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Abstract Toward elucidating how a wavy porous sand bed perturbs a turbulent flow above its surface,
we record pressure within a permeable material resembling the region just below desert ripples, contrasting
these delicate measurements with earlier studies on similar impermeable surfaces. We run separate tests
in a wind tunnel on two sinusoidal porous ripples with aspect ratio of half crest-to-trough amplitude to
wavelength of 3% and 6%. For the smaller ratio, pore pressure is a function of streamwise distance with a
single delayed harmonic decaying exponentially with depth and proportional to wind speed squared. The
resulting pressure on the porous surface is nearly identical to that on a similar impermeable wave. Pore
pressure variations at the larger aspect ratio are greater and more complicated. Consistent with the regime
map of Kuzan et al. (1989), the flow separates, creating a depression at crests. Unlike flows on impermeable
waves, the porous rippled bed diffuses the depression upstream, reduces surface pressure gradients, and
gives rise to a slip velocity, thus affecting the turbulent boundary layer. Pressure gradients within the
porous material also generate body forces rising with wind speed squared and ripple aspect ratio, partially
counteracting gravity around crests, thereby facilitating the onset of erosion, particularly on ripples of high
aspect ratio armored with large surface grains. By establishing how pore pressure gradients scale with
ripple aspect ratio and wind speed, our measurements quantify the internal seepage flow that draws dust
and humidity beneath the porous surface.

1. Introduction

Winds blowing over desert sand seas create rippled surfaces on porous sand beds [Bagnold, 1935, 1942;
Csahók et al., 2000; Andreotti et al., 2006; Creyssels et al., 2009; Charru et al., 2013]. As Kuzan et al. [1989],
Buckles et al. [1984], and Gong et al. [1996] found in water and air, turbulent flows on wavy surfaces produce
pressure variations due to streamline expansion and contraction [Günther and von Rohr, 2003]. In permeable
sands below the surface, Louge et al. [2010b] showed that these variations induce a kind of aeolian-driven
“seepage,” whereby air penetrates ripple troughs where surface pressure is highest and reemerges at crests,
where it is lowest. Although porous media are known to present an unusual boundary condition to exter-
nal flows [Beavers and Joseph, 1967; Jones, 1973; Nield, 2009], it is unclear how seepage affects a turbulent
boundary layer modulated by permeable ripples.

A related question is whether seepage causes porous ripples to act as a significant sink of aeolian dust
below the sand suspension threshold. As long as wind speed is not fast enough to mobilize the more com-
pact base on which ripples travel, Louge et al. [2010a] predicted that despite its small velocity, seepage
entrains dust below ripple troughs by a peculiar capture mechanism that is enhanced by wind, whereas
conventional dust deposition processes arise with weakening wind and reduced turbulence [Pye and Tsoar,
1987; Goossens, 1988]. A similar process brings benthic nutrients through underwater ripples [Meysman
et al., 2007; Huettel et al., 2007; Fries and Taghon, 2010]. It may also contribute to hyporheic flow in river beds
[Boulton et al., 1998; Sophocleous, 2002] and seepage in lake sediments [Olsthoorn et al., 2012]. Although pre-
dicted by theory, this dust sequestration mechanism has yet to be fully quantified, since it is unknown how
the underlying porous medium affects the turbulent flow responsible for the surface pressure variations that
drive seepage.

Louge et al. [2010a] also suggested that the threshold for the onset of aeolian transport, which had hith-
erto been exclusively associated with the shearing of surface grains [Bagnold, 1935; Shields, 1936], could be
lowered by seepage-induced body forces, as pore pressure gradients within specific regions of the wavy
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permeable bed help relieve part of its weight. To establish whether these forces affect the transport
threshold, it is necessary to quantify the pressure field that the turbulent flow induces within the
permeable bed.

Because numerical simulations rely on turbulence closures in the free stream [Zedler and Street, 2001; Chan
et al., 2007b; Prinos et al., 2003] and on semiempirical boundary conditions at the porous surface [Beavers
and Joseph, 1967; Chan et al., 2007a], they are no substitute for experiments to evaluate the pore pressure
field within a permeable wavy bed. For example, while Cardenas and Wilson [2007] simulated the one-way
coupling from main flow to seepage, they did not consider conversely how the porous substrate affects
the main flow. On the dune scale, such omission is legitimate. However, as the simulations of Chan et al.
[2007a, 2007b] and the experiments of Manes et al. [2009, 2011] showed for flat surfaces, substrate porosity
can modify the turbulent boundary layer. Recently, [Blois et al., 2014] used particle-imaging-velocimetry to
demonstrate that flows over porous triangular bed forms of coarse gravel differ significantly from those over
impermeable surfaces of similar geometry. For these highly separated flows, they noted that the permeable
bed thwarts reattachment of the boundary layer by letting fluid pass through its interior. Therefore, it is
likely that a porous surface affects turbulence on the ripple scale. Yet it remains unclear whether such effect
is limited to coarse beds.

Meanwhile, there exists a mature literature on turbulent flows over impermeable sinusoidal surfaces that
includes experiments [Kendall, 1970; Gong et al., 1996; Buckles et al., 1984], theory [Kroy et al., 2002; Fourrière,
2009; Fourrière et al., 2010], numerical simulations [Henn and Sykes, 1999], and stability analyses [Richards,
1980; Engelund and Fredsøe, 1982; Mutlu Sumert and Bakioglu, 1984; Charru et al., 2013]. Most of these stud-
ies focused upon variations of the surface shear stress. Although there are limited measurements of mean
surface pressure [Kendall, 1970; Buckles et al., 1984; Henn and Sykes, 1999], no experiment or simulation has
yet involved a porous sinusoidal substrate. Intriguingly, Gong et al. [1996] observed that surface pressure on
an impermeable sinusoidal surface with aerodynamic roughness 𝜉0 ≃ 400 μm is significantly smaller than
on a smoother one with 𝜉0 ≃ 30 μm, thus bringing to light the role played by microscopic surface features.

In short, it is unclear how porosity affects the turbulent boundary layer above a rippled surface. This raises
the following questions: (1) Does porosity modify the surface pressure gradient that drives the flow and,
if so, for what size of bed particles? (2) In light of differences between the rough and smooth data of
Gong et al. [1996], what is the magnitude of pressure variations on a porous substrate? (3) Are internal pore
pressure gradients sufficient to produce seepage-induced dust sequestration beneath ripple troughs? (4) By
relieving gravity, could these gradients affect the threshold for aeolian transport, traditionally attributed to
surface shear stress alone? (5) What is the role of ripple aspect ratio?

To address these questions, we used a wind tunnel to record the pore pressure field within two artificial
porous media with sinusoidal surface of wavelength 𝜆=100 mm and half vertical trough-to-crest distance
h0 =3 mm and 6 mm. We discerned the role of permeability by comparing our records of pressure on a
porous surface to similar measurements on impermeable sinusoidal walls, the only shape for which such
data have been published. As we discuss in this article, variations of surface pressure and shear stress scale
with the aspect ratios h0∕𝜆, which is half the inverse of the “ripple index” RI ≡ 𝜆∕(2h0).

Ripples feature a wide variety of shapes that are normally asymmetric [Tanner, 1967]. However, when h0∕𝜆
is small, their cross section can be sinusoidal [Baas, 1994; Louge et al., 2010a], likely for the absence of major
flow recirculation behind crests. Although aeolian ripples are often triangular with a steeper leeward face,
our experiments staged ripples of sinusoidal cross section for three reasons. First, we endeavored to com-
pare them with the mature literature on impermeable waves, which exclusively reported surface pressure
on sinusoidal shapes. Second, adopting an asymmetric cross section would have introduced an additional
geometrical aspect ratio beside the single parameter h0∕𝜆, thus multiplying experimental rigs and compli-
cating interpretation. Third, by comparing two sinusoidal ripples straddling a wide range of ripple index, we
could gauge how this single parameter affects pressure within the ripple and on its surface, thus informing
future modeling of the turbulent boundary layer and its suspension threshold.

