
Heat transfer enhancement in suspensions of agitated solids.
Part III: Thermophoretic transport of nanoparticles in the diffusion limit.
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We illustrate the diffusion limit of wall heat transfer in fluid-solid suspensions by considering small colloidal
particles dilute in a liquid at rest. Because such particles are agitated by Brownian motion, their self-diffusivity
is modest, the fluid and solid phases share the same temperature, and mixture theory should predict the effective
suspension conductivity. We show how thermophoresis creates suspension inhomogeneities, suggest ways to
mitigate the latter with ultrasonic forcing, and examine consequences on heat transfer. To inform a debate on
nanofluids heat transfer, we show that anomalous conductivity enhancements reported with hot-wire thermal
conductimetry can be an experimental artifact of thermophoretic migration along the temperature gradient or
timing in the observations.
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1. Introduction

In Part I of this paper, we outlined a theory
for the enhancement of heat transfer at the wall
of a vessel containing agitated spherical grains
suspended in a conductive fluid [1]. We distin-
guished two asymptotic regimes, which we called
the “exchange” and “diffusion” limits. In the
first, heat transfer is set by the volumetric heat
exchange rate between the two phases, and it
may be further enhanced by particle-fluctuation-
induced fluid thermal diffusion. In Part II, we
tested the theory in that limit with relatively
dense suspensions of millimetric spheres vigor-
ously shaken in a box, through which heat was
transferred between a cold and a hot wall. Part
III now illustrates the diffusion limit by consid-
ering small “nanoparticles” dilute in a liquid at
rest.

With few exceptions, dilute nanoparticle sus-
pensions exhibit higher effective conductivities
keff than the base fluid kg [2,3], and keff/kg grows
linearly with the average solid volume fraction
ν̄. Although many such observations can be ex-
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plained by homogenization models inspired by
Maxwell’s [4,5], there are cases, mostly associated
with small metal particles at low ν̄, for which the
heat transfer enhancement exceeds these predic-
tions [6]. Several mechanisms have been consid-
ered, including ballistic phonons within grains [7],
Brownian diffusion [8] and enhanced Brownian
diffusion [9,10], clustering [7,11,12] and highly
anisotropic clustering [13], interfacial resistance
through layering of liquid molecules [7,14–16],
near-field interactions [17], hyperbolic heat con-
duction [18] and thermophoresis [19].

The objective of Part III is to outline the
peculiar heat transfer mechanisms that occur
in the diffusion limit with small particles. To
that end, we derive and discuss governing equa-
tions for fluid-solid suspensions at rest subject
to thermophoresis, particle resuspension and ul-
trasonic forcing. Because thermophoresis cre-
ates time-dependent inhomogeneities in the sus-
pension, and because anomalously high keff have
arisen with hot-wire thermal conductimetry [6],
while spectroscopic techniques have not reported
such enhancements [20,21], we also examine the
performance of hot-wires in an attempt to inform
a current debate on the subject. We begin by
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Table 1
Nomenclature
A132 Hamaker constant
B, C constants in Eqs. (19)
cg, cs fluid, solid specific heats per mass
cw, cp wire, sheath specific heats per mass
Cd drag coefficient
d grain diameter
Ds, DT particle, Soret self-diffusivities
Ds-e Stokes-Einstein diffusivity
Du, Dν ultrasonic, settling diffusivities
ey, er wall normal, wire radial unit vectors
f ultrasonic frequency
F, Fu, Fv net, ultrasonic, van der Waals forces
g12 binary sphere pair distribution
hg, hs fluid, solid sensible mass enthalpies
ı ı2 = −1
I ultrasonic energy flux
j′′g , j′′s , J′′ fluid, particle, resuspension fluxes
kb Boltzmann’s constant
kg, ks, ka fluid, solid, apparent conductivities
kcl, keff cluster, effective conductivities
kp, kw sheath, wire thermal conductivities
Kg, Ks, K̄ mixture, solid, channel conductivities
L wall-to-wall distance, vessel size
L† relative length scale in Eq. (2)
`, `s grain diffusion, Stokes lengths
m grain mass
M† excess or deficit of mass in Eq. (68)
n` number of adhered particle layers
n ultrasonic wave direction
N , N0 surface particle number densities
q, qg, qs Fourier fluxes in mixture, fluid, solid
q+, q− heat fluxes at hot, cold walls
q̇ heat rate supplied per wire length
r radial coordinate
rw, rp wire core, sheath outer radii
R† relative domain size around the wire
Rd hindered settling function in Eq. (34)
S ultrasound speed
t, tf time, period to solve Eqs. (61) & (62)
T , Tg, Ts, Tw mixture, fluid, solid, wire temps.
Tm mixed-mean-temperature in Eq. (43)
T∞, T+, T− ambient, cold, hot wall temperatures
u, v fluid, particle velocities
v, vb grain, Brownian diffusion speeds
vT , vu, vt thermophoretic, ultrasonic, settling vels.
v′i grain fluctuation velocity along i
y cartesian coordinate

Table 2
Greek
α suspension thermal diffusivity
αp, αw hot-wire sheath, wire thermal diffusivities
α1, β1 functions in Eq. (23)
β thermophoretic coefficient
γ Euler’s constant
η0, η adhesion gaps
Θ granular temperature
ι variable of integration
λs grain mean free path
µ1, µ2, µ3, µ4 functions in Eq. (23)
µ fluid viscosity
ν solid volume fraction
νa fraction of volume occupied by clusters
νcl solid volume fraction within a cluster
νc randomly jammed solid volume fraction
νs surface fraction of adhered particles
ξs ks/kg

ρg, ρs, ρw, ρp fluid, solid, wire, sheath material densities
ρc mean volumetric specific heat
τs, τ viscous, adhesion relaxation times
ω relative ultrasonic particle size in Eq. (22)
ωv relative ultrasonic viscous length in Eq. (22)

Table 3
Dimensionless groups
C† (ρgcg)/(ρscs)
Da Damköhler second ratio
Kn Knudsen number
Le, Le∞ Brownian Lewis numbers
Nu particle Nusselt number
Pes ultrasonic Péclet number
Pr Prandtl number
St particle Stokes number
Γr dimensionless resuspension number
θ̄, θ∞ dimensionless temperatures
Π 2(ρc)/(ρwcw)
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Table 4
Scripts
† dimensionless
¯ spatial average
+/− hot/cold walls
<> velocity distribution average
crit critical value
g, s fluid, solid
p, w sheath, wire core

contrasting mechanisms of heat transfer in the
exchange and diffusion limits.

2. Diffusion-limited conduction in uniform
suspensions at small temperature gradi-
ent

In this section, we contrast mechanisms of self-
diffusive heat transfer for large and small particles
in a suspension with no average velocity, uniform
solid volume fraction and vanishing thermal tem-
perature gradient. In Part I, we showed that par-
ticle velocity fluctuations play a role in enhanc-
ing the effective suspension thermal conductivity.
Because particles seldom have enough time to ex-
change heat directly with solid surfaces, the en-
hancement of heat transfer that they create is a
competition between two rate-limiting processes,
namely their ability to self-diffuse through the
suspension, and to exchange heat with the sur-
rounding fluid. These processes are arbitrated by
a Damköhler second ratio

Da ≡ (Kg/Ks)(L†/2)
tanh(L†/2)

, (1)

with dimensionless length scale

L† ≡ L

d

√
12νNu

( kg

Kg
+

kg

Ks

)
. (2)

In these expressions, Kg is the mixture conductiv-
ity, which, at low values of the local solid volume
fraction ν, is well captured by Maxwell’s model
in terms of the ratio ξs ≡ ks/kg of the respective
material conductivities kg and ks of the pure fluid

and solid [22],

Kg

kg
=

(2 + ξs) + 2ν(ξs − 1)
(2 + ξs)− ν(ξs − 1)

; (3)

Ks is the conductivity of the agitated solid phase
arising from particle self-diffusion; L/d is the ra-
tio of vessel size and particle diameter; and Nu
is the Nusselt number characterizing the heat ex-
change between a particle and the surrounding
fluid. The rate-limiting processes give rise to two
asymptotic regimes.

In the first regime (Da → 0), which we call
the “exchange limit”, solids agitation is so in-
tense that the thermal temperatures of fluid and
solids are significantly different. In fact, it is the
difference between these two temperatures that
determines the enhancement of keff through the
volumetric rate of heat transfer that couples the
solid and fluid phases. In that limit, the magni-
tude of particle agitation is too large to matter,
unless it induces velocity fluctuations in the fluid,
thereby raising keff further through a mechanism
similar to turbulence. In Part II, we tested the
theory in the exchange limit by conducting exper-
iments with millimetric spheres shaken in a box,
for which keff/kg rose up to ∼ 20.

