.
Because the frontal region is subject to a vanishing net force
in potential flow, any change from pu in Eq. (A8) to the ac-
tual flow-induced pressure pv results in a net longitudinal
force on the frontal region

FA · x̂ =

I
S

(pu − pv)n̂ · x̂dS. (F1)

Using large-eddy-simulations (LES), Carroll et al. [2012] de-
scribed how the flow in an eruption current differs from pre-
dictions of potential theory in Eq. (A3). They documented
three changes suggesting a resolution of the paradox. As
their animations available on line with Phys. Fluids re-
vealed, these changes arose as soon as dynamic fluid vis-
cosity µf was introduced with a source that was no longer
infinitesimal, but instead possessed a uniform velocity pro-
file on a finite radius.

First, stagnation expanded from a point into a well-
mixed region of height hs above the base. At relatively low
Reynolds number ReU ≡ ρ′U ′b′/µf , Carroll et al. [2012]
found

hs
b′
' ah

r
1

ReU
(F2)

with ah ' 54, as theory would predict for a boundary layer
growing forward from the source. For ReU > 20, 000, the
ratio appeared to asymptote to hs/b

′ ' 0.4. Because the
raised stagnation point belongs to the interface, its polar
angle is θs = hs/b

′. In such stagnated region, flow-induced
pressure remains nearly equal to its value pvs ∼ pus(θ =
0) = (ρ′/2)U ′2 along the interface in the range 0 < θ < θs.
Substituting in Eq. (F1) and integrating, the stagnated re-
gion generates a force slowing the frontal region,

FAS · x̂ = W

Z θs

θ=0

[pus − pus(θ = 0)]dθ

=

„
ρ′

2
U ′2b′W

«»
sin θ2

s

θs
− θs

–
< 0. (F3)

However, at large ReU with θs ' 0.4, the constant in brack-
ets is ∼ −0.02, thus making this force contribute negligibly
to frontal dynamics.

Second, although Carroll et al. [2012] observed large-scale
fluctuations mixing slower ambient air through the inter-
face, the resulting cloud deceleration amounted at worst to
< 24% of pressure drag on the frontal region. Therefore,
while air entrainment is necessary for the mass balance of
air alone [Louge et al., 2012], it should not matter to frontal
dynamics.

Third, consistent with the region (y > b′ − x) of ad-
verse streamwise pressure gradient predicted by potential
flow theory, Carroll et al. [2012] found that the exit plane
at x = xf is subject to a mixing recirculation resembling
the wake behind a cylinder in cross-flow. For that classical
problem, flow-induced pressure gradient along the interface
of curvilinear coordinate s is first favorable (∂pus/∂s < 0)
away from the stagnation point, and then it transitions to
an adverse gradient (∂pus/∂s > 0), creating a recirculat-
ing wake with nearly equalized average flow-induced pres-
sure, thus preventing recovery from the gradual pressure loss
due to contraction of fluid streamlines upstream of separa-
tion [Williamson, 1996]. At the transition the cylinder has
actual flow-induced suction pressure pv = $pu < 0 with
magnitude smaller than the potential flow theory prediction
pu = −3ρU2/2 by a factor $ ' 0.84 at large Reynolds num-
ber [Achenbach, 1968].

In static pressure records at the Vallée de la Sionne, McEl-
waine and Turnbull [2005] consistently observed that the
loci of peak stagnation pressure and the downstream onset
of vigorous pressure fluctuations were roughly equidistant
from the point of minimum negative pressure. This suggests
that the flow degenerated into strong mixing recirculation
at a distance approximately b′ behind the source. Such mix-
ing likely weakened the flow-induced pressure that potential
theory predicts at that point. In this context, it is reason-
able to assume that suction on the exit plane of the frontal
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region at x = xf ' −b′ is reduced from its potential the-
ory value by an amount $ ' 0.84 similar to that observed
at the onset of the cylinder’s wake, where pressure gradient
also becomes adverse,

pv = $pu < 0. (F4)

Substituting this expression in Eq. (F1) and integrating pu
from Eq. (A8) across the exit plane with n̂ · x̂ = −1, the
corresponding deficit in suction force accelerates the frontal
region