2. Experiments

Measurements of pore pressure present exceptional challenges in shifting sands, even below the saltation
threshold. First, wind-driven porous media produce tiny signals of only a few pascals amid turbulent
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Figure 1. Drawing of the artificial rippled bed with h0∕𝜆 = 3%.
Dimensions are in millimeters. Flow is from left to right. The rig with
h0∕𝜆 = 6% has similar design.

fluctuations. Second, at wind speeds that
make pore pressures detectable, erodi-
ble sand does not remain in place long
enough to fix measurement locations
precisely within ripples of millimetric
amplitude. In underwater experiments,
Elliott and Brooks [1997] and Packman
et al. [2004] observed the flow of tracers
through moving bed forms, but they did
not measure pressure directly. Therefore,
to expose how ripple porosity affects
the turbulent boundary layer, our exper-
iments employed a porous plastic with
a permeability value that is similar to
aeolian sands.

We conducted experiments in the wind tunnel described by Ribando [1974] with cross section ≃ 1.2 m wide
× 1 m high, fetch ≃ 12 m, featuring six variable-inlet-guide-vane tube axial exhaust fans of 11 kW, each
contributing ≃ 5.5 m/s to the average wind speed U. Thus, to test how robustly pore pressure scales with
the kinetic energy density (𝜌∕2)U2 of air, we explored a wider range of speeds than typically observed in
aeolian processes.

The rippled bed sketched in Figure 1 was manufactured on a computer numerical control milling machine.
It consisted of three parts: (1) along the flow direction, a developing impermeable RENSHAPE™ plastic section
with bluff nose and flat range; (2) transitioning smoothly to the first trough of a similar plastic surface with
seven sinusoidal ripples of crestlines perpendicular to the flow, long enough to establish a periodic flow
[Gong et al., 1996]; and (3) ending with a porous plastic test section of five full wavelengths with similar cross
section around the assembly centerline and flanked on both sides with similar RENSHAPE™ ripples. Although
its solid volume fraction 𝜈G ≃ 0.4 was smaller than a packed granular solid, the porous GENPORE™ plastic had
a permeability K = 3.4 ± 0.9 10−11 m2, corresponding to a mean pore diameter ≃ 50 μm, typical of desert
sands [Louge et al., 2010b].

To study the role of h0∕𝜆, we manufactured two similar test beds featuring ripples of h0 =3 mm and 6 mm,
carved in porous plastic with respective thickness H = 32.5 mm and 42 mm (Table 1). The aspect ratio
h0∕𝜆 = 3% represented the smallest value that would produce detectable pressure signals. (However, as
our measurements will indicate, any ripple of smaller aspect ratio should exhibit predictable pore pressure
variations scaling with 𝜌U2h0∕𝜆.)

We define a 2-D cartesian coordinate system with unit vectors (x̂, ŷ) along the flow and along the downward
vertical, respectively, with origin in air above the leading trough at an elevation midway between trough
and crest, such that the free surface satisfies

y = h0 cos (2𝜋x∕𝜆) . (1)

The third complete trough-crest-trough wavelength downstream of the leading edge of the porous section
featured stainless steel tubes of 1.75 mm inside a diameter inserted from below and snugly press fit to the
proper depth. The facility with h0∕𝜆 = 3% possessed 36 such tubes and the one with h0∕𝜆 = 6% had 30. The
x and y positions of their tips are listed in the supporting information. Each porous test section was bounded
underneath by a box enforcing a calm, uniform ambient pressure p0 on its ceiling located at y = H (Figure 1).

To minimize cross-calibration errors among all pore pressure measurements, the steel tubes were connected
to a SCANIVALVE™ (no longer available commercially but equivalent to equipment made by VALCO™ Instruments
Co.) that multiplexed them to a single MKS 120-A BARATRON™ differential pressure transducer with ≃1.33 kPa
full scale, 10−3 Pa resolution and 0.05% reading accuracy. Measurements of pore pressure (p − p0)
relative to the ambient (often called “gauge pressure”) and averaged over 10 s are provided in the
supporting information.

To verify that the turbulent boundary layer was fully developed before reaching the rippled section, we
recorded vertical profiles of mean air speed above the free surface using a DWYER™ 471-3 hot-wire
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Table 1. Experimental Conditions and Harmonic Fits to the
Data Using Equation (14)

h0 (mm) 3 6
𝜆 (mm) 100 100
H (mm) 32.5 42
At ≡ u∗∕U 0.0368 ± 0.0034 0.0383 ± 0.0058

p̄∗1 2.186 ± 0.139 1.057 ± 0.107
p̄∗2 0.371 ± 0.170
p̄∗3 −0.140 ± 0.099
p̄∗a − p∗0 0.203 ± 0.087 0.085 ± 0.063
�̄�1 (rad) −0.186 ± 0.072 −0.499 ± 0.115
�̄�2 (rad) −2.28 ± 0.43
�̄�3 (rad) −0.02 ± 1.55
p̄∗

d
2.2 ± 1.8 3.38 ± 0.38

n 80 90
𝜙d (rad) 1.57 1.7
p∗max − p∗0 1.98 ± 0.14 0.71 ± 0.15
p∗min − p∗0 −2.52 ± 0.20 −2.06 ± 0.31
Fmax 16.7 ± 1.1 15.1 ± 5.7
Fmin −12.5 ± 0.8 −8.7 ± 2.1
P∗x 0.043 ± 0.016 0.085 ± 0.025
P∗y −0.09 ± 0.11 −0.64 ± 0.08

v∗ 0.37 ± 0.32 −1.11 ± 0.20

aThe ratio At ≡u∗∕U was recorded just ahead of the rip-
pled section. Pressures marked with an asterisk are made
dimensionless using equation (11) assuming 𝜌=1.2 kg/m3.
p∗min and p∗max are their extrema on the surface. Overbars
indicate that coefficients were fitted from the average
(p∕𝜌U2)(𝜆∕h0) among six experiments, each adding one
more fan to the previous one. Fmin and Fmax are minimum
and maximum values of F in equation (30) with tan𝛼=0.
P∗x and P∗y are dimensionless forces on a unit ripple width in
the x and y directions from equations (25) and (26), respec-
tively. v∗ is the dimensionless overall seepage into the
porous bed through the ceiling of the box at y =H calculated
using equation (27). v∗ >0 means that the ripple inhales (for
h0 ∕𝜆=3%) and v∗ <0 that it exhales (for h0 ∕𝜆=6%). Errors
are 95% confidence intervals. In the supporting informa-
tion, we provide the data used to fit these constants from all
pressure taps across six separate wind speeds.

anemometer with vertical resolution ≃ ±1.5
mm and, wherever the profile conformed to
Prandtl’s law-of-the-wall, we extracted the
shear velocity u∗ by fitting data to

u = (u∗∕𝜅) ln(z∕𝜉0), (2)

where z is vertical upward elevation above
the mean porous surface, 𝜉0 is the “aerody-
namic roughness,” and 𝜅 ≃0.41 is von Kàrmàn’s
constant. Measurements of time-averaged
velocity profiles are provided in the
supporting information.

From these profiles, Buckles et al. [1984] and
Henn and Sykes [1999] defined the bulk wind
speed U as the mean speed integrated across
the channel. Because the turbulent boundary
layer is characterized by the shear velocity u∗,
one may be tempted to scale pressures with
u∗ rather than U. However, because shear stress
evolves along a slanted surface [Jackson and
Hunt, 1975; Kroy et al., 2002; Hersen, 2004], the
bulk speed U, which is invariant along the rip-
ple, is a more robust characteristic of the locally
undulating flow.

As Figure 2 illustrates, a turbulent boundary
layer with nearly uniform thickness and sta-
ble shear velocity was well established before
the end of the flat section. Following Zilker and
Hanratty [1979], we then defined the reference
u∗ “in terms of the wall shear stress that would
exist if the wave section were replaced by a
flat section,” and we recorded it just ahead of
the rippled surface. The right inset in Figure 2
shows that the ratio At ≡ u∗∕U is a constant,
which we list in Table 1. As the same inset
shows, the aerodynamic roughness 𝜉0 con-

formed to ln(𝜌u∗𝜉0∕𝜇) = −2.45 ± 0.61, where 𝜌 ≃1.2 kg/m3 and 𝜇 ≃ 1.8 10−5 kg/m s are, respectively, the
density and dynamic viscosity of air. The corresponding values (0.4 < 𝜉0 < 11 μm) are similar to a typical
sand surface. We conducted experiments at conditions summarized in Table 1.

