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Abstract. Measurements indicate that the solid volume fraction on a sand ripple varies from random jammed packing at
troughs to the minimum stable packing at crests. By relating variations of the solid volume fraction to those of the surface
turbulent shear stress, a collisional model of reptation suggests a qualitative origin for these observations. Although the model
overestimates the critical shear velocity at which reptation arises, it predicts the rate of aeolian transport on Earth and Mars.
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BACKGROUND

Desert winds mobilize sand by overcoming static friction
and other surface forces. The resulting flow has particles
“reptating” in a shear layer near the bed surface, and
fewer, faster-moving “saltating” grains accelerated by
the free stream before impacting the reptating layer and
bed at a grazing angle [1]. Such bombardment dislodges
particles from the bed, brings them into reptation, and
gives them initial fluctuation kinetic energy.

We exploited the technique of Louge, et al [2] to
record the solid volume fraction ν on a dry sand ripple
of nearly monodisperse sand near Akjoujt (Mauritania).
As Fig. 1 shows, ν varied from the random jammed
packing νc ≈ 0.64 at troughs to the minimum value
νm ≈ 0.545 for a stable packing at crests [3]. Here,
we present a collisional model of reptation suggesting
an origin for these variations and predicting the rate of
aeolian transport.

MODEL

The model treats reptation as a dense, steady shear layer
of flowing grains driven by the surface turbulent shear
stress τ0. It is based on four relatively crude assumptions.

First, grains of diameter d and material density ρs
are sufficiently agitated to interact through binary col-
lisions. This allows us to adopt the constitutive rela-
tions of Jenkins and Richman [4], who calculate trans-
port coefficients in terms of the “granular temperature”
T ≡ (1/3) < v′iv

′
i >, where v′i ≡ ṽi− vi, ṽi is the instanta-

neous grain velocity, and vi is its average over time.
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FIGURE 1. Surface profiles of solid volume fraction ν (top
graph) and dimensionless ripple elevation h/L (bottom graph)
along the direction x/L of prevailing winds blowing from left
to right. Lines are best harmonic fits to the data with ripple
amplitude h0 ' 2.8 mm and wavelength L ' 145 mm. On the
top graph, horizontal marks locate ν = νc and ν = νm.

Second, we ignore any modification of τ0 by sus-
pended particles and write τ0 = ρu∗2, where ρ is the gas
density and u∗ is the shear velocity. However, from Hunt,
et al. [5], we recognize that the stress varies as

τ0 = τ̄0[1+(h0/L) f (x/L)] (1)

along the wind direction x perpendicular to the ripple
of amplitude h0 and wavelength L. In Eq. (1), τ̄0 is the
average shear stress on a flat surface, and f is a periodic
function of x/L that Gong, et al. [6] measured.

Third, ignoring infrequent bombardment of saltating
grains, we assume that grain velocity fluctuations on top
of the reptation layer are driven by gas turbulence. Thus,
at the layer’s free surface, denoted by the subscript 0, we



adopt the coupling of Pourahmadi and Humphrey [7]

3T0 = 2k/(1+St), (2)

where k ≡< u′iu
′
i >= u∗2/C1/2

µ , Cµ ' 0.09 [8], and
u′i is the fluctuation gas velocity. The Stokes number
St = ωs/ωL divides the particle relaxation time ωs =
ρsd2/[18µ(1 + 0.15Re0.687)] by the Lagrangian turbu-
lent integral time scale ωL in the particle frame. Clift,
et al. [9] corrected ωs for high particle Reynolds num-
ber Re = ρd

√
2k/µ based on rms fluid velocity, where

µ is the molecular viscosity of the gas. The integral time
scale ωL = (CT /2)k/ε is roughly half its counterpart in
the fluid frame [10], where CT ' 0.41 [7]. The turbulent
energy dissipation rate ε = εg + εs in a unit fluid mass
has a contribution εg = Cε ρu∗4/µ from the gas [8] and
εs = 2(ρs/ρ)[ν0/(1−ν0)](k/ωs) from solids [10], where
ν0 is the solid volume fraction on top of the reptation
layer. We adopt Cε ' 0.25 at the wall [8]. For typical
conditions on Earth or Mars, St� 1.