FA⊥ ·x̂ = −(1−$)

Z b′θf

y=0

pudy = −(1−$)F⊥ ·x̂ > 0, (F5)

where F⊥ · x̂ < 0 is given in Eq. (E7).
Without any substantial change to other forces predicted

by potential theory in Eqs. (E9)–(E14), the resulting for-
ward force may be cast in the formalism of Eq. (32) and,
upon combining Eqs. (1), (2), (4), (5), (26), (E7) and (F5),
we extract

ρ′Γ∗ sinα = ρ sinαeffFr2/(1 + Ri), (F6)

with effective inclination angle

αeff ≡ arcsin

»
π

(1−$)

aV
(π − θf )

„
2− tan θf

θf

«–
. (F7)

With $ = 0.84, we find αeff ' π/6.

Appendix G: Longitudinal acceleration

We use Eq. (32) to estimate frontal acceleration from
data of frontal height, speed, width and slope. First, we
note that the difference between terms representing added
mass and momentum relative to the source is small com-
pared to the contribution of frontal speed to momentum
of the frontal region. To show this, we write the term in
square brackets in Eq. (33) as ρ′(aV b

′2W )U(1 + ∆), where
∆ ≡ [(aµ/aV )(1−ζ)− (aM/aV )δ]. Without a density differ-
ence between cloud and ambient air (ζ = 0, δ = 1), we find
that ∆(ζ = 0) = (aµ − aM )/aV ' 5.10−4 is small. At the
first stable point, ∆(ζe) = (1 − 2a1)(aµ − aM )/aV is even

-0.5
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Γ*

0 500 1000 1500

Projected distance (m)

AccelDat.cg

dummy x axis y

gam pred at fixed pt

zetae

accel data

Γ*= ζn

Figure 3. Relative acceleration Γ∗ calculated using
Eq. (G1) with field records of U , sinα and W from So-
villa et al. [2006] and H ′ from Vallet et al. [2004] for
avalanche 509 (symbols). The upper dashed line, which
clearly overpredicts data, represents a model treating the
frontal region as a solid object subject to weight and
buoyancy, or Γ∗ = ζn. The lower dashed-dotted line
is the prediction of Eq. (F6) ' 0.194 at the first stable
state and average slope sinα ' 0.45.

smaller. Then, neglecting ∆, substituting Eqs. (5), (37),
and (42), and approximating the mixed-mean density using
Eq. (29), Eq. (32) yields a measurement of Γ∗ that may be
compared with predictions of Eq. (F6),

Γ∗ '
„

U2

g tanα

«
∂

∂x∗
ln

»„
1 +

U2

2gH ′

«
WUH ′2

–
. (G1)

To estimate the derivative of the term in straight brack-
ets without introducing excessive noise, we fit data for U ,
W [Sovilla et al., 2006], and H ′ [Vallet et al., 2004] using
splines, differentiate the result, and present Γ∗ at locations
where primary data was reported. As Fig. 3 illustrates, de-
spite inevitable noise, the measured relative acceleration is
smaller than the prediction Γ∗ = ζ for a solid object subject
to classical weight and buoyancy forces, but is instead closer
to the prediction of Eq. (F6).

Appendix H: Impact pressure

Impact pressure is that which is exerted as a fluid is ar-
rested by an obstacle in its path. Because it is dominated
by fluid inertia, it is greater in the frontal region than out-
side, and it crucially depends on local density. Because our
approach ignores stratification, it can only provide an es-
timate based upon mixed-mean density ρ′. However, the
calculation is instructive in two ways. First, it reveals that
impact pressure magnitude greatly exceeds static pressure
calculated in Appendix A, thus underlying the fundamental
difference between measurements of the former by Sovilla
et al. [2008b] and of the latter by McElwaine and Turnbull
[2005]. Second, it shows that reductions in impact pressure
that are observed with increasing elevation above the snow-
pack are not proof that density alone decreases, but only
that the combined product ρ′‖u′ + U x̂‖2 does.