3. Data Reduction

In turbulent boundary layers, pressure fluctuates as bursts with a spectrum of frequencies f [Willmarth,
1975]. Bursts of typical size 𝓁b ∼100𝜇 ∕(𝜌u∗) [Kim et al., 1971] produce fluctuations at
f ∼u∗∕𝓁b =𝜌U2 A2

t ∕(100𝜇). For our experiments with 3<U<36 m/s, we estimate 10 Hz ≲ f ≲1.5 kHz.
At these relatively low frequencies, it is not necessary to add the inertial terms [𝜌∕(1 − 𝜈G)]𝜕v∕𝜕t or
[𝜌∕(1 − 𝜈G)]v𝜕v∕𝜕x to Darcy’s law

∇p = −𝜇

K
v, (3)

since these terms scale, respectively, as 𝜌fv and 𝜌v2h0∕𝜆2, both of which are negligible compared with 𝜇v∕K .
In equation (3), v, v, p, and K are, respectively, seepage superficial velocity and its magnitude, pore pressure,
and bed permeability. For nearly incompressible air, the mass conservation equation

𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌v) = 0 (4)
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adopts the divergence-free form ∇ ⋅ v = 0. With equation (3), the time-averaged pore pressure p then
satisfies the Laplace equation

∇2p = 0. (5)

However, while a steady pressure p can propagate through the bed according to the elliptic equation (5),
Louge et al. [2011] showed in their Appendix C that pressure fluctuations p′ are attenuated in an isothermal
porous medium according to

𝜕p′

𝜕t
−

Kp0

𝜇
∇2p′ ≃ 0. (6)

In our case, p is close to the ambient atmospheric pressure p0. A solution of this equation shows that pres-
sure fluctuations of frequency f decay exponentially with distance from the surface on a characteristic
“acoustic depth”

hd =

√
Kp0

𝜋𝜇f
. (7)

From equation (7), pressure bursts then induce pore pressure fluctuations down to an acoustic depth
hd ∼Dd∕U, where Dd ≡ [100Kp0∕(𝜋A2

t 𝜌)]
1∕2 has units of a diffusion coefficient. For conditions that we

explored, acoustic depths vary from 7 mm at the highest speed to 80 mm at the lowest. Equivalently, at
y ≃ H, the boxes with h0∕𝜆 = 3% and 6% experienced surface pressure fluctuations up to frequencies
fd ≲ 58 Hz and ≲35 Hz, respectively, while faster fluctuations were damped by the porous medium. Con-
versely, these boxes were brought to the mean static pressure along the free surface in a relatively small
time ∼ (2𝜋fd)−1 ≃ 3 ms and ≃ 5 ms.

In short, because the Laplace equation (5) is linear, time-averaged pore pressures can be reliably measured
within permeable ripples in the wind tunnel. However, pressure fluctuations are naturally low-pass filtered
by the porous medium through equation (6).

As Fourrière et al. [2010] showed, the time-averaged surface pressure on a sinusoidal ripple with elevation in
equation (1) and relatively low h0∕𝜆 evolves along x as

p ≃ pa + p1 cos(2𝜋x∕𝜆 + 𝜙1), (8)

where p1 scales as 𝜌u2
∗(h0∕𝜆) and 𝜙1 < 0 is a small phase lag that Kendall [1970] and Zilker and Hanratty

[1979] observed in experiments. In equation (8), the base pressure pa = p0 + 𝜏zz arises from a fluctuating
turbulent normal stress 𝜏zz ≃ 𝜌u2

∗𝜒
2∕3, where 𝜒 ∼ 3 is a phenomenological constant [Fourrière et al., 2010].

By imposing equation (8) at the surface and the uniform ambient pressure p = p0 on the ceiling of the box
at y = H, integrating the Laplace equation (5) yielded the pore “gauge” pressure field

p − p0 = (pa − p0)
(

1 −
y
H

)
+ p1 cos(2𝜋x∕𝜆 + 𝜙1)

[
exp(−2𝜋y∕𝜆) − exp(−4𝜋H∕𝜆) exp(2𝜋y∕𝜆)

1 − exp(−4𝜋H∕𝜆)

]
. (9)

Our measurements provided p − p0 at several x and y within the porous ripple. If surface pressure conforms
to the single harmonic in equation (8), then equation (9) allowed us to extract (pa − p0), p1, and 𝜙1. Such is
the case for the relatively low h0∕𝜆 = 3% in the next section. However, at larger h0∕𝜆, we will later see that
more harmonics are needed.

4. Pore Pressure at Low h0∕𝝀 = 3%

To estimate dust penetration into a rippled sand surface conforming to equation (1), Louge et al. [2010b]
borrowed results from Gong et al. [1996], who measured static pressure along a turbulent flow on imperme-
able smooth and rough wavy surfaces. To calculate pore pressure within a porous sand bed in closed form,
they assumed that the data of Gong et al. [1996] for a smooth undulating surface conformed to equation (8).
In the Jackson and Hunt [1975] theory for turbulent flow over slanted terrain, the surface shear stress scales
with the aeolian kinetic energy density ∝ 𝜌U2 and roughly with slope, which, for ripples, grows with h0∕𝜆.
Noting that, as a fluid normal stress, static pressure variations on a rippled surface follow the same scaling
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Figure 2. Streamwise evolution of velocity profiles for the rig in Figure 1 at bulk velocities (top) U ≃ 9 m/s and (bottom)
33 m/s. Distances are in millimeters. Sections are identified in the bottom graph. Vertical lines are axes u = 0, and mark
locations where profiles of time-averaged velocity u were recorded. Horizontal segments show a scale of 40 m/s for these
profiles. The left inset is a semilog profile of the wall coordinate log10(𝜌zu∗∕𝜇) versus u at the end of the flat developing
section for this facility with h0∕𝜆 = 3% at U ≃ 33 m/s. The straight line is a fit to equation (2) yielding aerodynamic
roughness 𝜉0 and u∗ quoted in Table 1 at 95% confidence. The middle inset is for h0∕𝜆 = 6% at U ≃ 20 m/s. The right
inset shows the overall dependence of ln(𝜁0) ≡ ln(2𝜋𝜉0∕𝜆) (left axis, dimensionless) and shear velocity u∗ (right axis,
m/s) on U (m/s) for both rigs at h0∕𝜆 = 3% and 6% over the whole range of bulk velocity considered.

[Fourrière, 2009], Louge et al. [2010a] suggested that the pressure amplitude measured by Gong et al. [1996]
could be approximated with the expression

p1 ≈ 𝜌U2h0∕(𝜂𝜆). (10)

(An interpretation of the constant 𝜂 is that p1 is the static pressure amplitude that would arise in an ideal
steady, incompressible, inviscid, and irrotational flow on a sinusoidal surface located at a distance 𝜂𝜆 below
a parallel flat wall.)

The scaling in equation (10) suggests that pressure can be made dimensionless with

p∗ ≡ p𝜆
𝜌U2h0

. (11)

If this scaling has merit, then the average value of p∗
1 over experiments at different wind speeds, denoted by

an overbar, should be equal to the inverse of the constant 𝜂 that Louge et al. [2010a] introduced, p̄∗
1 = 1∕𝜂.

To gauge whether data for the rippled bed of low amplitude h0 ∕𝜆=3% may be fit with equation (9), we
separated variations along the streamwise and depth directions by defining the eigenfunctions

gi(y∕𝜆) ≡
[

exp(−2𝜋iy∕𝜆) − exp(−4𝜋iH∕𝜆) exp(2𝜋iy∕𝜆)
1 − exp(−4𝜋iH∕𝜆)

]
(12)

and

fi(x∕𝜆) ≡ cos(2𝜋ix∕𝜆 + 𝜙i). (13)

As Figure 3 shows, pressure data at low h0∕𝜆 are well represented by a single eigenfunction (i=1). Here
it is convenient to plot (p − pa)∕[p1g1(y∕𝜆)] to highlight variations along the streamwise direction x and
(p − pa)∕[p1f1(x∕𝜆)] to highlight the corresponding pore pressure decay along the depth y. This approach
is equivalent to least squares fitting the 2-D data along (x, y) to equation (9), which represents a truncation
of the Fourier series solution of equation (5) to its harmonic fundamental. We found that including higher
harmonics for h0 ∕𝜆=3% did not improve the least squares fit, as measured by the adjusted R-squared
criterion [Everitt, 2006].