Fourth, because the reptation layer is dense, grains
entrain air at their mean velocity. Thus, we ignore drag
on reptating grains, making our analysis simpler than the
more dilute sheet flow model of Jenkins and Hanes [11].

Reptation dynamics

Because ripples make an angle < arctan(2πh0/L)' 7◦

to the horizontal, the component of gravity g along x
is negligible. Instead, reptating grains are moved by τ0.
Because the reptation layer is thin, it is locally fully-
developed and its force balance along x reduces to

∂τ/∂y = 0, (3)

and downward along y:

∂σy/∂y+ρsgν = 0. (4)

The constitutive relation for shear stress is

τ = f1(ν)ρsdT 1/2
∂vx/∂y, (5)

and that for normal stress on surfaces normal to y is

σy =− f4(ν)ρsT. (6)

The local fluctuation energy balance is

−∂q/∂y+ τ∂vx/∂y− γ = 0, (7)

with flux of fluctuation energy

q =− f2(ν)ρsdT 1/2
∂T/∂y, (8)

and volume rate of fluctuation energy dissipation

γ = f3(ν ,e)ρsT 3/2/d. (9)

Jenkins and Richman [4] provide f1 through f4 in terms
of the pair distribution g12(ν) at contact and the coeffi-
cient of normal restitution e, which measures energy lost
in binary impacts. Jenkins and Zhang [12] conveniently
introduce an effective e ' en− (π/2)µ f combining the
usual kinematic normal restitution en and the Coulomb
friction coefficient µ f to capture collisional energy loss
in a generic shear flow. To represent sand grains, we
adopt en ' 0.92 and µ f ' 0.05 reported by Lorenz, et
al. [13] for glass beads and find e' 0.85.

Equations (3), (4), (7) and (8) are non-linear ODEs in
τ , σy, T and q. We deduce ν from Eq. (6) by inverting
f4(ν) using a look-up table. On the free surface of the
reptation layer at y = 0, we prescribe the shear stress
τ = τ0 < 0 and invoke the boundary conditions of Jenkins
and Hanes [14] relating the normal stress

σy0 =−2ν0ρsT0 (10)

and the temperature T0, which is coupled to the gas turbu-
lent kinetic energy through Eq. (2) and, ultimately, to τ0.
Because St� 1, ρsT0 ≈ τ0 CT (1−ν0)/(3ν0C1/2

µ ) when
εs � εg. If instead gas turbulent dissipation dominates,
εs� εg, and T0/gd ≈ 12CT (1+0.15Re0.687)/(CεCµ Ar),
which varies weakly with τ0, but strongly with particle
size through Archimedes’ number Ar ≡ ρsρgd3/µ2. At
y = 0, Jenkins and Hanes [14] also showed that the vol-
ume fraction satisfies ν0g12 = 1/4 or ν0 ' 0.16, and that
the flux vanishes at a horizontal free surface, q0 = 0.

Parameters of this problem are τ∗0 ≡ τ0/(ρsgd), Ar and
e. We solve the ODEs downward using a fourth-order
Runge-Kutta procedure until the granular temperature
reaches T = 0, which fixes the reptation layer thickness
y = h`. Typical profiles are shown in Fig. 2 (left).

Agitated shear layers do not exist at arbitrarily small
τ∗0 . Because reptation occurs on an erodible bed that only
dissipates fluctuation kinetic energy [15], its agitation is
sustained if and only if the volumetric production rate of
fluctuation energy in the second term of Eq. (7) exceeds
the volumetric dissipation rate γ . Thus, as τ∗0 decreases,
the shear layer loses its agitation and eventually collapses
at a minimum surface shear stress τ∗0crit below which
Eqs. (3)-(10) have no solutions. For 0.6 < e < 0.99,
we calculate that, locally, the minimum shear velocity
necessary to create an agitated reptation layer obeys

ρu∗2crit/(ρsgd)≡ τ
∗
0crit ' 0.09+0.135(1− e2)0.4× (11)

exp[−(Ar/Ar0)1/2],

where Ar0 ' 6000. As expected, Eq. (11) predicts that
reptation requires faster winds on Mars than on Earth.

