
ACCURACY OF THE COLLOCATION TECHNIQUE

MICHEL LOUGE

This document discusses accuracy of the collocation technique we employ to calculate
the velocity field in ambient inviscid fluid above an interface swollen by a denser source
fluid.

1. Equations

We use notation of our Physics of Fluids paper. We define

(1) δ ≡ 1−B′1,
which implies

(2) δ =

√
1− ζ
1 + Ri

,

(3) β ≡ gb

U2
=

Ri
(1 + Ri)3/2

(1− ζ)3/2

2πζ
,

with

(4) Ri ≡ 2πζβ
δ3

.

The streamfunction in denser source fluid is

(5) ψ̂′ = −δr̂ sin θ + θ,

yielding the velocity field

(6) û′r =
1
r̂
− δ cos θ,

(7) û′θ = δ sin θ.

The streamfunction in ambient fluid is

(8) ψ̂ = −r̂ sin θ + θ(1 +K1) +
N∑
n=1

Fn
r̂n

sin(nθ),

yielding the velocity field

(9) ûr =
1
r̂

(1 +K1)− cos θ +
N∑
n=1

nFn

r̂(n+1)
cos(nθ),
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(10) ûθ = sin θ +
N∑
n=1

nFn

r̂(n+1)
sin(nθ).

Equation (25) in the PF paper yields

(11) (1 +K1) =
1
δ
−

N∑
n=1

nFnδ
n.

For collocation, we discretize the interface uniformly into I points as

(12) θi =
iπ

I + 1
,

where i = 1, 2, .., I = N/2 and N is the number of Eqs. to solve. Note that θ = 0
(stagnation point) and θ = π are both excluded. Radial polar coordinates of collocation
points on the interface are

(13) r̂i =
θi

δ sin(θi)
,

yielding the elevation

(14) ŷi =
θi
δ
.

At these points, upon eliminating r̂i using Eq. (14), the speed squared of source fluid is

(15) ||û′i||2 = δ2
[
1 +

(sin θi
θi

)2
− 2
(sin θi

θi

)
cos θi

]
,

and the speed squared in ambient fluid is

||ûi||2 =
{(sin θi

θi
− cos θi

)
+

N∑
n=1

(sin θi
θi

)[(sin θi
θi

)n
cos(nθi)− 1

]
nFnδ

n+1
}2

(16)

+
{

sin θi +
N∑
n=1

(sin θi
θi

)n+1
sin(nθi) nFnδn+1

}2
.

Eliminating β and δ using Eqs. (2)–(4), the system of I Bernoulli’s Eqs. at collocation
points is

(17)
1
2

[
||û′i||2 − (1− ζ)||ûi||2

]
+ (1− ζ)

θi
2π

Ri
(1 + Ri)

= 0,

where ||û′i||2 and ||ûi||2 are given in Eqs. (15) and (16), respectively. Streamline coincidence
at the interface requires that both ψ̂′ and ψ̂ vanish there. Because Eqs. (5) and (14) already
imply ψ̂′ = 0, coincidence reduces to the system of I Eqs. in ambient fluid:

(18) ψ̂i =
N∑
n=1

[(sin θi
θi

)n
sin(nθi)− nθi

]
δnFn = 0.
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Making θi → π in Eq. (18) yields

(19)
N∑
n=1

nδnFn = 0.

Because convergence of the collocation technique is compromised by substituting Eq. (19)
into Eqs. (16) and (18), we do not use this relation in our Matlab implementation of
the collocation technique, but instead gauge to what extent Eq. (19) is satisfied after
convergence.

Finally, asymptotic slip in the tail is ||ûi|| − |û′i|| = 1− δ.

2. Linearization

At large N , inspection of Eqs. (12) and (16) reveals that, because (δ sin θI/θI)N ∼
(2δ/N)N can become very small as θI = Iπ/(I + 1)→ π, increasing N = 2I can raise the
last coefficient FN to much larger magnitude than F1, and thus make numerical computa-
tions stiff and inaccurate. However, if N is not too large, all coefficients in the series can
be kept small enough to linearize Eq. (16),

(20) ||ûi||2 ' Bi + Ain2nδn+1Fn,

with the vector

(21) Bi ≡ 1 +
(sin θi

θi

)2
− 2
(sin θi

θi

)
cos θi,

and the rectangular matrix of size I ×N

Ain ≡
(sin θi

θi
− cos θi

)[(sin θi
θi

)n+1
cos(nθi)−

(sin θi
θi

)]
(22)

+ sin θi
(sin θi

θi

)n+1
sin(nθi).

Substitution into I Eqs. (17) yields

(23) Ci ' δAin Fn,

where

(24) Ci ≡
1
2

( Ri
1 + Ri

)[θi
π
− Bi

]
if a vector of size I and

(25) Fn ≡ nδnFn
is a vector of size N to be determined. Similarly, we rewrite the I Eqs. (18) as

(26) 0 = DinFn,

where

(27) Din ≡
1
n

(sin θi
θi

)n
sin(nθi)− θi
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if a matrix of size I ×N . The N ×N linear system of Eqs. to solve for Fn is then

(28)
[

Ci

0

]
=
[
δAin

Din

] [
Fn
]
.