Thus, for h0∕𝜆=3%, we extracted 𝜂=1∕p̄∗
1 ≃0.46±0.03 from equation (10). As the dashed line in Figure 3

shows, an extrapolation of our pore pressure measurements to the surface is nearly identical to the pres-
sure data reported by Kendall [1970] for an impermeable ripple of comparable wind speed and aspect ratio.
Therefore, it appears that permeability similar to a typical sand hardly affects pressure variations on ripple
surfaces of low h0∕𝜆. Later, section 6 will suggest why this is the case.
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Figure 3. Pressure variations in a porous ripple of amplitude h0 = 3 mm and wavelength 𝜆 = 100 mm swept by wind
of bulk speed U ≃ 9.1 m/s. (left) Streamwise variations of the relative pore pressure (p − pa)∕p1, divided by the function
g1(y∕𝜆) in equation (12) capturing variations in the depth. The dashed line is a fit through comparable data of Kendall
[1970] for an impermeable surface with similar h0∕𝜆 = 3.125%. With U ≃ 10.6 m/s, 𝜁0 ≃ 4.10−4, and u∗∕U ≃ 0.024,
Kendall [1970] found p∗1 = 1.995±0.029 and 𝜙1 = −0.169±0.015 at 95% confidence, a result nearly identical to values in
Table 1. (right) Variations of relative pore pressure divided by the function f1(x∕𝜆) in equation (13) capturing streamwise
variations. Points data and lines are equation (9) with pa = 0.37 Pa, p1 = 6.73 Pa, and 𝜙 = −0.22 rad.

Synthesizing data from their own experiments and those of others, Gong et al. [1996] had estimated 𝜂≃0.14
and ≃0.51 for smooth and rough surfaces with 𝜉0 =30 μm and 400 μm, respectively. Inspired by those mea-
surements and conscious of the relatively small aerodynamic roughness of desert sands [Charru et al., 2013],
Louge et al. [2010a] and Louge et al. [2010b] adopted the “smooth” value of 𝜂 that Gong et al. [1996] had
proposed. However, as the next section shows, this choice was not wise, largely because Gong et al. [1996]
conducted their measurements on ripples with higher aspect ratio, which are more likely to induce flow
separation. Thus, our results show that Louge et al. [2010b] overestimated pore pressure amplitudes by a fac-
tor ≃ 3 and seepage-induced dust capture and moisture channeling by the same factor. Nonetheless, this
mechanism of dust capture remains significant and is now quantified.

Our data also show that like over impermeable walls, surface pressure on a porous sinusoidal bed at
h0∕𝜆 = 3% (equation (1), with y pointing downward) is sinusoidal with a slight phase lag. Kuzan et al. [1989]
drew a phase diagram delimiting regimes of attached and separated flows over impermeable sine waves
(Figure 4). At the wind speeds of our experiments, this map suggests that flows are attached to the sur-
face with h0∕𝜆 = 3%, except perhaps for the two smallest speeds that we staged, shown as the rightmost
two diamond symbols in Figure 4 with U≃4.4 and 9.1 m/s. In fact, Figure 3 hints that such flow separation
might have indeed occurred at U≃9.1 m/s. For an attached turbulent boundary layer, pressure fluctuations
are approximately p′ ∼ 3𝜌u2

∗ [Hinze, 1975]. Thus, relative to p1, they are p′∕p1 ∼ (3A2
t ∕p̄∗

1)(𝜆∕h0), where
At ≡ u∗∕U ≃ 0.04 and p̄∗

1 ≃ 2 (Table 1) or p′∕p1 ≃ 8%. There are regions along the ripple where pressure
deviations exceed this estimate, particularly just after the crest (x ≃ 60 mm).

Because pressure amplitude scales with h0∕𝜆, ripples of lower aspect ratio (i.e., ripple index >17) should
also exhibit a similar, slightly delayed sinusoidal surface pressure, and their flow should be even less likely to
separate. In contrast, as h0∕𝜆 grows (i.e., for lower ripple index), Figure 4 suggests that the flow is more prone
to detachment, and therefore, our measurements at low aspect ratio are no longer sufficient to expose how
the porous subsurface affects the turbulent flow. In fact, static pressure variations along the impermeable
sinusoidal surface of Gong et al. [1996] with h0∕𝜆 ≃ 7.9% did not, strictly speaking, conform to the harmonic
equation (8). Conscious of this shortcoming, we therefore staged a larger h0∕𝜆 = 6% for comparison, as
discussed next.

5. Pore Pressure at h0∕𝝀 = 6%

Because turbulent flows over waves of large amplitude separate [Kuzan et al., 1989], we could no longer
model pore pressure within artificial ripples of h0∕𝜆 = 6% with a single harmonic. Instead, we found it
necessary to interpret data using a longer series of eigenfunctions satisfying the boundary condition at
y = H. We truncated the series to the third harmonic, beyond which we observed no further improvement
in the R-squared criterion that gauges confidence in the best fit,

p − p0 = (pa − p0)
(

1 −
y
H

)
+

3∑
i=1

pifi(x∕𝜆)gi(y∕𝜆) + pdf1∕n(x∕𝜆)g1∕n(y∕𝜆). (14)
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Figure 4. Regime map proposed by Kuzan et al.
[1989] for turbulent flows over sinusoidal imper-
meable ripples [Frederick and Hanratty, 1988]. Solid
lines delimit regions in the diagram of inverted
Reynolds number 2𝜋𝜇∕(𝜌u∗𝜆) versus ripple aspect
ratio 2h0∕𝜆, behaving as “separated” or “nonsepa-
rated” flows [Thorsness et al., 1978]. To the right of
the dashed line, Kuzan et al. [1989] noted a transi-
tion to “time-averaged separated” flows remaining
detached on longer time scales. The solid triangle
marks experiments of Gong et al. [1996]; the circle
shows experiments of Buckles et al. [1984], which
Henn and Sykes [1999] modeled with LES; plus signs
are experiments of Kendall [1970]; and solid dia-
monds and squares indicate our own tests with
h0∕𝜆 = 3% and 6%, respectively.

To this series, we added the last term pdf1∕ng1∕n repre-
senting the relatively small decay in mean static pressure
that wind experiences on length scales ≫𝜆 as it drags
the rippled surface. For compatibility with the Laplace
equation (5), this “drag” term is a single slowly varying sub-
harmonic eigenfunction valid in the range 0 < x < 𝜆 of
the form f1∕n(x∕𝜆) ≡ cos[2𝜋x∕n𝜆 + 𝜙d] and g1∕n(y∕𝜆) ≡
[exp(−2𝜋y∕n𝜆) − exp(−4𝜋H∕n𝜆) exp(2𝜋y∕n𝜆)]∕
[1 − exp(−4𝜋H∕n𝜆)], which we obtain by substituting
i=1∕n in equations (12) and (13). Because such
drag-induced pressure reduction is small, the actual form
of the subharmonic term pdf1∕ng1∕n matters little to our
results. Values of n and pd are found in Table 1.

As Figure 4 shows, the more complicated form of pore
pressure in equation (14) is consistent with the regime
map that Kuzan et al. [1989] drew for harmonically rippled
impermeable surfaces. This map implies that most of our
tests at h0∕𝜆 = 6% separated behind crests, while those
at h0∕𝜆 = 3% did not. Despite a lower value of inverted
Reynolds number 2𝜋𝜇∕(𝜌u∗𝜆), the experiments of Gong
et al. [1996] at h0∕𝜆 ≃ 7.9% should not have separated
either, according to this map. However, as Figure 5 illus-
trates, surface pressures of Gong et al. [1996] closely
resemble those of Buckles et al. [1984] and Henn and Sykes
[1999], suggesting that they too exhibited separated flow.

Further evidence of flow recirculation behind crests is the relatively low pressure recorded on impermeable
surfaces in the range 0.7≲ x ∕𝜆≲1 and the delayed location of peak pressure. Unlike surface pressure pro-
files at h0∕𝜆=3% (Figure 3, left, with y∼0), peak pressures at larger h0∕𝜆 in Figure 5 are not located above
troughs, but they are delayed to x ∕𝜆∼0.25 for impermeable surfaces (symbols) or to x∕𝜆∼0.16 over our
porous bed (solid line).

Finally, by comparing pressure data from wavy surfaces with different values of h0∕𝜆, Figure 5 confirms
that like shear stress or u2

∗ [Jackson and Hunt, 1975], pressure scales with h0∕𝜆. However, as the inset of
Figure 5 reveals, there is a subtle dependence of the principal pressure harmonic p∗

1 from equation (14) on
wind speed.

More significantly, our extrapolation of pore pressure to the surface (solid line in Figure 5) clearly deviates
from similar measurements on impermeable surfaces. In the next section, we suggest why these deviations
can be attributed to the porous medium.