Because crests locally experience a higher surface
shear stress for the same mean wind velocity, the thresh-
old value of the mean shear velocity ū∗ at which
crest grains are first mobilized is lower than what
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FIGURE 2. Model predictions for Ar = 730, Rρ = 2080,
h0/L = 0.02 and e = 0.85, corresponding to 200µm grains of
ρs = 2500kg/m3 in air. Left: vertical profiles of solid volume
fraction (bottom scale), dimensionless temperature T ∗ ≡ T/gd
and mean grain velocity v∗x ≡ vx/

√
gd (top scale) in the repta-

tion layer for τ∗0 = 0.153. The darker region at the horizontal
axis represents the top of the immobile sand bed. The circle
shows grain size relative to the vertical axis. Gravity points
downward. Right: predictions of ν̄ in the reptation layer from
Eq. (14) (left axis) along the wind from trough to trough for
Fr/
√

Rρ = 6.8,8.5,10.2 and 12.1 (top to bottom solid lines).
Where τ0 < τ0crit , reptation collapses and ν̄ = νc (horizontal
dashes). Dotted line, right axis: spline fit of τ̄0 f (x/L)/ρU2

extrapolated from Gong, et al.’s data [6] using Eq. (1).

Eq. (11) predicts. For conditions of Fig. 2, we find ū∗ ≈
0.26

√
ρsgd/ρ , which corresponds to a minimum wind

speed ' 13.6 m/s to establish a reptation shear layer on
the crest. (A velocity ≈ 65% larger is necessary to mobi-
lize the trough, which has a smaller surface shear stress).

This critical velocity is about twice that expected for
the onset of ripples, which occurs at shear velocities just
above the threshold [16, 17, 18]. By ignoring how this
relatively dense particle suspension damps clear-gas tur-
bulence at the surface, our analysis likely overestimates
turbulent velocity fluctuations there. Unlike vertical gas-
solid flows for which turbulence is affected by large rel-
ative velocities between gas and solids, and thus can be
enhanced or reduced depending on grain size [19], hor-
izontal [20] or isotropic [21] flows appear to decrease
turbulence intensity at high loadings. In this context, be-
cause τ∗0crit decreases with increasing Cµ or decreasing
CT , any reduction in k at the surface would lower our
prediction of the critical surface shear stress.

Volume fraction evolution along a ripple

The mean volume fraction in the reptation layer is

ν̄ =
1
h`

∫ h`

y=0
νdy, (12)

in which we exploit Eq. (4) to calculate the integral,

ν̄ =−[σy(y = h`)−σy0]/(ρsgh`). (13)

This prediction is conveniently represented by

ν̄ = ν∞ +(νc−ν∞)exp{−[(τ∗0 − τ
∗
0crit)/τ

∗
0s]

1/2} (14)

with ν∞ ' 0.27, τ∗0s ' 0.17, and τ∗0crit from Eq. (11).
Using Eq. (1), the data of Gong, et al. [6] can be ex-

trapolated to conditions other than their experiments us-
ing τ∗0 = (Fr2/Rρ)(τ̄0/ρU2)[1 + (h0/L) f (x/L)], where
τ̄0/ρU2≈ 0.0015 or, equivalently u∗/U ≈ 0.039.1 In this
expression, Fr ≡ U/

√
gd is the Froude number based

on wind velocity U , and Rρ ≡ ρs/ρ . Accordingly, solid
lines in Fig. 2 (right) shows how ν̄ evolves from a ripple
trough to the next: ν̄ decreases with increasing dimen-
sionless wind speeds; because troughs have the lowest
τ∗0 , their reptation layer is denser.