The other asymptotic regime is where particle
agitation is more modest and/or length scales are
large (Da → ∞). In this “diffusion limit,” the
thermal temperature Tg of the fluid and its coun-
terpart Ts for the dispersed solid phase are equal,
T = Tg = Ts, and, as we showed in Part I, the
effective conductivity is merely the sum of the
mixture conductivity and a contribution arising
from the self-diffusion of solids,

keff = Kg + Ks. (4)

In fluid-particle systems with vanishing average
velocity, agitated particles self-diffuse through the
suspension even without a concentration gradi-
ent. This gives rise to a thermal conductivity of
the solid phase

Ks = ρsνcsDs , (5)

where ρs and cs are, respectively, the material
density and specific heat per mass of the solids.
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Because the temperatures of the two phases are
identical, the rate of heat exchange between the
phases is negligible, and thus the strength of that
exchange does not matter to the effective conduc-
tivity. In particular, the magnitude of the Nusselt
number in Eq. (2) is irrelevant to keff.

Because of their relatively small size (L/d � 1)
and modest agitation, colloidal “nanoparticles”
belong to the diffusion limit. Together with the
surrounding fluid, they form a mixture at a single
thermal temperature with an effective conductiv-
ity > Kg. In the two sub-sections that follow, we
contrast their ability to produce a significant Ks

with that of macroscopic, massive particles.

2.1. Massive particles
In Parts I and II, we considered “massive”

grains characterized by a high Stokes number
St ≡ τs

√
Θ/d ≫ 1, where τs = m/(3πdµ) is

the particle viscous relaxation time, µ is the fluid
viscosity, and m is the particle mass. Such mas-
sive grains are unaffected by fluid velocity fluctu-
ations. Instead, their dynamics is dominated by
inertia. In a dense “gas” composed of such granu-
lar hard spheres with fluctuation velocity v′i in the
cartesian direction i, agitation is measured with
the “granular temperature” Θ ≡ (1/3)v′iv

′
i that is

analogous to the translational temperature intro-
duced in the kinetic theory. Note that Θ bears
no relation to the usual thermal temperature of
the particles, which we denote with the distinct
symbol Ts. For nearly elastic, massive granular
solids, this agitation gives rise to a self-diffusion
with coefficient

Ds =
d
√

Θ
(9
√

π)νg12

( 1
1 + 2Kn

)
, (6)

where g12(ν) is the Carnahan and Starling pair
distribution function [23]

g12 =
2− ν

2(1− ν)3
, (7)

and the term in parentheses is a correction for
high Knudsen number Kn = λs/L [24,25] that
is significant when the granular mean free path
λs = d/[6

√
2νg12] between consecutive impacts is

on the order of the vessel size L. Thus, at large

L/d and small ν, one recovers the classical scaling
for the self-diffusion of a gas of hard spheres,

Ds ∼ `v, (8)

where, in this case, the characteristic diffusion
length is the mean free path ` ∼ λs and the dif-
fusion velocity v ∼

√
Θ. The Knudsen correction

in Eq. (6) guarantees that Ks vanishes as ν → 0
in vessels of a finite size. However, with small
enough particles or large vessels, it is superflu-
ous, Kn ∼ 0. For large enough L/d, and for small
ν such that g12 ∼ 1, Eqs. (5) and (6) predict that
the thermal conductivity Ks of the granular phase
is independent of ν, a fact related to Maxwell’s
1860 paradox of a viscosity independent of pres-
sure [25].

A consequence is that, for massive granular
solids in the diffusion limit, agitation can enhance
keff at very low volume fractions. In fact, upon
combining Eqs. (3) to (7), the series expansion at
vanishing ν

keff

kg
= 1 + 3ν

{(ξs − 1
2 + ξs

)
+
√

2
(L

d

)
Prs + (9)

o(L/d)1/2
}

+ o(ν2)

reveals that, as massive agitated grains are first
introduced in a fluid, (keff/kg) rises rapidly with
ν at a steep slope ∼ 3

√
2(L/d)Prs to the more

gentle linear variation

keff

kg
= 1 + 3ν

(ξs − 1
2 + ξs

)
+ Prs + o(ν2), (10)

in which the dependence on ν is solely attributed
to Kg/kg, as soon as ν exceeds the small crit-
ical value 1/(3

√
2L/d). In Eqs. (9) and (10),

Prs ≡ d
√

Θ/[9
√

π(kg/ρscs)] resembles a Prandtl
number. For particles of high material conduc-
tivity relative to the fluid’s (ξs � 1), the slope of
keff/kg versus ν is 3.

2.2. Dilute colloidal suspensions
The thermal diffusivity of small colloidal parti-

cles dilute in a viscous fluid has markedly distinct
physics. The chief reason is that these particles
are also subject to forces exerted on their surface,
such as Stokes drag or Brownian impact, in addi-
tion to volume forces, such as inertia. They are
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also subject to thermophoresis, whereby a tem-
perature gradient ∇T induces particle migration
and hydrodynamic diffusion, thus coupling parti-
cle motion to the temperature field. In this sec-
tion, we restrict attention to temperature gradi-
ents that are too small to create significant ther-
mophoresis. We revisit this assumption in the
next section.

One important difference between massive
grain and particles of low Stokes numbers is that
the latter’s diffusion length in Eq. (8) no longer
depends on ν. Instead, this length is now the
Stokes viscous relaxation distance

`s ≡ τs < v2
b >1/2 (11)

to a sudden jolt of the particle velocity to the
rms diffusion velocity vb ≡< v2

b >1/2, where <>
denotes averaging over the velocity distribution,
and vb is the instantaneous fluctuation velocity
of the Brownian particle in the fluid at rest. For
such a particle of mass m at equilibrium with the
surrounding liquid, (m/2) < v2

b >= (3/2)kbT ,
where kb = 1.38 10−23 J/◦K is Boltzmann’s con-
stant. To within a constant of o(1), the product
`svb is the Stokes-Einstein diffusion [26]

Ds-e =
kbT

3πµd
, (12)

which is substituted for Ds in Eq. (5) to pre-
dict the corresponding conductivity of the par-
ticle phase. By analogy with Eq. (6), Cohen and
de Schepper [27] proposed a simple heuristic cor-
rection of Eq (12) for arbitrary volume fractions,
Ds-e = (kbT )/[3πµdg12(ν)], capturing reductions
in Ds-e at high ν associated with “cage” diffusion.
Because Ds-e is nearly independent of ν when the
suspension is dilute, Ks ∝ ν. In the limit where
∇T → 0, the conductivity of the dilute particle
phase is

lim
∇T→0

(Ks

kg

)
=

ρscs

kg

kbT

3πdµ
ν. (13)

Consequently, with ∇T → 0 and ∇ν = 0, Ks

is small at low ν, and it constitutes a negli-
gible enhancement over the fluid conductivity:
consider for example 6 nm copper nanoparti-
cles suspended in ethylene glycol at ∼ 300◦K,

which have keff > Kg [6]. For such suspen-
sion with ρs = 8930 kg/m3, cs = 385 J/kg◦K,
ks = 401 J/m◦K, liquid density ρg = 1114 kg/m3,
liquid specific heat per mass cg = 2415 J/kg◦K,
kg = 0.252 J/m◦K, and µ = 0.0157 kg/m.s,
Eq. (13) predicts a ratio Ks/kg ∼ 10−4 ν � 1,∀ν.
In fact, Evans, et al [8] and Vladkov and Bar-
rat [15] recently showed that the thermal diffusiv-
ity induced by Brownian motion is indeed negligi-
ble in most cases, and that it cannot explain the
anomalous enhancement of keff observed with cer-
tain nanofluids [6]. Further, as we mentioned ear-
lier, because keff is independent of Nu in the diffu-
sion limit, nanoparticle suspensions cannot ben-
efit from high particle-fluid heat exchange rates
either [9,10,19,28].

Explanations for the observed enhancement of
keff must be found elsewhere. Buongiorno [19]
dismissed diffusiophoresis, Magnus forces, and
settling under gravity. Free convection is also neg-
ligible at the small scale of typical devices unless
transient measurements take too long [29]. In-
stead, Buongiorno suggested that thermophoretic
transport may play a role at finite ∇T . However,
because thermophoresis is driven by a tempera-
ture gradient largely determined by system geom-
etry, its significance is not universal.