6. Significance for Turbulent Flows Over Porous Rippled Surfaces

Besides closely capturing pore pressure within the rippled bed, equation (14) provides an accurate record
of static pressure on its surface, shown as the solid line in Figure 5. Using a Monte Carlo technique, we
calculated where this line resides at 95% confidence. As Figure 5 reveals, the dimensionless surface pres-
sure at the porous crest with h0∕𝜆 = 6% is identical within experimental errors to earlier measurements
[Buckles et al., 1984; Gong et al., 1996] and numerical simulations [Henn and Sykes, 1999] on impermeable
wavy surfaces of similar aspect ratios, thus validating our measurements and suggesting that the scaling
of pressure in equation (11) is robust. However, we find that surface pressure and its gradient in the region
0.1 ≲ x∕𝜆 ≲ 0.45 between trough and crest are substantially lower on the porous ripple than they are on a
similar impermeable surface.

This contrast between pressure profiles on impermeable and porous wavy surfaces suggests that the porous
medium interferes with the turbulent flow overhead. At a porous surface of upward unit normal n̂, Beavers
and Joseph [1967] recorded a substantial slip velocity us, which they related to the superficial velocity v in
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the bed through a boundary condition that Jones [1973] later interpreted in terms of the surface shear stress
𝝉 [Nield, 2009]. In a clear-gas turbulent viscous sublayer, this condition writes

𝝉 ⋅ n̂ = 𝜛𝜇

K1∕2

(
us − v

)
, (15)

where 𝜛 is a constant of order unity. (As Saffman [1971] pointed out, the superficial velocity of order K is
small compared with the slip of order K1∕2, and thus, it can be neglected.)

Meanwhile, as Durán et al. [2011] explained, the “outer layer” far above a rippled surface of moderate
h0∕𝜆 behaves as a nearly inviscid potential flow having streamlines in phase with ripple elevation and a peak
velocity located above crests. Closer to the surface, Reynolds stresses in the turbulent “inner layer” delay
the response of fluid velocity to an imposed shear, thus compelling wall shear stress to peak ahead of crests
and pressure maxima to lag behind troughs. Fourrière et al. [2010] showed that the inner layer thickness
𝓁 satisfies 𝓁∕𝜆 ∼ ln−2(𝓁∕𝜉0). Closer to the surface, the viscous sublayer defines the aerodynamic roughness
𝜉0 that the inner layer experiences. As long as the thickness of the viscous sublayer 𝓁v ≃ 5𝜇∕(𝜌u∗) is small
compared to that of the inner layer, then details of how aerodynamic roughness arises do not matter to the
evolution of shear stress and pressure along the ripple. For our conditions, 1.5 < 𝓁 < 3.1 mm is substantially
larger than 59 < 𝓁v < 400 μm but much smaller than 𝜆, therefore validating the assumptions underlying
the analysis of Fourrière et al. [2010].

With these assumptions, Kroy et al. [2002] extended the theory of Jackson and Hunt [1975] for turbulent
flows over topography to dunes and ripples. They showed that shear stress on a sinusoidal surface of
moderate h0∕𝜆 evolves as

𝜏 = 𝜌u2
∗ (1 − 𝜏) , (16)

where 𝜙𝜏 = arctan(B∕A) and

𝜏 ≡ 2𝜋
(

h0

𝜆

)
(A2 + B2)1∕2 cos

(
2𝜋

x
𝜆
+ 𝜙𝜏

)
(17)

is a dimensionless excursion in shear stress. To a good approximation, Fourrière et al. [2010] calculated

A ≃ 2 +
a1 + a2R + a3R2 + a4R3

1 + a5R2 + a6R4
> 0, (18)

B ≃
b1 + b2R + b3R2 + b4R3

1 + b5R2 + b6R4
> 0, (19)

where ai ≃ (1.070, 0.0931, 0.108, 0.0248, 0.0416, 0.00106) and bi ≃ (0.0370, 0.158, 0.115,
0.00202, 0.00287, 0.000535). The dimensionless constants A and B are weakly related to the aerodynamic
roughness 𝜉0 through

R ≡ − ln
(
𝜉0

𝜆

)
> 0. (20)

Combining equation (15) with v ≃ 0 and equation (16), the ratio of slip to shear velocity is then

us

u∗
≃ ReK (1 − 𝜏) ∕𝜛 (21)

where ReK ≡ 𝜌u∗

√
K∕𝜇. If for simplicity we assume that at low h0∕𝜆, Prandtl’s logarithmic law applies to the

inner layer then the velocity profile becomes u = (u∗∕𝜅) ln(z∕𝜉0) + us or, equivalently, u = (u∗∕𝜅) ln(z∕𝜉s),
where 𝜉s is an effective “slip roughness” that varies along the surface,

𝜉s ≡ 𝜉0 exp
(
−

us𝜅

u∗

)
= 𝜉0 exp

[
− 𝜅

𝜛
ReK (1 − 𝜏)

]
. (22)

At low enough h0∕𝜆, 𝜏 < 1 so that the slip roughness 𝜉s decreases everywhere sharply with wind speed.

As Manes et al. [2009, 2011] showed for flat beds of much higher permeability (K ≃ 10−8 − 10−7 m2), tur-
bulence can also penetrate a permeable porous substrate, thus further perturbing the turbulent boundary
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layer, for example, by reducing the apparent von Kármán constant 𝜅 as ReK grows. However, the data of
Manes et al. [2009, 2011] imply that these more dramatic effects disappear at the lower permeabilities typical
of desert sands, where ReK remains small.

Nonetheless, equation (21) suggests that a significant slip velocity can arise on a porous rippled surface. For
example, with typical A ≃ 4 and B ≃ 2 at u∗ = 0.3 m/s, equations (17) and (21) predict that our porous rig
with h0∕𝜆 = 6% and K = 3.4 10−11 m2 can produce a peak slip us∕u∗ ≃ 0.3 that is a notable fraction of
the shear velocity. Meanwhile, for the same conditions, the slip is much smaller on a flat surface (h0∕𝜆 = 0),
us∕u∗ ≃ 0.1. The form of equation (21) suggests that the rippled nature of the porous surface begins to
produce a significant slip when the amplitude of 𝜏 in equation (17) exceeds 1 or, equivalently, for aspect
ratios h0∕𝜆 > 1∕[2𝜋(A2 + B2)1∕2]. With typical values A ≃ 4 and B ≃ 2 [Fourrière et al., 2010], this occurs
with h0∕𝜆 ≳ 4%, suggesting that the shallow ripples in section 4 possess a nearly uniform slip roughness
𝜉s ∼ 𝜉0 exp

(
−𝜅ReK∕𝜛

)
. However, as h0∕𝜆 grows to 6%, the slip should vary significantly anywhere along

the ripple, unless surface shear stress collapses through flow separation.

In other words, as far as surface pressure is concerned, a porous ripple at h0∕𝜆=3% should behave as
an impermeable ripple with uniform, albeit smaller aerodynamic “slip” roughness. However, for greater
h0∕𝜆, the slip roughness should evolve along porous ripples, thus modifying the character of the turbulent
boundary layer.

Nonetheless, the reduction in slip roughness with u∗ that is predicted by equation (22) seems at odds with
the results of Gong et al. [1996]. At relatively large values of h0∕𝜆=7.9%, these authors observed a larger
pressure amplitude on a smooth impermeable sinusoidal surface with 𝜉0 = 30 μm than on a rougher sur-
face with 𝜉0 = 400 μm. Meanwhile, our plastic surfaces with h0∕𝜆 = 6% have an aerodynamic roughness
0.4<𝜉0 <11μm comparable to the smooth case of Gong et al. [1996]. (Moreover, as equation (22) suggests,
our porous ripples should produce an even smaller effective roughness by allowing slip at the wall.) There-
fore, based upon trends that Gong et al. [1996] observed for the variations of pressure amplitude with
aerodynamic roughness, our smoother porous ripples with h0∕𝜆 = 6% should have produced a larger
dimensionless pressure amplitude p∗ than what Gong et al. [1996], Buckles et al. [1984], or Henn and Sykes
[1999] measured on impermeable ripples. Yet the opposite happened: as Figure 5 shows, surface pressure
variations declined from impermeable to porous ripples; further, as the inset of that figure shows, the first
pressure harmonic p∗

1 decreased with wind speed.