Although this analysis explains why crests have
smaller ν̄ , it will remain qualitative until it captures the
critical shear velocity more closely, perhaps by account-
ing for long-lasting contacts as reptation collapses [22],
for the role of saltation splash in modifying T0 and q0,
and for non-linear dynamics of ripple formation [23].
Meanwhile, we suggest that reptation gradually deposits
loose granular material at crests from sand extracted
from denser troughs. Thus, ripple crests grow in succes-
sive strata to produce a region of low ν consistent with
observations in Fig. 1.

Aeolian transport

We calculate the mass flow rate ṁrept of reptating
grains in a unit direction parallel to the ripple crest line,

ṁrept =
∫ h`

0
ρsνvxdy, (15)

by introducing V ≡ vx(h`)− vx subject to the ODEs
∂V/∂y = −τ0/( f1ρsdT 1/2) from Eq. (5) and ∂J/∂y =
ρsνV , which we solve with V = 0 and J = 0 at y = 0.
Imposing vx = 0 at y = h`, we then deduce the velocity
profile vx = V (h`)−V and find ṁrept = h`ρsν̄V (h`)−
J(h`). We take ṁrept = 0 wherever τ0 < τ0crit .

As Jenkins and Hanes [14] implied, agitation at the
free surface of a sheared granular layer launches bal-
listic grains aloft to a height ∼ T0/g. We assume that
such grains are instantly accelerated to the speed Vs =
(u∗/κ) ln(1+T0/gz0) of the turbulent boundary layer [6]
at that height. Here, z0 ≈ d/30 is a measure of aero-
dynamic roughness [1], u∗ =

√
τ0/ρ is the local shear

velocity, which evolves along the ripple according to
Eq. (1) and f in Fig. 2, and κ ≈ 0.4 is von Karman’s

1 Figure (6b) of Gong, et al. [6] has a mislabeled vertical scale ten
times greater than it should be.
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FIGURE 3. Dimensionless aeolian transport rate m̄ g/(ρu∗3)
averaged along a ripple vs. shear velocity relative to its thresh-
old. Earth conditions are those of Fig. 2; on Mars, Ar = 10.5,
Rρ = 105. Left: triangles (Sahara) and circles (Mars) repre-
sent the saltation transport model of Eq. (17); the solid line is
Sørensen’s formula [24] in Eq. (18) with αs = 0 and the thresh-
old shear stress τ∗0crit ' 0.0123 of Shao and Lu [17] for cohe-
sionless grains. Right: reptation transport model of Eq. (15); up
and down variations arise from averaging over the ripple, on
which reptation collapses wherever τ0 < τ0crit .

constant. A vertical force balance reveals that ballistic
grains have a mass per unit area∫ 0

y=−∞

ρsνdy =−σy0/g. (16)

Then, using Eqs. (1) and (10), the local saltation mass
flow rate per unit flow width is

ṁsalt =
∫ 0

−∞

ρsνVsdy = (17)

2ρsν0
T0

κg

√
τ̄0

ρ

[
1+
(h0

L

)
f
( x

L

)]
ln
[
1+

T0

gz0

]
wherever τ0 > τ0crit , and zero otherwise. Figure 3 (left)
shows the corresponding average saltation transport rate
m̄salt over the entire ripple. We compare it in dimension-
less form to Sørensen’s empirical formula [24]

m̄salt g
ρu∗3

=
(

1− 1
W 2

)[
αs +

βs

W 2 +
γs

W

]
, (18)

where W ≡ u∗/u∗crit , and βs ≈ 0.41 + d/dβ and γs ≈
0.8+d/dγ with dβ ' 65 µm and dγ ' 140 µm.

Figure 3 confirms that sand transport is dominated by
saltation [1]. It shows that our model agrees reasonably
well with Sørensen’s Eq. (18) and captures the peak in
m̄ g/(ρu∗3) that he reported. However, while his formula
does not distinguish between martian and terrestrial con-
ditions, our model predicts that, on Mars, m̄ g/(ρu∗3)
is greater at the same ū∗/ūcrit . This is because, in our
model of gas-solid turbulence coupling at the surface,
T ∗0 ∝ Ar−1, and Mars’ Archimedes number is smaller
than Earth’s.
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