3. Errors

Gauge pressure on the interface is

(29) p′ − patm = ρ
U2

2
− ρ′ ||û

′||2

2
− (ρ′ − ρ)gy,

where patm is atmospheric pressure measured at the altitude y. Meanwhile, the I Bernoulli
Eqs. (17) are presented dimensionless with ρ′U2. We evaluate errors in satisfying them
relative to stagnation pressure ρU2/2. We therefore construct a relative error vector for
Eqs. (17) by multiplying their residual by 2ρ′/ρ = 2/(1− ζ),

(30) ∆i ≡
[ ||û′i||2

1− ζ
− ||ûi||2

]
+

Ri
(1 + Ri)

θi
π
,

for all collocation points i = 1, 2, .., I.
To evaluate errors in coincidence of the ambient and source fluid streamlines at the

interface, we imagine that the small quantity ψi 6= 0 represents a source fluid streamline
satisfying ψ′ = −δR sin Θ + Θ that is not quite coincident with the true interface. On that
streamline, we locate a point of polar coordinates (Ri,Θi) that resides on the normal to
the true interface at the collocation point i. We then interpret the distance d̂i between the
two points as a distance error relative to b.

To find d̂i, we first calculate the tangent t̂i and normal n̂i vectors to the interface at
each collocation point,

(31) t̂i =
1
Bi

[(sin θi
θi
− cos θi

)
êr + sin θiêθ

]
,

and

(32) n̂i =
1
Bi

[
sin θiêr −

(sin θi
θi
− cos θi

)
êθ
]
.

We then solve for d̂i in

(33) ψ̂i =
N∑
n=1

[(sin θi
θi

)n
sin(nθi)− nθi

]
δnFn = DinFn = ψ̂′(r̂i + d̂in̂i),

Equation (5) provides ψ̂′ in terms of radial coordinates, ψ̂′(r̂i + d̂in̂i) = −δRi sin Θi + Θi.
Cartesian coordinates of the point (Ri,Θi) are

(34) X̂i =
( θi
δ tan θi

)
+

d̂i√
Bi

(sin θi)2

θi
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Figure 1. Left: Rimax vs I = N/2, hardly sensitive to ζ. Right: relative
error ∆i vs Rimax for ζ = 0.1 and I = 6.

and

(35) Ŷi =
θi
δ

+
d̂i√
Bi

(
1− sin θi cos θi

θi

)
with R2

i = X2
i + Y 2

i and tan Θi = Yi/Xi. Confusing θi and Θi for simplicity, and treating
d̂i as small, we find

(36) d̂i ' −
ψi
δ

√
Bi

(sin θi)2
.

4. Accuracy

As Fig. 1 shows, at a given I = N/2, we find that errors ∆i and d̂i are negligible until Ri
reaches a maximum value Rimax that is a function of I, at which point errors grow linearly
with Ri−Rimax. Below Rimax, linearization outlined in section 2 provides a close estimate
to the eventual non-linear solution from Matlab’s fsolve. Rimax is not sensitive to ζ.

Typically, errors ∆i dominate errors d̂i. Because they can be considerable when Ri >
Rimax (Fig. 2), it is unclear whether the non-linear solver has actually found a solution,
given that tolerances have to be adjusted until it does.

Note: The Matlab command for Fig. 2 top was
[Fn,err,nFnDeln,th,cur,slip] = DensitySwellingVel(.75,0.27,15,1,0.01,1e-3,10^4,30,1)

However, because Cian’s simulations have shown that swelling is well captured by the
exact theory for source fluid, there is hope that, even if the solver does not predict the
ambient velocity field correctly, a solution nonetheless exists.
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Figure 2. Top: Matlab output with Ri = 0.27, ζ = 0.75 and a tolerance
of 10−3, corresponding to the last density point in Fig. (3) of the PF paper;
its maximum ∆i ' 21%. Bottom: for Ri = 1.8, ζ = 0.75 and a tolerance of
10−2, the maximum ∆i ' 62%.

5. Interface slip

Once all coefficients Fn are known, we calculate interface slip between ambient and
source fluids from Eqs. (15) and (16),

(37)
uS − u′S

U
= ||ûi|| − ||û′i||,

and we plot this against dimensionless curvilinear distance ŝ′ ≡ s/b′ along the interface,
which is independent of δ. We calculate the curvilinear distance by integrating

(38)
dŝ′

dθ
=

1
sin θ

√
θ2 +

(
1− θ

tan θ

)2

use fourth-order Runge-Kutta implemented with ODE45 in Matlab. To avoid indetermi-
nacy as θ → 0, we use dŝ′/dθ = 1 + 2θ2/9 + 14θ4/405 +O(θ6) in that limit.

At or below Rimax, the slip velocity can be accurately computed for any ζ, as illustrated
in Fig. 3
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Figure 3. Slip velocity (uS − u′S)/U at the interface vs ŝ′ for Ri =
Rimax = 0.014. Symbols are joined with a curve smoothed by Ex-
cel. They are calculated with I = 6. From bottom to top: ζ =
0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.96. For comparison, the
dashed lines are computed with I = 20. Despite considerable increase
in the magnitudes of Fn, which precluded linearizing the Bernoulli Eqs.,
the non-linear solver produced nearly indistinguishable slip for ζ = 0.6 and
0.96. At such large I = N/2, the best initial guess was to make all initial Fn
coefficients equal to 0.01, rather than using results from the linearization,
which were highly inaccurate.