Therefore, another mechanism that is absent from impermeable experiments must be at play when
h0∕𝜆 is relatively large. Our observations suggest that porous ripples allow air to bypass the main flow.
Because pore pressure satisfies the elliptic Laplace equation (5), the depression at the crest diffuses through
the porous bed, thus substantially reducing surface pressure upstream. (Less noticeably, the depression also
permeates leeward, producing a lower surface pressure in the range 0.6 ≲ x∕𝜆 ≲ 1 than the correspond-
ing value on an impermeable surface.) Our measurements suggest that it does not take much air seepage
to create an internal bypass attenuating the peak pressure through such retrodiffusion of the depression on
the crest. An attenuation Δp∗ across the dimensionless distance Δx∗ requires a seepage velocity v given by
equation (3) as

v
U

∼
(
Δp∗

Δx∗

)(
𝜌K1∕2U

𝜇

)(
h0

𝜆

)(
K1∕2

𝜆

)
(23)

For example, as Figure 5 shows, the drop Δp∗ ≃ 1.2 across Δx∗ ≃ 0.25 from peak pressure at x∗ ≃ 0.25
to crest depression at x∗ ≃ 0.5 only requires a seepage velocity as small as v ≃ 0.5 mm/s for U = 10 m/s.
However, because seepage velocity scales as K1∕2∕𝜆 in equation (23), an internal bypass that can attenu-
ate surface pressure on the ripple scale is not important on the size of a dune, which has vanishingly small
K1∕2∕𝜆.

Because the principal ingredient in the theory of Jackson and Hunt [1975] is local slope, represented in our
sinusoidal case by h0∕𝜆, we expect that any porous bed with similar size and slope, such as triangular aeo-
lian ripples [Tanner, 1967], will create comparable slip roughness and attenuate surface pressure gradients
in ways that are analogous to a sinusoidal profile. The recent experiments of Blois et al. [2014] confirm this
with coarse gravel beds. In their case, particles are so large that permeability is high, thus creating a visible
fluid bypass through the bed.
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Figure 5. Comparison of static pressure on impermeable and porous
surfaces. Symbols mark measurements on impermeable solids by,
respectively, Buckles et al. [1984] (circles) and Gong et al. [1996]
(triangles, their rough surface) and computed in large eddy simula-
tions labeled “BHA1” by Henn and Sykes [1999] (plus signs). The solid
line is an extrapolation of measurements within our porous bed with
h0∕𝜆 = 6% to the surface using equation (14) (solid line), based on
parameters in Table 1. Grey lines demarcate our 95% confidence inter-
val. The abscissa is x∕𝜆 with origin over the trough; the ordinate is
(p∗ − p∗0). The upper sketch (exaggerated amplitude) shows positions
of trough and crest. The inset shows variations of the main harmonic
in equation (14) versus U with error bar from Table 1.

Because by necessity our experiments
were run without particles, they only
applied, strictly speaking, to winds below
the suspension threshold. However,
we anticipate that our artificial rippled
surfaces capture effects of porosity on
surface slip and streamwise wind pres-
sure gradient, whether or not the wind
is laden with particles, for three reasons.
First, our porous plastic has compara-
ble

√
K ≃5.8μm to a typical sand bed

(
√

K ≃ 2μm). Second, because ripples
travel at a speed ≪ u∗, seepage is estab-
lished much faster than ripple shape
changes. Third, as Bagnold [1942] noted,
the momentum exchange between air
and suspended solids binds altitude
zB and speed uB at the top of the salta-
tion layer. (For this reason, zB is called
the “Bagnold focal point.”) Therefore,
consistent with Prandtl’s law of the
wall, the particle-laden region presents
to the turbulent inner layer aloft an
effective aerodynamic roughness
[Durán et al., 2011]

𝜉B ≡ zB exp
(
−

uB𝜅

u∗

)
. (24)

As Sherman and Farrell [2008] reviewed, g𝜉B∕u2
∗th grows with shear velocity above the transport threshold

u∗th (in contrast with the slip roughness 𝜉s that we introduced in equation (22), which instead decreases
with wind speed). Because the coefficients in equations (18)–(20) depend logarithmically on 𝜉s, they change
slowly. Meanwhile, to predict the streamwise evolution of surface pressure, Fourrière [2009] derived other
coefficients (called C and D) with similarly weak logarithmic dependence on roughness. Therefore, we
expect that pore pressure evolution is qualitatively similar with or without sand transport, as Fourrière et al.
[2010] noted for shear stress. However, because the theory of Jackson and Hunt [1975] is predicated upon
an inner layer that is thicker than the viscous sublayer, a saltation region with zB ∼ u2

∗th∕g may become too
thick to uphold the theory’s principal assumption, and therefore, it might no longer produce quantitative
predictions of shear stress and pressure. In addition, because particles near the surface affect the suspension
viscosity [Mooney, 1951], the clear-gas boundary condition in equation (15) should be changed accordingly,
and 𝜏 should be replaced by the gas contribution to the total stress. Nonetheless, our experiments provide a
first insight toward appreciating the role of bed porosity on aeolian rippled surface processes in deserts.

7. Pressure Drag and Lift

At the wavy surface with unit normal of components [2𝜋h∗
0 sin(2𝜋x∗); 1]∕

[
1 + 4𝜋2h∗2

0 sin2(2𝜋x∗)
]1∕2

along
x and y, pressure integrates to a force P exerted on a unit ripple width over the whole wavelength. Its
projection along the flow amounts to a pressure drag force per unit width, expressed in dimensionless
form as

P∗
x ≡ 1

𝜆

P ⋅ x̂
𝜌U2

(
𝜆

h0

)
= ∫

1

0
(p∗ − p∗

0)
2𝜋h∗

0 sin(2𝜋x∗)[
1 + 4𝜋2h∗2

0 sin2(2𝜋x∗)
]1∕2

dx∗, (25)

while its projection along y resembles a lift

P∗
y ≡ 1

𝜆

P ⋅ ŷ
𝜌U2

(
𝜆

h0

)
= ∫

1

0
(p∗ − p∗

0)
dx∗[

1 + 4𝜋2h∗2
0 sin2(2𝜋x∗)

]1∕2
. (26)

In these expressions, distances are made dimensionless with 𝜆 and denoted by an asterisk. As Table 1 shows,
the dimensionless net pressure drag force grows roughly in proportion to h0∕𝜆, thus suggesting that
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Figure 6. Contours of seepage streamlines and dimensionless
gauge pore pressure p∗ − p∗0 across a section of the porous rip-
ple with h0∕𝜆 = 6%, bounded on top by the harmonic ripple
described in equation (1) and by a hermetic box with pressure pa at
y = H = 42 mm below. Figure is drawn to scale. Numerical values
are reconstructed from equation (14) with dimensionless constants
in Table 1. Red and black lines are, respectively, streamlines and
contours of p∗ − p∗0 with values in the range −2.1 < p∗ − p∗0 < 0.71.
For a frictionless bed (tan 𝛼 = 0), colors represent the magnitude of
F in equation (30) with −8.7 < F < 15.1 and thick blue lines mark
the locus of F = 0. The maximum Fmax = 15.1 is ahead of the crest
at x∕𝜆 ≃ 0.40. Thick grey lines are the same locus for tan 𝛼 = 0.5.
Note that because the term ∝ pd in equation (14) dissipates pres-
sure slightly from x = 0 to x = 𝜆, patterns are aperiodic along x.
Black arrows illustrate typical body forces exerted on a point within
the porous ripple (not to scale). In this sketch, the opposite of the
pore pressure gradient −∇p is not aligned with the gravitational
body force 𝜌s𝜈g, but it contributes to relieving it.

P ⋅ x̂ ∝ 𝜌U2h2
0∕𝜆. It is significantly smaller

than the same quantities derived from the
surface pressure data of Gong et al. [1996]
(smooth surface, P∗

x ≃ 0.25, and “rough”
surface, P∗

x ≃ 0.18 at h0∕𝜆 ≃ 7.9%), Buckles
et al. [1984] (P∗

x ≃ 0.24 at h0∕𝜆 ≃ 10%), and
from the large eddy simulation (LES) of Henn
and Sykes [1999] (P∗

x ≃ 0.22 at h0∕𝜆 ≃ 10%),
confirming that air seepage through the
porous medium reduces pressure drag on
the ripple surface.