In this paper, we examine the role of ther-
mophoresis for two systems. First, we analyze
in the next section the semi-infinite channel with
two parallel thermal walls considered in Part I.
We derive governing equations for mass and en-
ergy and show that thermophoresis can induce
significant particle migration. We suggest how
the resulting inhomogeneities could be mitigated
by applying ultrasonic forcing. Second, we con-
sider the temperature field produced by hot-
wire thermal conductimetry, which is employed in
most nanofluids experiments. We assess the role
of thermophoresis in clearing (or densifying) the
region near the wire and in possibly resuspending
particles previously adhered to it.

3. Particle migration at finite temperature
gradient

A major difference between the heat transfer
with macroscopic grains and small colloidal par-
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ticles is that thermophoresis can gradually upset
the distribution of solids in vessels where small
particles are subject to a finite ∇T . To illus-
trate this, we now examine how thermophoretic
inhomogeneities affect heat transfer in a generic
channel similar to that of Part I. We also calcu-
late whether ultrasounds could mitigate the for-
mation of such inhomogeneities by opposing the
thermophoretic force in a manner similar to ul-
trasonic particle separation [30,31].

3.1. Thermophoresis in liquids
In a dilute suspension, temperature gradients

can drive a thermophoretic flux of particles.
Upon interpreting their experiments with ∼ 1µm
latex spheres in water and n-hexane, McNab and
Meisen [32] proposed a semi-empirical expression
for the thermophoretic velocity by extending the
gas-particle calculation of Epstein [33] to liquid-
particle systems,

vT = −β
µ

ρg

∇T

T
, (14)

for which they wrote

β ' 0.26
( kg

2kg + ks

)
> 0 , (15)

thus implying that such “positive” thermophore-
sis draws particles toward cold regions of the
liquid. The coefficient in Eq. (15) is related
to the Soret thermal diffusivity DT using β ≡
TDT ρg/µ. Giddings, et al [34] warned that this
fit of β, while suitable for neutral spheres, may
seriously under-estimate the thermophoretic ve-
locity of metal particles in a liquid. Effectively,
they suggested that the value of ks to substitute
in Eq. (15) could be much smaller than the ac-
tual material conductivity of the metal particles
depending on the form of their surface potential
energy distribution.

To interpret her experiments on nanoparticles
migration in a solvent using the beam deflection
technique [35], Putnam [36] reviewed current the-
ories and available data for thermophoresis in liq-
uids. She noted that thermophoretic diffusion can
be “negative” (β < 0) for aqueous suspensions
of charged particles at low ionic strengths [37]

and ferro-fluids [38], exhibit temperature depen-
dence [39–41], and vary with volume fraction [40]
and ionic concentrations [39]. As we will dis-
cuss in section 4, the possibility of negative ther-
mophoresis, even with relatively low |β|, can have
a profound influence on the apparent thermal
conductivity recorded by hot-wire conductimetry.

Bringuier [42] recently warned that the concept
of a thermophoretic velocity may be misleading,
noting in particular how the temperature depen-
dence of the thermophoretic mobility can reverse
the sign of β. Nonetheless, Eq. (14) remains use-
ful, so long as experimental data is interpreted in
this framework [36,42]. In this paper, for sim-
plicity, we take β to be invariant for each system.
If instead, for example, temperature varies con-
siderably, it would be relatively straightforward
to capture more complex effects by letting β vary
in the model [41]. We also ignore electrophoresis,
which may be induced if electricity is the source of
heat, and if particles have a high ζ-potential [36].

Because the thermophoretic and Stokes drag
forces are both proportional to d, the ther-
mophoretic terminal velocity in Eq. (14) has no
explicit dependence on particle diameter. Con-
sistent with this simple view, the data of Put-
nam and Cahill [36,39] and Vigolo, et al [43]
suggest that β is independent of d. This does
not mean that particles of any size would reach
vT . Macroscopic particles, for example, if subject
to fluid inertia at a drag coefficient Cd, would
reach vT ' 2

√
6[µ/(ρgd)](βd/Cd)1/2|∇ lnT |1/2 ∝

1/d1/2, and would generally experience negligible
thermophoresis.

As long as suspensions remain dilute, we need
not account for the dependence of vT in Eq. (14)
on solid volume fraction. However, if intense
thermophoretic migration produces regions of
high ν, then a first approximation to generalize
Eq. (14) might be to substitute the mixture vis-
cosity µ exp(4.58ν) provided by Happel and Bren-
ner [44] for µ. Ning, et al [40] provide recent ex-
perimental insight on the role of ν.

3.2. Ultrasonic forcing
Following the works of King [45] and Yosioka

and Kawasima [46] for the acoustic forcing of
rigid and compressible spheres in an inviscid fluid,
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Doinikov calculated the acoustic “pressure” (i.e.,
force) on rigid [47] and compressible spheres [48]
by progressive and stationary sound waves of fre-
quency f and acoustic energy flux I in a viscous
fluid with a sound speed S. Remarkably, while
King [45] showed that particles would migrate
in the direction of the sound wave for an invis-
cid fluid, Doinikov calculated that fluid viscos-
ity makes particles travel against the wave [47].
In the limit where πfd/S � d[πfρg/(2µ)]1/2 �
1, which applies to nanoparticle suspensions,
Doinikov simplified his more general expressions
for the ultrasonic force Fu on a sphere created by
a progressive wave emanating from a transducer
of outward normal n,

Fu = −11
30

π5/2
(ρs

ρg
− 1

) If3/2d4

S2(µ/ρg)1/2
n. (16)

In dilute suspensions, nanoparticles subject to
Stokes, ultrasonic and thermophoretic forces then
reach a terminal velocity

vt = vT + vu = (17)

− µ

ρg
β∇ lnT − 11

90
π3/2

(ρs

ρg
− 1

)If3/2d3ρ
1/2
g

S2µ3/2
n .

Thus, positive thermophoresis can be thwarted
by applying a progressive sound wave in a direc-
tion n against the temperature gradient ∇T . In
principle, this can be achieved if the ultrasonic
transducer coincides with the hot wall. Negative
thermophoresis would requires the opposite ar-
rangement.

3.3. Diffusion
In a uniform temperature gradient aligned with

n, the thermophoretic and ultrasonic forces act as
a net effective settling force similar to gravity. In
this case, the particle mass diffusion flux has three
components. The first arises from Brownian mo-
tion with diffusivity Ds-e given by Eq. (12). The
second is induced by local fluctuations in solid
volume fraction resulting from the net advection
of particles driven at the settling velocity vt. A
paradox with the diffusion of non-colloidal par-
ticles settling under gravity is that the resulting
diffusivity Dν should, in theory, diverge with the
size of the vessel containing the sedimenting sus-
pension [49–53], despite experimental evidence to

the contrary [54,55]. Using Lattice-Boltzmann
numerical simulations, Nguyen and Ladd [56] sug-
gested that polydispersity can provide a mecha-
nism for the screening of the long-range interac-
tions that cause this divergence. On the other
hand, Mucha and Brenner [57] suggested a res-
olution of the paradox by introducing a hydro-
dynamic settling diffusivity that depends on the
local solid volume fraction, as well as its gradient,

Dν = L|vt| fν [ν; |L∇ν|;L/d] , (18)

where the function

fν [ν; |L∇ν|;L/d] ≡ C × (19){
ν1/2(2L/d)1/2 if |∇ν| 6 |∇ν|crit
B3/2( d

2L )2/5 ν4/5

|L∇ν|3/5 otherwise .

Mucha and Brenner [57] fitted B ' 1/2 and C '
1 to numerical simulations and wrote

|∇ν|crit = B
ν1/2

L

( d

2L

)3/2

. (20)

Because these equations pertain to settling forces
aligned with gravity, they may be valid for
unidirectional thermophoretic and/or ultrasonic
forces. In particular, they might apply to the
channel bounded by two infinite, parallel, flat,
possibly sonified thermal walls that we consider
in this section. As we later show, for practical val-
ues of ∇T 6= 0, the settling diffusivity in Eq. (18)
can dominate its Brownian counterpart. There-
fore we expect that, although Dν was originally
derived for non-colloidal spheres, it may be rel-
evant to nanoparticle suspensions as well. Un-
like its Stokes-Einstein counterpart in Eq. (13), it
also contributes to the particle-phase conductiv-
ity given by Eq. (5). At practical values of ∇T ,
the resulting magnitude of Ks may no longer be
negligible. However, as we shall see, such Ks is
only significant for short times.