If the flow is arrested on quasi-steady local streamlines
about the obstacle, and all energy is converted to impact
pressure pI irrespective of velocity direction, then

p′I = p′ +
1

2
ρ′‖∆u‖2, (H1)

where p′ is static pressure within the frontal region, and
∆u ≡ u′ + U x̂ is flow velocity relative to the obstacle.
Impact is partially resisted by atmospheric pressure pa ex-
erted behind the obstacle or “stored” within it before the
avalanche passed. To estimate the net force experienced by
the obstacle, we subtract pa = p∞ − ρgz from pI at the al-
titude z = sinα(b′ − x) + y cosα of a hit at (x, y) from the
source. Using u′ from Eq. (A4), p′ from Eqs. (A5)-(A8),
and frontal conditions from Eqs. (1)-(5), we find

pI − pa
(ρ/2)U2

=

„
Ri

1 + Ri

«“
1− z

πb′

”
+

„
1

1− ζ

«»
(1− δ)2 +

2xb′δ

x2 + y2

–
. (H2)

The line y = −x behind the source is the locus of impact
pressure minima along the flow. Maxima occur ahead of the
source where y = x,

(pI − pa)max

(ρ/2)U2
=

„
Ri

1 + Ri

«“
1− z

πb′

”
+

„
1

1− ζ

«»
(1− δ)2 +

b′δ

y

–
, (H3)

reaching their smallest value on the interface where y =
πb′/4. At that location, if α = 0 and the avalanche has
ζ = ζn and Ri = Rin, the smallest peak impact pressure is



X - 6 CARROLL ET AL.: SUPPLEMENTARY MATERIAL

(ρU2/2)[(4/π) +a1(3 + 2a1)/2/(1− 2a1)] ' 6.3(ρU2/2). On
the line of maximum impact pressure the resultant u′ · x̂+U
exceeds frontal speed near the snowpack wherever y < b′/2.
Therefore, peak impact pressure rises sharply toward the
ground where the source augments frontal speed. Con-
versely, it drops above y = b′/2.

For avalanche 509, Sovilla [2012] shared impact pressure
data with us for two pylon elevations at yp = 4.5 m and
5.5 m from hard ground. With snowpack depth hp ' 1.5 m
estimated from the FMCW radar data of Sovilla et al.
[2006], actual elevations are y = yp − hp ' 3 m and 4 m
above the snow cover. Adopting our prediction for H ′

in section (8), we estimate b′δ ' 1.5 m. With opera-
tions at (Rin, ζn), and our prediction for U at the pylon,
Eq. (H3) yields (pI − pa)max ' 16 kPa and ' 14 kPa at
y ' 3 m and 4 m, respectively, while Sovilla [2012] recorded
(pI − pa)max ' 50 kPa and ' 20 kPa. Although our esti-
mates have the right order of magnitude, the data suggest
that the flow is stratified.

Notation

a0, a1, κ exact fluidization constants.
aV , aM , aµ exact constants in App. E.
aA, aR, aX exact constants.

b′ source to stagnation distance.

FA, FAs , FA⊥ resultant forces in App. F.

F⊥ drag on exit plane.

Fb buoyancy force.

Fr Froude number in Eq. (26).
g gravity.

h′ snowpack fluidization depth.

H ′ asymptotic cloud height.

` spreading length in Eq. (43).
ṁa air entrainment rate.

ṁe frontal output mass flow rate.

ṁs source mass flow rate.

n̂ outward unit vector.

p′ static pressure.
pI impact pressure.

pu potential-flow-induced pressure.

pv actual flow-induced pressure.

pz hydrostatic pressure component.

r, θ polar coordinates.

Ri Richardson number in Eq. (3).

U frontal speed.

U ′ source fluid asymptotic speed

VT total avalanche volume.

W cloud width.

x̂ unit vector along the slope.

ŷ unit vector ⊥ snowpack.

ẑ upward unit vertical.

α slope angle.

Γ∗ relative acceleration in Eq. (32).

δ swelling ratio in Eq. (1).

ζ relative density in Eq. (2).

κ0 ignition parameter in Eq. (12).

λ scoured snowpack fraction.

µe effective snowpack friction.

$ suction deficit in Eq. (F4).

ρ′ frontal mixed-mean density.

ρ, ρc air and snowpack densities.
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