Our experiments also yielded P∗
y <0, indicat-

ing that the ripple surface was subject to an
upward lift. Comparison of |P∗

y | for ripples
with h0∕𝜆 = 6% and 3% in Table 1 suggests
that |P∗

y | ∝ h∗2
0 , tentatively suggesting a

lift force P ⋅ ŷ ∝ 𝜌U2h3
0∕𝜆

2. In contrast, ear-
lier experiments over impermeable wavy
surfaces could be of either sign; the rough
surface of Gong et al. [1996] had P∗

y ≃ 0.10;
their smooth one had P∗

y ≃ −0.28; Buckles
et al. [1984] had P∗

y ≃ −0.15, but the corre-
sponding LES found P∗

y ≃ + 0.14 [Henn and
Sykes, 1999].

Finally, as Table 1 shows, we noted that
ripples of relatively large aspect ratio induce
a net seepage updraft. Making superficial

velocity v dimensionless as v∗ ≡ v[𝜇𝜆2∕(K𝜌U2h0)], the net seepage (positive downward) calculated at
y = H is

v∗ = −∫
1

0
ŷ ⋅ ∇∗p∗dx∗. (27)

The mean updraft at h0∕𝜆 = 6% suggests that porous ripples of high aspect ratio exhale a net amount
of pore air as wind blows over their surface. At lower h0∕𝜆 = 3%, the draft is smaller and directed
downward instead.

8. Body Forces

We derive isobaric contours and seepage streamlines within the ripple from the two-dimensional fit of the
pore pressure field in equation (14). They are sketched in Figures 6 and 7. (All original mean pore pressure
data leading to these fits are found in the supporting information.) As Louge et al. [2010a] calculated in their
Appendix A, the pore pressure gradient within a homogeneous porous sand bed exerts an equal and oppo-
site body force −∇p on the grain assembly. A frictionless bed with solid volume fraction 𝜈 and grains of
material density 𝜌s would therefore mobilize if the downward projection of this gradient ŷ ⋅ ∇p balanced
the gravitational body force 𝜌s𝜈g. If instead the bed failed as a Mohr-Coulomb material with internal friction,
which nearly equals the tangent of the angle of repose 𝛼, then its local force balance would also involve
the component of the gradient along x̂ [Louge et al., 2010a]. In this case, grain mobilization would take
place wherever

𝜕p
𝜕y

− tan 𝛼
||||𝜕p
𝜕x

|||| ⩾ 𝜌s𝜈g. (28)

In criterion (28), the absolute value indicates that internal friction hinders the onset of mobilization by redi-
recting the body force 𝜕p∕𝜕x to the downward vertical direction, whatever its sign. Tsinontides and Jackson
[1993] and Loezos et al. [2002] elucidated a similar effect in gas-solid fluidized beds.
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Figure 7. Cross section of the porous ripple with h0 ∕𝜆=6% and
H=32.5 mm. Figure is drawn to scale. For the meaning of lines and
color scale, see Figure 6. Note the greater symmetry at this smaller
aspect ratio. Ranges of p∗ − p∗0 and F are provided in Table 1. The
maximum Fmax = 16.7 is behind the crest at x∕𝜆 ≃ 0.53.

When sand ripples are buffeted by a strong
wind, a pore pressure gradient directed
downward can also relieve a substantial part
of the bed weight below them, even with-
out complete grain mobilization. On parts
of the sand-free surface where such down-
ward gradient exists, the corresponding
force can thus facilitate the onset of erosion.
This contribution of pore pressure gradients
is generally ignored, whereby grain ejec-
tion is thought to occur after u∗ reaches
a certain threshold, and subsequent ero-
sion is entirely attributed to surface shear
[Shields, 1936; Shao and Lu, 2000]. Nonethe-

less, recent studies have shown that certain geophysical flow over a porous bed can develop static pressures
below the mean ambient value, thus creating pore pressure gradients below the surface that affect flow
dynamics [Iverson, 2005; Roche et al., 2010; Iverson et al., 2011; Louge et al., 2011; Carroll et al., 2013].

In this section, we exploit our measurements to calculate the propensity of harmonic ripples to relieve
gravity. From criterion (28), this is measured with the ratio

F ≡ 𝜕p∕𝜕y − tan 𝛼|𝜕p∕𝜕x|
𝜌s𝜈g

; (29)

if F⩾1, then the bed is mobilized; if 0<F<1, gravity is partially relieved by pore pressure gradients, possi-
bly leading to bed expansion [Louge et al., 2010a]; if F<0, gravity is augmented by the gradients, perhaps
contributing to bed compaction. To cast our results in more general terms, we define

F ≡ 𝜕p∗

𝜕y∗
− tan 𝛼

||||𝜕p∗

𝜕x∗
|||| , (30)

where distance is made dimensionless with wavelength, (x∗, y∗) ≡ (x, y)∕𝜆, and p∗ is given by equation (11).
Then, the ratio in equation (29) becomes F = RF, where the dimensionless group

R ≡ 𝜌U2h0

𝜌s𝜈g𝜆2
(31)

has the structure of a Sleath number [Sleath, 1999] and represents how wind kinetic energy counteracts
the gravitational pull on a rippled sand bed. Louge et al. [2010a] introduced a similar dimensionless number
governing rapid snow eruption as the front of a powder avalanche passes over a porous snow pack.

Equations (29)–(31) imply that because R depends linearly on ripple amplitude but quadratically on wave-
length, longer ripples are less susceptible to pore pressure gradients than smaller ones at a constant aspect
ratio h0∕𝜆. If the flow did not separate behind crests at large aspect ratios h0∕𝜆, then we would expect F to
remain roughly independent of wind speed, sand density, gravitational acceleration, ripple amplitude, or
wavelength, while the role of these quantities would be captured by R. This is essentially what Gong et al.
[1996] suggested with the scaling in equation (10).

To gauge to what extent ripple aspect ratio matters, Figures 6 and 7 contrast the distribution of F for
h0∕𝜆 = 6% and 3%. Here we calculate F by substituting average pressure coefficients (p̄∗

i , p̄∗
a, p̄∗

d), phases
(�̄�i, 𝜙d), and index n from Table 1 in equation (14) and differentiating. As expected, F spans similar magni-
tudes for both aspect ratios (Table 1). If friction is introduced, the domain where pressure gradients relieve
gravity (F > 0) becomes narrower. Although the maximum value of F decreases with increasing tan 𝛼, this
reduction is small. For tan 𝛼 = 0.5, Fmax = 16.5 at h∗ = 3% and Fmax = 13.8 at h∗ = 6%.

Crucially, we find that while porous ripples of low aspect ratio maintain a relatively symmetric seepage flow
pattern (Figure 7), ripples of a greater h0∕𝜆 possess a pressure field that is significantly skewed toward the
upstream face (Figure 6). Coincidentally, the greatest propensity for seepage to relieve gravity (i.e., where
F peaks at Fmax) lies approximately (𝜆∕10) ahead of the crest, where the theory of Jackson and Hunt [1975]
also locates maximum shear stress. Thus, if ripples exhibit a large aspect ratio, it is possible for wind-induced
grain mobilization to augment shear-induced erosion there.
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To compare the relative importance of the two effects, we invoke the correlation of Shao and Lu [2000] for
the onset of aeolian transport at a threshold shear velocity u∗th. For cohesionless surface grains of diameter
d, they wrote 𝜌u2

∗th ≃ AN𝜌sgd, where AN ≃ 0.0123 is an empirical constant inspired by insights of Bagnold
[1935] and Shields [1936]. For a typical turbulent boundary layer, the shear velocity u∗ is related to U through
u∗ = AtU. (Table 1 has At ≃ 3.7% and 3.8% for h0∕𝜆 = 3% and 6%, respectively.) Therefore, u∗th can be
converted to a threshold UShields in bulk wind speed,

𝜌U2
Shields ≃

AN

A2
t

𝜌sgd. (32)

Meanwhile, grain mobilization by pore pressure gradients arises first where FR = 1, i.e., where F is largest.
Therefore, substituting equation (31), such incipient mobilization occurs past a minimum wind energy

𝜌U2
Δ =

𝜌sg𝜈𝜆2

Fmaxh0
. (33)

Note that this prediction of a threshold speed UΔ independent of particle diameter is in sharp contrast
with traditional gas-solid fluidized beds, in which the superficial gas velocity vmf at minimum fluidization
increases with particle size. As Tsinontides and Jackson [1993] showed, a frictionless bed fluidizes as soon as
v reaches vmf, thus adopting the gravity-driven pressure gradient ∇p = 𝜌s𝜈g so that vmf = K𝜌s𝜈g∕𝜇; because
K ≃ d2(1 − 𝜈)3∕(150𝜈2), then vmf ∝ d2. The chief reason for interpreting differently the onsets of gas-solid
fluidization and grain mobilization by pore pressure gradients is that the former must impose a superficial
gas velocity > vmf ∝ d2, while the latter reaches a wind-driven pore pressure gradient > 𝜌s𝜈g through an
equation (5) that is independent of K and therefore of d. Sleath [1999] and Foster et al. [2006] described a
mechanism for oscillatory flows over sediment beds that are independent of d for a similar reason.