The third diffusivity Du possibly arises from
particle agitation induced by ultrasounds. We es-
timate its magnitude by analogy with Eqs. (8),
(11) and (12),

Du ∼
1
3
τs < v2

u > , (21)
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where

< v2
u >1/2=

(ρg

ρs

) 3
π

√
I S

ρgd2f2
L(ω;ωv) (22)

is the rms particle velocity fluctuation induced by
a plane ultrasonic wave. In the first approxima-
tion, Doinikov [47] calculated

L(ω;ωv) = |j1(ω)+α1h1(ω)+2β1h1(ωv)| , (23)

where j1(ω) = (sinω/ω2) − cos ω/ω is the
spherical Bessel function of the first kind and
order 1, h1(ω) = −(ω + ı) exp(ıω)/ω2 is
a spherical Hankel function of the first kind
and order 1, α1(ω;ωv) ≡ − [µ1µ3 +
2(1 − ρg/ρs)2j1(ω)h1(ωv)]/µ4, β1(ω;ωv) ≡ (1 −
ρg/ρs)[µ1h1(ω) − µ2j1(ω)]/µ4, µ1 = (1 −
ρg/ρs)j1(ω) − ωj′1(ω), µ2 = (1 − ρg/ρs)h1(ω) −
ωh′1(ω), µ3 = (1 − 2ρg/ρs)h1(ωv) + ωvh′1(ωv),
µ4 = µ2µ3 + 2(1 − ρg/ρs)2h1(ω)h1(ωv), primes
denote the first derivative, and, to a good approx-
imation for most suspensions, ω ' πfd/S and
ωv ' ω1/2[d Sρg/(4µ)]1/2(1 + ı) with ı2 = −1.

Figure 1 compares the magnitudes of Ds-e, Du

and Dν for typical homogeneous (∇ν = 0) and
isothermal (∇T = 0) suspensions in a small vessel
(no thermophoresis). In that figure, the abscissa
is the particle diameter made dimensionless with
ultrasonic frequency and sound speed. The lowest
ω for these curves corresponds to small nanopar-
ticles. The largest represent relatively big mi-
croparticles. Because Du � Dν ,∀ω, we can ig-
nore the direct contribution Du of the ultrasonic
fluctuation velocity to the overall diffusivity. A
practical consequence is that it would be diffi-
cult to augment the solid-phase conductivity Ks

in Eq. (5) by manipulating Du using ultrasonic
particle agitation. In other words, unlike the
macroscopic grains of Parts I and II [1], nanopar-
ticles cannot be agitated to raise Ks apprecia-
bly without inducing particle migration. Such
migration can be driven by ultrasounds and/or
thermophoresis. If the latter prevails (I = 0,
∇T 6= 0), the early stages in which the sus-
pension is still nearly homogeneous (∇ν ' 0)
across two walls with temperature difference ∆T
can exhibit a thermophoretic settling diffusiv-
ity Dν ∼ (µ/ρg)βCν1/2(2L/d)(∆T/T̄ ) � Ds-e,

Le/Les-e

0.0001 0.001 0.01 0.1 1 10

ω
10-4

109

10-3 10-2 10-1 100 101

106

103

100

10-3

Du /Ds-e

Dν /Ds-e

Figure 1. Diffusivity ratios Du/Ds-e =
[ρgIS2/(2π2ρsf

3kbT̄ ]ωL2 (dashed line)
and Dν/Ds-e = [11

√
2C/(30π)](ρs/ρg −

1)[(IS3/2ρ
1/2
g L3/2)/(f2µ1/2kbT̄ )]ν1/2ω7/2 (solid

line) vs. ω ' πfd/S for a homogeneous,
isothermal suspension of, for example, copper
nanoparticles in ethylene glycol (S = 1660 m/s)
at ν = 0.01 and T̄ = 300◦K with ultrasonic forc-
ing at a frequency f = 20 MHz and energy flux
I = 104 W/m2 in a channel with L = 0.001m.
In this example, the lowest ω represents 10 nm
particles.
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which, as we shall see after analyzing particle mi-
gration, could result in significant, but ephemeral,
values of Ks if thermophoresis is strong enough.

3.4. Governing equations
We now write the thermal governing equations

and apply these to a channel between two parallel
plates containing a suspension globally at rest.
This derivation complements Buongiorno’s, who
treated the mixture as a single phase [19]. In
contrast, because diffusion and advection of the
dispersed particles both induce reverse fluxes in
the liquid, we distinguish the mass balances of the
dispersed and continuous phases separately. For
the liquid, the balance is

ρg
∂(1− ν)

∂t
+ρg∇· [(1−ν)u]+∇· j′′g = 0; (24)

and for the solids,

ρs
∂ν

∂t
+ ρs∇ · [νv] +∇ · j′′s = 0, (25)

where u and v represent the mean velocities of
liquid and solids, respectively. The total particle
mass diffusion is

j′′s = −ρsDs∇ν , (26)

where Ds = Ds-e + Dν + Du. In a mixture at
rest, such diffusion induces a reverse mass flux of
liquid j′′g . Because particles and liquid are incom-
pressible, the two corresponding volume fluxes
balance,

(j′′s/ρs) + (j′′g/ρg) = 0. (27)

Adding Eqs. (24) and (25), and using Eq. (27),
we find ∇ · [(1 − ν)u + νv] = 0. Because neither
phase can penetrate the walls, u = v = 0 there,
and Eq. (27) integrates to

(1− ν)u + νv = 0. (28)

The balance of sensible energy of the liquid is

ρg
∂

∂t
[(1− ν)hg] + ρg∇ · [(1− ν)hgu] (29)

+∇ · (hgj′′g ) +∇ · qg = 0 ;

and for the particles it is

ρs
∂

∂t
[νhs] + ρs∇ · [νhsv] (30)

+∇ · (hsj′′s ) +∇ · qs = 0.

In these equations, hg and hs are the sensible en-
thalpies per unit mass of liquid and solid, respec-
tively; qg = −Kg ∇T and qs = −Ks ∇T are
the Fourier heat fluxes of the two phases shar-
ing the common temperature T in the diffusion
limit. Upon expanding the first two ∇-terms in
Eqs. (29) and (30), simplifying the result using
Eqs. (24) and (25), substituting the relation be-
tween u and v in Eq. (28), using ∂hg/∂T ≡ cg

and ∂hs/∂T ≡ cs, and adding the resulting equa-
tions for the solid and liquid phases, we find

ρc
∂T

∂t
= (ρscs − ρgcg)[−νv · ∇T + Ds∇ν · ∇T ] (31)

+∇ · [(Kg + Ks)∇T ],

where

ρc ≡ ρscsν + ρgcg(1− ν) (32)

is the mixture specific heat per unit volume and
Ks = νρscsDs from Eq. (5).

Note that we ignored the term Ds(∇ν · ∇T ) in
Parts I and II [1]. In Part I, we did so because ν
was assumed uniform. In Part II, although grav-
ity produced a significant vertical gradient of vol-
ume fraction in the vibrated box, its direction was
perpendicular to the horizontal temperature gra-
dient, and thus Ds(∇ν · ∇T ) likely vanished as
well.

Our result in Eq. (31) differs from Buon-
giorno’s [19] in the additional factor (ρscs−ρgcg),
which arises from the reverse fluid flow induced
by the mean solids velocity. It is interesting to
note that this factor is positive for suspensions of
iron (ρs = 7870 kg/m3, cs = 447 J/kg◦K) and
copper in ethylene glycol (EG), while it is nega-
tive for suspension of Al2O3 (ρs = 3690 kg/m3,
cs = 880 J/kg◦K) in water (ρg = 1000 kg/m3,
cg = 4179 J/kg◦K). Because Cu/EG and Fe/EG
exhibited anomalously high apparent conductivi-
ties, and Al2O3 did not, Eq. (31) suggests at first
glance that the anomaly could be related to some
kind of particle flux, including thermophoresis.
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However, as we shall calculate later, the term
∝ (ρscs − ρgcg) in Eq. (31) is small relative to
the conduction term involving (Kg + Ks).

We now apply Eqs. (25) and (31) to a channel
bound by two parallel thermal planes separated
by the distance L and maintained at the respec-
tive temperatures T± at y = ±L/2, where y is
the coordinate perpendicular to the plates with
origin at the center of the channel and pointing
to the hot wall. As we shall later confirm, the
Stokes relaxation time τs is several orders of mag-
nitude smaller than hydrodynamic or heat trans-
fer times scales. Therefore, in the mixture at rest,
we equate the solid velocity to the terminal veloc-
ity of Eq. (17) for an isolated particle, suitably
corrected for hindered settling at other than van-
ishing ν,

v = vt/Rd. (33)

We adopt the expression of Koch and San-
gani [58], who determined Rd(ν) from numerical
simulations. For 0 < ν < 0.4, they found

Rd =
1 + 3(ν/2)1/2 + (135/64)ν ln ν + 17.14ν

1 + 0.681ν − 8.48ν2 + 8.16ν3
;

(34)

for ν ≥ 0.4, they invoked Carman’s empirical cor-
relation [59]

Rd =
10ν

(1− ν)3
+ 0.7, (35)

to which they added the constant 0.7 to match
Eqs. (34) and (35) at ν = 0.4.

Dimensionless variables and parameters are
y† ≡ y/L, T † ≡ (T − T̄ )/∆T with T̄ ≡ (T+ +
T−)/2 and ∆T ≡ (T+ − T−), t† ≡ t(K̄g/ρc)/L2,
wall flux q† ≡ qL/[K̄g∆T ], conductivities k† ≡
k/K̄g and diffusivities D† ≡ D/(K̄g/ρc), where
the overbar denotes a quantity evaluated at the
average solid volume fraction ν̄. The dimension-
less governing equations are, for particle mass,

∂ν

∂t†
=

∂

∂y†

[ (ν β Pr/Rd)
(T † + θ̄)

∂T †

∂y†

]
(36)

+(ey · n) Pes
∂(ν/Rd)

∂y†
+

∂

∂y†

(
D†

s

∂ν

∂y†

)
;

and for sensible energy,

[ν + (1− ν)C†]
∂T †

∂t†
= (37)

(1− C†)
{ (β Pr ν/Rd)

(T † + θ̄)

(∂T †

∂y†

)2

+

(ey · n) (ν/Rd) Pes
∂T †

∂y†
+ D†

s

∂ν

∂y†
∂T †

∂y†

}
+

[ν̄ + (1− ν̄)C†]
∂

∂y†

[
(K†

g + K†
s)

∂T †

∂y†

]
,

where, using Eqs. (5) and (32),

K†
s =

ν D†
s

[ν̄ + C†(1− ν̄)]
(38)

with D†
s = Le (1 + T †/θ̄) + D†

ν + D†
u. In this

geometry, the dimensionless settling diffusivity is

D†
ν =

∣∣∣ β Pr
(T † + θ̄)

∂T †

∂y†
+Pes(ey ·n)

∣∣∣ fν(ν;
∂ν

∂y†
;
L

d
) .

(39)

As Fig. 1 showed, we can neglect the direct con-
tribution of ultrasounds to the particle diffusivity

D†
u =

Pr
6π2

( ρ2
g I S

ρsµ2 f2

)
L2, (40)

which is always � D†
ν , and ignore the dimen-

sionless parameters therefrom. We also assume
that the ultrasonic transducer normal n is ei-
ther pointed along the unit vector ey in the y-
direction, or against it. Then for example, if
(ey · n) = −1, the ultrasonic wave acts against
the thermophoretic gradient when T+ > T− and
β > 0.

Nine dimensionless numbers arise from
Eqs. (36)-(39). They are: the average solid
volume fraction ν̄, the relative channel width
L/d, the conductivity ratio ξs (or the slope
∂(Kg/kg)/∂ν) specifying variations of the mix-
ture conductivity with ν, the mixture Prandtl
number Pr ≡ µ/(ρgᾱ) with ᾱ ≡ K̄g/ρc, the
ratio C† ≡ (ρgcg)/(ρscs) of specific heats per
unit volume of the fluid and particle material, a
Lewis number Le ≡ kbT̄ /(3πµdᾱ) characterizing
Brownian diffusion, the coefficient β in Eq. (15)
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gauging the strength of thermophoresis, and the
dimensionless ambient temperature θ̄ ≡ T̄ /∆T ;
the dimensionless number characterizing ultra-
sonic forcing in the thermal problem is a Péclet
number Pes ≡ |vu|L/(K̄g/ρc), where vu is the
ultrasonic terminal velocity in Eq. (17). For
simplicity, we ignore sound attenuation in this
problem. Thicker channels or dense suspensions
could instead exhibit a diminishing local value of
Pes [60]. In dimensionless form, the Stokes relax-
ation time τ †s = (ρs/ρg)(d/L)2/(18Pr) needed to
reach the terminal velocity in Eq. (33) is � 1 for
any practical condition involving nanoparticles.

Assuming D†
u � D†

ν , we solve Eqs. (36) and
(37) subject to an initial homogeneous suspension
with linear temperature profile, ν = ν̄ and T † =
y†, and to the boundary conditions at y† = ±1/2[

Le
(
1 +

T †

θ̄

)
+ D†

ν

] ∂ν

∂y†
(41)

+
(ν β Pr/Rd)

(θ̄ + T †)
∂T †

∂y†
+ (ey · n)

ν

Rd
Pes = 0 ,

which reflect the absence of a particle flux
through the walls, and T † = ±1/2 at y† = ±1/2,
using Matlab’s pdepe routine. The latter auto-
matically adjusts the time step for optimum sta-
bility. Because Eqs. (36) and (37) cannot guar-
antee that ν remains within the physical inter-
val 0 6 ν < νc, where νc is the volume frac-
tion of a randomly jammed packing [61], we oc-
casionally (but rarely) enforce ν ∈ [0, νc[ in the
following way: if at a point the numerical algo-
rithm finds a value of ν < 0, it substitutes ν = 0
and ∂ν/∂r† = 0 in calculations involving that
point. Similarly, if ν > νc, it enforces ν = νc and
∂ν/∂r† = 0.

3.5. Thermophoretic migration
As Fig. 2 shows for conditions where settling

diffusivity dominates its Brownian counterpart,
positive thermophoresis causes small particles to
congregate near the cold wall. Gharagozloo,
et al [62] recently observed such migration us-
ing an infrared microscope with aluminum oxide
nanoparticles suspended by deionized water in a
parallel channel with L = 500 µm and θ̄ ' 8.
This migration makes the mixture conductivity
inhomogeneous. Without ultrasonic forcing to
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†
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ν
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Figure 2. Profiles of solid volume fraction at
increasing times for the conditions ν̄ = 0.01,
Pr = 146, β = 1.6 10−4, Le = 2.9 10−5,
θ̄ = 7.5, ξs = 1600, C† = 0.78, L/d = 105

and Pes = 0 (no ultrasonic forcing), correspond-
ing to 10 nm copper particles experiencing nomi-
nal, relatively weak positive thermophoresis with
β = 0.26kg/(2kg + ks) and suspended by ethy-
lene glycol in a channel 1 mm wide. From right
to left, curves are plotted at successive times t† =
1, 10, 20, 40, 60, 80, 100, 150, 200, 250, 300 and 400.
For t† & 400, most particles congregate near the
cold wall. For these conditions, a unit interval in
t† corresponds to 10.4 s. To obtain these curves,
we discretized the channel thickness in 320 uni-
form intervals. Note the change of scale to illus-
trate accumulation at y† = −1/2.



12 M. Louge and X. Chen

-0.015

-0.010

-0.005

0.000

Tm
†

0 500 1000
t†

-0.04

-0.02

0.00

T†-y†

t†         ∞

0.00

0.01

0.02

ν

-0.5 0.0 0.5
y†

increasing time

hot wallcold wall

0.10

0.20

Figure 3. Dimensionless mixed-mean tempera-
ture T †m vs. dimensionless time for conditions
of Fig. 2 (no ultrasounds, β > 0). The inset
shows the difference T † − y† between the ac-
tual temperature and a linear temperature profile
from hot wall (right) to cold wall (left) when the
mixed-mean temperature has reached a steady
value (t† → ∞) or, equivalently, when both wall
heat fluxes have returned to balance. Because
|T † − y†| . 0.02, it is reasonable to assume
∂T †/∂y† ' 1. Solid lines show the solution of
Eqs. (36)-(37) with D†

s = Le (1 + T †/θ̄) + D†
ν .

The dashed lines illustrate the role of the settling
diffusivity Dν by making it vanish.

counteract thermophoresis, Kg gradually drifts
toward the clear fluid conductivity at the hot wall,
while increasing at the cold wall. To assess conse-
quences of this imbalance in mixture conductiv-
ity, we write the global unsteady energy balance
in the channel,

d

dt

∫ +L/2

y=−L/2

[ρsνhs+ρg(1−ν)hg]dy = −q++q−,

(42)

where q± < 0 are wall heat fluxes at y = ±L/2.
We then define the mixed-mean temperature

Tm − T̄ ≡ (43)∫ +L/2

y=−L/2

[ρscsν + ρgcg(1− ν)](T − T̄ )dy
/

∫ +L/2

y=−L/2

[ρscsν + ρgcg(1− ν)]dy.