Comparing equations (32) and (33), we predict that as wind speed increases, grain mobilization by deep
pore pressure gradients takes place before Shields erosion of surface grains whenever UΔ<UShields or,
equivalently, when √

h0d

𝜆
>

√
A2

t 𝜈

ANFmax
. (34)

With AN ≃ 0.0123 [Shao and Lu, 2000], 𝜈 ≃ 0.6 for a typical sand bed, At ≃ 0.03, and Fmax ≃ 15 (Table 1), the
constant on the right of equation (34) is ≃ 0.054. Thus, for typical desert ripples with h0 ≃ 4 mm, 𝜆 ≃ 10 cm,
and d ≃ 350 μm [Andreotti et al., 2006], pressure gradient-induced grain mobilization should not contribute
significantly to overall erosion. However, if such ripples of small aspect ratio became armored by millimet-
ric surface grains of diameter d immobilizing smaller particles below [Manukyan and Prigozhin, 2009], then√

h0d∕𝜆 could rise to values approaching criterion (34). With such armoring, ripples should then naturally
restructure into longer wavelengths to bring down

√
h0d∕𝜆, lest their foundation of smaller particles dis-

appeared under the action of pore pressure gradients. Such behavior might be relevant to the formation
of “megaripples,” which feature a large aspect ratio h0∕𝜆 > 3%, as well as coarse surface grains able to
withstand greater shear velocity before being entrained themselves [Yizhaq et al., 2012].

9. Summary and Conclusions

We measured pore pressure below two sinusoidal surfaces of wavelength 𝜆 = 100 mm and amplitude
h0 = 3 mm and 6 mm subject to turbulent flows of bulk speed 3 < U < 36 m/s in the wind tunnel. The
resulting aspect ratios h0∕𝜆 = 3% and 6% straddled a wide range of ripple index RI observed in the field
[Tanner, 1967]. However, to permit comparisons with existing literature on impermeable wavy surfaces, we
focused attention on sinusoidal ripples, ignoring for now the asymmetry of desert ripples.

Pore pressure at the smallest aspect ratio h0∕𝜆 = 3% was a single harmonic function of streamwise distance
lagging the crest slightly and decaying exponentially with depth. Its amplitude p1 scaled with kinetic energy
of the turbulent flow such that p∗

1 ≡ [p1∕(𝜌U2)](𝜆∕h0) = 2.19 ± 0.14, a value smaller than what Louge
et al. [2010a] had assumed for calculating seepage, dust, and humidity penetration in desert ripples. On
the surface, the dimensionless pressure was nearly dentical in phase and amplitude to earlier measurements
of Kendall [1970] on an impermeable sinusoidal wall, thus suggesting that the porous subtrate is relatively
unimportant to surface pressure evolution at that aspect ratio. We showed that because surface and pore
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pressure scale with h0∕𝜆, and because the flow mostly did not separate behind crests, these measurements
were also relevant to any sinusoidal ripple with h0∕𝜆 ⩽ 3% (i.e., RI ≳ 16).

Experiments at h0∕𝜆 = 6% exhibited an asymmetric pore pressure distribution suggesting flow separation
behind ripple crests and possible reattachment before the next trough. For this aspect ratio, we compared
the evolution of surface pressure on our porous substrate with published data on similar impermeable
sinusoidal ripples [Buckles et al., 1984; Gong et al., 1996; Henn and Sykes, 1999]. While the dimensionless
depression that we measured at the crest was identical to those earlier results, we noted a sharp attenuation
of surface pressure upwind of the crest, suggesting that the porous medium imposes a markedly different
surface pressure gradient on the turbulent boundary layer than on comparable impermeable ripples. By
invoking observations of Gong et al. [1996] on aerodynamically smooth and rough impermeable ripples, we
attributed this attenuation to the retrodiffusion of pore pressure through the bed. Using the boundary con-
dition of Beavers and Joseph [1967], we calculated that the porous bed also allows a substantial slip velocity
to arise on the surface, further affecting turbulence in the main flow. For simplicity, we regarded such slip as
an effective reduction in aerodynamic roughness.

Although pressure drag appeared to increase with 𝜌U2h2
0∕𝜆, it was significantly smaller than its counterpart

on impermeable wavy surfaces [Gong et al., 1996; Buckles et al., 1984; Henn and Sykes, 1999]. At h0∕𝜆 = 6%,
this pressure drag reduction could also be attributed to surface pressure attenuation by retrodiffusion.
We recorded a lift force on the ripple surface that appeared to increase ∝ 𝜌U2h3

0∕𝜆
2, although such scal-

ing should be confirmed with new porous rigs at greater h0∕𝜆. Finally, we also noted that ripples with
h0∕𝜆 = 6% exhale a net amount of air, while ripples of h0∕𝜆 = 3% do not.

Our measurements were sufficiently accurate to evaluate pore pressure gradients ∇p and thus to gauge
where the latter might defeat gravity and mobilize a bed of uniform volume fraction 𝜈 and grain mate-
rial density 𝜌s. The onset of mobilization arises when FR > 1, where the number R ≡ 𝜌U2h0∕(𝜌s𝜈g𝜆2)
regroups wind and bed parameters. Ignoring internal friction, F≡ (𝜕p∕𝜕y)𝜆2∕(𝜌U2h0) peaks at Fmax ≃ 17
for h0∕𝜆=3% and at the surprisingly similar value Fmax ≃ 15 for 6%. For the smaller aspect ratio, the peak
is reached near the crest; for the larger one, Fmax arises at a distance ≃ 𝜆∕10 upstream of that point, nearby
where the theory of Jackson and Hunt [1975] also places the peak shear stress.

Exploiting our measurements and recalling the correlation of Shao and Lu [2000] for threshold velocity in
aeolian transport, we calculated that pressure gradient-induced fluidization of the porous bed would occur
before shear-induced erosion of surface grains of diameter d whenever

√
h0d∕𝜆 > 0.054. While this criterion

is rarely observed in aeolian ripples with relatively small h0∕𝜆 [Tanner, 1967], our measurements suggest that
it may contribute to the shaping of megaripples with high aspect ratios and coarse surface grains. Because
this criterion is independent of fluid properties, aqueous ripples may also owe their mobilization, at least in
part, to pore pressure gradients within the underlying bed.

Finally, because ripples are generally asymmetrical unless their aspect ratio h0∕𝜆 is small [Baas, 1994], future
experiments should be conducted with cross sections of various asymmetry [Tanner, 1967], beginning with
triangular shapes [Blois et al., 2014]. Because to our knowledge there are no data for the pressure evolution
on impermeable bed forms of triangular cross section, these future experiments will have to involve both
porous and solid surfaces to discern the role of porosity. In this context, some useful insight might be found
in the literature on “k-type roughness,” in which the ratio w∕k of “cavity length” w ∼ 𝜆∕2 to “cavity height”
k∼2 h0 exceeds 3 (or, in our notation, h0∕𝜆 < 1∕12) [Perry et al., 1969; Leonardi et al., 2007]. Nonetheless,
we would expect that the porous medium will play a similar role on a triangular ripple than it does on a
sinusoidal one, namely, that porosity should induce seepage through the bed, thus attenuating the surface
pressure gradient and allowing slip at the surface.

In conclusion, our wind tunnel experiments suggested that for ripples of large amplitude relative to wave-
length, bed porosity disrupts surface pressure gradients by allowing pore pressure to retrodiffuse through
the bed and by establishing a slip velocity at the surface. For ripples of smaller relative amplitude, the data
showed that bed porosity matters less to surface pressure. It also established the magnitude of pressure
variations, which govern seepage through the bed and the possible capture of aeolian dust beneath ripple
troughs. Finally, our experiments implied that seepage-induced fluidization may contribute to the shaping
of megaripples with high aspect ratios and coarse surface grains.
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