Assuming that specific heats vary little across the
channel, we write hs,g ' h̄s,g + cs,g(T − T̄ ), sub-
stitute in Eq. (42), and write the result in dimen-
sionless form

dT †m
dt†

' −q†+ + q†−. (44)

Thus, the rate of change of T †m represents the net
gain (or loss) of sensible energy in the channel.
Figure 3 plots the time-history of T †m for con-
ditions of Fig. 2. Starting from a homogeneous
suspension with zero mean dimensionless temper-
ature, particle migration causes a greater escape
of energy at the cold wall than the correspond-
ing input at the hot wall, 0 < −q+ < −q−, thus
reducing T †m. Eventually, particles reside mostly
near the cold wall (t† > 400), T †m is invariant, and
thermal fluxes at both walls return to balance. At
this steady state, the temperature profile is every-
where beneath the linear profile imposed initially
in the homogeneous suspension (inset, Fig. 3).
Such imbalances of mass and temperature arise
faster with greater values of β, which are typically
exhibited by solids of relatively low conductivity.

Because, as the inset of Fig 3 shows, ∂T †/∂y† '
+1, and because |T †| . 1/2 � θ̄, thermophore-
sis is set by the group βPr/θ̄ that appears in
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Figure 4. Left axis: dimensionless time for |T †m|
to reach 99% of its steady, long-term value; right
axis: long-time solid volume fraction at the cold
wall (y† = −1/2, t → ∞) and “flash” particle-
phase conductivity K†

s ≡ Ks/K̄g vs. βPr/θ̄. (An
example of T †m vs. time appears in Fig. 3). Cal-
culations were carried out by varying θ̄ at fixed
Pr = 146 and for β = 1.6 10−4, 3.3 10−4, 6.5 10−4

and 1.3 10−3 without ultrasonic forcing, Pes = 0.
Values of ν̄, Le, ξs, C†, and L/d, see Fig. 2.
The vertical dashed line marks βPr/θ̄ = Le, to
the right of which settling diffusivity increasingly
dominates its Brownian counterpart.

Eqs. (36), (37), (39) and (41). In particular, it is
stronger when the mean temperature gradient is
high or, equivalently, when θ̄ is low. The left axis
of Fig. 4 shows how much time is needed to reach
a steady T †m for several values of θ̄. (Other quan-
tities reach a steady-state in roughly the same
time). The right axis shows the corresponding
maximum value of the solid volume fraction ν−,
which, in the absence of ultrasonic forcing and
β > 0, occurs at the cold wall. In the absence of
ultrasounds, the relative strength of the settling
and Brownian diffusivities is

Dν

Ds-e
=

|β|Pr/θ̄

Le(1 + T †/θ̄)2
fν

∣∣∣∂T †

∂y†

∣∣∣ ' |β|Pr/θ̄

Le
fν ,

(45)

which is governed by the ratio (|β|Pr/θ̄)/Le. As
Fig. 4 shows, for low temperature gradients or
weak thermophoresis with Le ∼ βPr/θ̄ and
β > 0, Brownian diffusion counteracts the inex-
orable settling of particles near the cold wall, and
the steady value of ν− at the cold wall satisfies
ν̄ . ν− < νc. In contrast, if Le � βPr/θ̄, Brow-
nian diffusion is negligible and particles drift to
the cold wall with ν− → νc. During this process,
the settling diffusion produces a particle-phase
conductivity, which is calculated by substituting
Dν in Eq. (5), and is showed as a dashed line
measured on the right axis of Fig. 4. For con-
ditions of Fig. 2 at the nominal thermophoretic
coefficient β = 1.6 10−4, this conductivity is
small, K†

s = Ks/K̄g ' 2 10−3, so settling dif-
fusion adds little to Kg. If however, as Giddings,
et al suggested [34], metal nanoparticles effec-
tively possess a much higher β ' 3.5 10−2 com-
mensurate with silica particles, then K†

s ' 0.4,
thus constituting a significant enhancement over
K†

g = Kg/K̄g ' 1.
However, this enhanced settling conductivity,

which occurs shortly after the thermal temper-
ature gradient is imposed, does not persist long
throughout the channel, as positive thermophore-
sis quickly sweeps solids away from the hot wall.
For this reason, we call this “flash” conductivity.
To illustrate its ephemeral existence, we calcu-
late the dimensionless average channel conduc-
tivity by integrating contributions of elementary
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slices of width dy† to the overall thermal resis-
tance of the channel,

K̄† ≡
[ ∫ +1/2

y†=−1/2

K̄g

Kg + Ks
dy†

]−1

. (46)

We find that K̄† returns to K̄g on a time scale
much shorter than the time to steady-state plot-
ted in Fig. 4. For example, with parameters of
Fig. 2 and β = 0.035, the relaxation time of K̄†

is t† ∼ 6 10−7; for β = 0.017, it is ∼ 9 10−7.
(However, note that these times scales are still
much greater than the Stokes relaxation time
τ †s = 3 10−13). Therefore, while possible, this
“flash” enhancement of the particle-phase con-
ductivity is quickly followed by strong inhomo-
geneities, it requires a strong temperature gradi-
ent, it is ephemeral, and it only exists for parti-
cles of small material conductivities or anoma-
lously high thermophoretic coefficient. Similar
flash conductivity would also arise with negative
thermophoresis.

3.6. Ultrasonic mitigation
Our analysis suggests that ultrasounds can

frustrate thermophoretic particle migration,
which is captured by the first term on the right
side of Eq. (36). Because ∂T †/∂y† ' 1 and
|T †| � θ̄, and because particle diffusion van-
ishes at uniform ν, the right side of Eq. (36) is
nearly balanced or, equivalently, ν becomes in-
variant when ultrasounds are applied such that
(ey · n) = −1 for β > 0 (or +1 for β < 0) and

Pes =
|β| Pr

θ̄
. (47)

Figure 5 plots the dimensionless time needed for
the disappearance of 99% of the initial volume
fraction at any wall. If no ultrasounds are applied
(Pes = 0), this takes t† ' 38 for the relatively
modest thermopheretic coefficient β = 1.6 10−4

to wipe particles off the hot wall at θ̄ = 7.5.
When the ultrasonic terminal velocity is raised,
this depletion time increases, as particle migra-
tion gets thwarted by the ultrasonic force. The
time diverges to ∞ as Pes approaches the value
prescribed in Eq. (47). When that value is ex-
ceeded, ultrasounds drive particles in the oppo-

0

50
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t†

0.000 0.005 0.010
Pes

Figure 5. Dimensionless time to deplete the vol-
ume fraction at a wall down to 1% of its origi-
nal value vs. Péclet number for the conditions of
Fig. 2, (ey · n) = −1 and β > 0. The vertical
dashed line marks the value of Pes ∼ 0.0032 in
Eq. (47). To its left, thermophoresis is stronger
than ultrasonic forcing, and solids migrate away
from the hot wall. To its right, ultrasounds are
stronger, and solids leave the cold wall.

site direction, the cold wall is now depleted, and
the time to do so decreases with increasing Pes.

Unfortunately, conventional transducers might
not be strong enough to mitigate the ther-
mophoretic migration of very small particles. To
achieve the Péclet number prescribed by Eq. (47),
one must supply the acoustic energy flux

I =
90

11π3/2

|β| S2µ5/2

f3/2 d3 ρ
3/2
g L θ̄

, (48)

which rises steeply as d decreases. For exam-
ple, 10nm copper particles in ethylene glycol at
300◦K with β = 1.6 10−4 in a channel 1 mm
wide require I = 11 MW/m2 at f = 20MHz to
oppose ∆T = 1◦K, which is clearly impossible.
Commercial transducers producing . 10kW/m2

at 20MHz can only reach Pes in Eq. (47) with
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d & 100nm.
For conditions typical of Fig. 2, the three terms

in curly brackets on the right side of Eq. (37)
are much less important to the balance of energy
than the conduction term featuring (K†

g + K†
s).

Therefore, the role of thermophoresis is largely
captured by Eq. (36), which predicts the local
evolution of ν and the corresponding variations
of (K†

g + K†
s).

Figures 3 and 5 also illustrate the role of set-
tling diffusion with dashed lines representing the
solutions of Eqs. (36)-(37) without D†

ν . As these
figures show, settling diffusion merely delays ther-
mophoretic migration and the subsequent return
to a thermal steady-state.

In summary, suspensions of small particles in
the diffusion limit differ from their macroscopic
counterpart by the existence of a thermopheric
coupling between temperature gradient and solid
volume fraction, which can create severe concen-
tration inhomogeneities by moving solids toward
cold (β > 0) or hot (β < 0) regions. In princi-
ple, ultrasonic forcing can counteract this effect
by fitting a transducer on a hot wall. However,
the required sonic energy flux for nanoparticles
generally exceeds the performance of available ul-
trasonic systems. In channels with unidirectional
∇T , thermophoresis acts as a settling force sim-
ilar to gravity. If it is strong enough, it can
result in a significant enhancement of the self-
diffusive particle-phase conductivity, which sus-
pensions at ∇T = ∇ν = 0 do not achieve with
Brownian self-diffusion alone, but such enhance-
ment is ephemeral.

Because thermophoresis drives time-varying
suspension inhomogeneities, we examine in the
next section whether conventional techniques like
hot-wire conductimetry, which are meant for ho-
mogeneous fluids of invariant properties, provide
a reliable measurement.

4. Hot-wire conductimetry

The conductivity measurement technique em-
ployed with most nanoparticle suspensions is the
transient hot-wire method, suitably adapted to
handle electrically-conductive liquids [63]. A con-
stant volumetric heat flow rate is produced by the

Joule effect in a thin cylindrical wire by switching
on a constant electrical current suddenly at time
zero, while a known length of wire is immersed
in a fluid initially at the temperature T∞. Be-
cause conductance of the wire material is a linear
function of temperature, the overall resistance of
the wire, which is recorded with a bridge, is a
measure of its average temperature

T̄w =
1

πr2
w

∫ rw

r=0

Tw 2πrdr, (49)

where r is the radial coordinate from the wire’s
centerline and rw is the radius of the electrically
conductive wire core. Hot wire data is commonly
reduced by calculating the apparent conductivity

ka ≡
q̇

4π

/ dT̄w

d ln t
, (50)

in which q̇ is the heat supplied to a unit of wire
length [6]. If this measurement is carried out
long enough after electricity is first switched on,
ka tends asymptotically to the invariant conduc-
tivity of the homogeneous medium in which the
wire is immersed. Nonetheless, it would be im-
prudent to wait too long, since the rising tem-
perature could promote free convection that may
augment the apparent rate at which the wire loses
heat [29].

In this problem, it is natural to introduce new
dimensionless variables, which, for convenience,
we will denote with the same † superscript used
earlier. Thus in this section, we make time di-
mensionless with the wire radius and the mix-
ture thermal diffusivity at the mean solid vol-
ume fraction, t† ≡ ᾱt/r2

w; radii dimensionless
with wire radius, r† ≡ r/rw; thermal conduc-
tivities and diffusivities with their mixture coun-
terparts, k† ≡ k/K̄g, α† ≡ α/ᾱ; and tempera-
ture with the mixture conductivity and the elec-
trical heat rate supplied per unit wire length,
T † ≡ (T − T∞) 2πK̄g/q̇.

4.1. Role of insulating sheath
Carslaw and Jaeger [64] provided analytical ex-

pressions for a wire of infinite conductivity, pos-
sibly protected by a sheath, and immersed in a
homogeneous medium. Without a sheath, the so-
lution of Carslaw and Jaeger yields the apparent
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conductivity

k†a =
π2

8Π2t†

/ ∫ ∞

ι=0

exp(−t†ι2)
ι[(ιJ0 −ΠJ1)2 + (ιY0 −ΠY1)2]

,

(51)

where J0(ι) and J1(ι) are Bessel functions of the
first kind, Y0(ι) and Y1(ι) are Bessel functions of
the second kind, and Π ≡ 2(ρc)/(ρwcw) is twice
the ratio of the specific heats per unit volume of
the mixture and that of the wire.

Nagasaka and Nagashima [63] derived expres-
sions for a wire of finite conductivity with a
sheath for t† & o(1) after the onset of electrical
heating. Substituting their results in Eq. (50), we
find

1

k†a
= 1 +

1
2t†

{ k†p

α†p
− k†w

α†w
+

r†2p

α†p
(1− k†p) (52)

− 1

α†p
+

1

2α†w
−

(1− k†p

4k†w

)( 1

α†w
− 1

α†p

)
− 2

( 1

α†p
− k†w

α†wk†p

)
ln(r†p)

}
− 1

2t†

{ k†p

α†p
− k†w

α†w
+

(
1−

k†p

α†p

)
r†2p

}
ln

( 4t†

exp(γ)r†2p

)
,

where γ ' 0.577 is Euler’s constant. In this equa-
tion, the subscripts p and w denote material prop-
erties of the sheath and the conductive wire core,
respectively; and the outer radius of the sheath is
rp.

As Nagasaka and Nagashima [63] noted, the
presence of a sheath, which is necessary to han-
dle electrically conductive solids [6], delays reach-
ing the asymptote k†a → 1, paradoxically more so
if the sheath is made of a highly thermally con-
ductive electrical insulator (Fig. 6). Clearly, it
is important to wait a sufficient time t† & 1000
to reach the asymptote, and to report this time
along with thermal conductivity data. For the
system shown in Fig. 6, this represents about 4
s. Alternately, as Knibbe and Raal showed [65],
it is possible to exploit the time-history of T̄ †w at
smaller times to extract the fluid thermal conduc-
tivity and diffusivity simultaneously.

During long measurements, small particles can
be subject to thermophoresis, which draws them

0.8

1

1.2

1.4

ka
†

1 10 100 1000
t†

kmeas Pt/H2O

kmeas Pt/highcond/EG

kmeas Pt/lowcond/EG

kmeas Pt/sheath/EG

kmeas Pt/EG

no sheath

Figure 6. Instantaneous ratio of the thermal con-
ductivity inferred by the hot-wire method and
the actual fluid conductivity vs. dimensionless
time for typical hot wire systems. The heavy
solid line labeled “no sheath” denotes a plat-
inum wire core of 20µm diameter with proper-
ties ρw = 21450 kg/m3, cw = 133 J/kg◦K and
kw = 72 W/m◦K immersed in ethylene glycol.
The thin solid line is the same fluid, but the
core has a protective sheath of 7.5µm thickness
with ρp = 1350 kg/m3, cp = 1280 J/kg◦K and
kp = 0.28 W/m◦K. The rising dotted line rep-
resent the same combination, but with a sheath
of lower conductivity kp = 0.1 W/m◦K, while the
falling dashed line is for a more conductive sheath
with kp = 0.5 W/m◦K.
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away from the wire if β > 0. If the wire was
immersed in the suspension long enough to cause
particles to adhere to its surface, positive ther-
mophoresis might also resuspend these particles.
Conversely, if β < 0, the suspension might pro-
gressively densify at the wire, particularly if the
applied electrical power is large. We discuss next
to what extent these phenomena should be taken
into consideration.

4.2. Thermophoretic migration and resus-
pension

Ignoring ultrasonic forcing (vs = 0), as well
as effects of radiation, particle aggregation and
electrophoresis, we substitute the thermophoretic
velocity in Eq. (33) for v and write Eqs. (25) and
(31) in the radial coordinate,

∂ν

∂t
=

1
r

∂

∂r

(
r
νβ

Rd

µ

ρg

∂ lnT

∂r

)
+

1
r

∂

∂r

(
rDs

∂ν

∂r

)
(53)

and

ρc
∂T

∂t
= (ρscs − ρgcg)

{νβ

Rd

µ

ρg

1
T

(∂T

∂r

)2

(54)

+Ds
∂ν

∂r

∂T

∂r

}
+

1
r

∂

∂r

[
r(Kg + Ks)

∂T

∂r

]
,

where Ds = Dν + Ds-e.
Far away from the wire (r → ∞), the fluid

is at rest with u = v = 0, ν = ν̄, T = T∞,
and Eq. (28) remains valid. For the boundary
condition at r = rw, we write the balance of mass
and energy fluxes at the wire surface projected
along its normal er. For the mass,

J′′ · er = (ρsνv + j′′s ) · er, (55)

where J′′ = J ′′er is a possible resuspension mass
flux of particles previously adhered to the wire,
which we only consider if β > 0, and

q = hs[ρsνv + j′′s ] · er (56)
+hg[ρg(1− ν)u + j′′g ] · er + (qs + qg) · er,

where q = q̇/(2πrw)er is the radial electrical en-
ergy flux supplied by the wire to the suspension.
Using Eqs. (27), (28) and (55), and the defini-
tions of cs and cg, the energy boundary condition
becomes

q = −(Kg+Ks)∇T+
J′′

ρs

∫ T

0

(ρscs−ρgcg)dT, (57)

where, for compatibility with the expression for
thermophoretic velocity, the reference tempera-
ture of enthalpies is taken to be absolute zero.
It is interesting to note that, in the absence of
a resuspension flux, such reference temperature
need not be invoked, as the term containing the
temperature integral in Eq. (57) would vanish. In
that event, thermophoresis would not affect the
form of the Fourier energy boundary condition ei-
ther. For simplicity, we assume that (ρscs−ρgcg)
is invariant with temperature to carry out the in-
tegral.

To estimate the magnitude of the resuspen-
sion flux with β > 0, we assume that it is
driven by the difference F = 3πµd(vT − v) be-
tween the thermophoretic and Stokes forces work-
ing against the attractive van der Waals force
Fv = −[A132 d/(12η2)]er acting on particles pre-
viously adhered to the wire surface. In this ex-
pression, A132 is the Hamaker constant of parti-
cle of index 1 adhered to the wire of index 2 in
the liquid of index 3, and η is the gap between
wire and particle [66]. We write that the energy
per unit time needed to liberate adhered parti-
cles from a unit surface of the wire is supplied
by the net force F as it detaches particles and
accelerates them from rest to the thermophoretic
terminal velocity,

J ′′

m

∫ ∞

η=η0

A132
d

12η2
dη = N

∫ vT

v=0

Fdv, (58)

where N is the surface number density of adhered
particles and η0 is the initial adhesion gap. Car-
rying out the integrals,

J ′′ = 3π2ρsd
3Nµ v2

T η0/A132. (59)

If no particle returns to adhere again to the
wire, the supply of adhered particles decreases
with time according to dN/dt = −J ′′/m, where
N ∝ J ′′ from Eq. (59). Assuming for simplic-
ity that vT changes slower than N , the surface
number density decreases as

N = N0 exp(−t/τ), (60)

where τ = A132/(18πµv2
T η0). For particles ini-

tially adhered in n` layers at a surface fraction
νs, N0 = 4n`νs/(πd2).
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Adopting the reference time, radius, temper-
ature, conductivities and diffusivities introduced
earlier in this section, we write Eqs. (53) and (54)
in dimensionless form. For mass conservation,

∂ν

∂t†
=

1
r†

∂

∂r†

[r†(νβ Pr/Rd)
(T † + θ∞)

∂T †

∂r†

]
(61)

+
1
r†

∂

∂r†

{
r†

[
Le∞

(
1 +

T †

θ∞

)
+ D†

ν

] ∂ν

∂r†

}
,

and for energy,

[ν + C†(1− ν)]
∂T †

∂t†
= (62)

(1− C†)
{ (νβ Pr/Rd)

(T † + θ∞)

(∂T †

∂r†

)2

+[
Le∞

(
1 +

T †

θ∞

)
+ D†

ν

]( ∂ν

∂r†

)(∂T †

∂r†

)}
+

[ν̄ + C†(1− ν̄)]
r†

∂

∂r†

[
r†(K†

g + K†
s)

∂T †

∂r†

]
,

subject to the initial conditions ν = ν̄ and T † = 0
for t† < 0 and to the boundary conditions ν = ν̄
and T † = 0 as r† → ∞. Substituting J ′′ from
Eq. (59), the boundary condition (55) for particle
mass at r† = 1 becomes[

Le∞
(
1 +

T †

θ∞

)
+ D†

ν

]( ∂ν

∂r†

)
(63)

+
(Pr νβ/Rd)
(θ∞ + T †)

(∂T †

∂r†

)
=

12π
Pr β2 Γr

(θ∞ + T †)2
exp(−t†/τ †)

(∂T †

∂r†

)2

sign
(∂T †

∂r†

)
,

and its counterpart for mixture energy is

(K†
g + K†

s)
∂T †

∂r†
(64)

+12π
(1− C†)

[ν̄ + C†(1− ν̄)]
Pr β2 Γr

(θ∞ + T †)
×

exp(−t†/τ †)
(∂T †

∂r†

)2

sign
(∂T †

∂r†

)
= −1,

in which the direction of thermophoretic resus-
pension is specified by the sign of ∂T †/∂r†, and
τ † ≡ τᾱ/r2

w is the dimensionless characteristic
time for resuspension of adhered particles. For
β < 0, we set J ′′ = 0 or, equivalently, we ignore
the terms ∝ Γr in Eqs. (63) and (64).

We calculate Ks† in Eqs. (62) and (64) using
Eq. (38). However, unlike the parallel geometry
in section 3, thermophoresis around the wire is no
longer unidirectional. Thus it is unclear whether
the settling diffusion Dν described by Eq. (18) re-
mains valid in the presence of the central gradient
∇T directed toward the wire axis. It is equally
unclear which length scale should be substituted
for L in that equation. A crude assumption is to
ignore the central character of the thermophoretic
force, to adopt Eq. (18), and to equate L to the
size of the container. In this case,

D†
ν =

C |β| Pr
(T † + θ∞)

∣∣∣∂T †

∂r†

∣∣∣× (65){
ν1/2( 2rw

d )1/2( L
rw

)3/2 if | ∂ν
∂r†
| 6 | ∂ν

∂r†
|crit

B3/2( d
2rw

)2/5 ν4/5

| ∂ν

∂r†
|3/5 otherwise,

where∣∣∣ ∂ν

∂r†

∣∣∣
crit

=
( d

2rw

)3/2 Bν1/2

(L/rw)5/2
. (66)

As we shall see, this settling diffusivity has
marginal effects on hot-wire conductimetry, and
thus it is not crucial to know its precise form for
the central force field of interest.

Nine dimensionless numbers arise from
Eqs. (61) to (66). They are: ν̄, ξs (or
∂(Kg/kg)/∂ν), Pr, C†, a new Lewis number
Le∞ ≡ kbT∞/(3πµdᾱ), β, the dimensionless
ambient temperature θ∞ ≡ 2πK̄gT∞/q̇, the rel-
ative vessel size L/rw and, if thermophoresis-
driven resuspension occurs with β > 0, Γr ≡
n`νsd µ2η0/(rwρgA132). Thus, more particles
will resuspend if Γr is large or, equivalently, if
the Hamaker constant is weak or if many particles
have adhered to the wire. Although Γr increases
also with d, we expect the thermophoretic driving
force to become negligible once inertia becomes
important, in which case Eqs. (61) to (64) no
longer apply.

We solve the governing equations using Mat-
lab’s pdepe routine in the domain r† ∈ [1, R†]
and over the period t† ∈ [0, t†f ]. We choose the
outer limit R† of the radial domain such that
the residual temperature at R† is much smaller
than at the wire surface, and that no particle
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moving at the thermophoretic velocity can ever
reach R†. Because ∂T †/∂r† ' −1 at r† = 1,
these conditions imply R† � 1 + T †w(t†f ) and
R† � |β| Pr t†f/θ∞. We run numerical calcu-
lations at successively smaller radial increments
until further refinements become inconsequential.
Because the pdepe routine cannot handle terms
∝ (∂T †/∂r†)2 in boundary conditions (63) and
(64), we iterate successive solutions in which the
magnitude of these terms are calculated from the
previous iteration. We use Carslaw and Jaeger’s
analytical solution for the first iteration, and we
stop when the root-mean-square difference be-
tween the temperature time-histories at r† = 1
from two consecutive iterations is < 10−5. Con-
vergence typically requires no more than five it-
erations. We enforce ν ∈ [0, νc[ as outlined in
section 3. From the solution, we calculate the ap-
parent conductivity using the dimensionless form
of Eq. (50),

1

k†a
= 2

dT †

d ln t†

∣∣∣
r†=1

. (67)

Figures 7 and 8 illustrate the results. As
Buongiorno [19] noted, the terms proportional to
(∂T †/∂r†)2 and (∂ν/∂r†)(∂T †/∂r†) in Eq. (62)
are negligible compared with the last conduction
term in the equation. To gauge how thermophore-
sis affects the particle population in the wire’s
vicinity, we compute the relative excess or deficit
of particle mass M† in the region 1 6 r† 6 2,

M† =
∫ 2

r†=1

(ν− ν̄) 2πr†dr†
/ ∫ 2

r†=1

ν̄ 2πr†dr†,

(68)

and plot it versus time in Fig. 7. A deficit of
particle has M† < 0; the value M† = −1 rep-
resents clear fluid; an excess has M† > 0. Note
that settling diffusion has a modest effect on M†,
just delaying the migration of particles away from
the wire (dotted lines, Fig. 7). Moreover, unlike
its role in augmenting K†

s for a short time in the
parallel channel of section 3, “flash” settling dif-
fusion has no discernable influence on the time-
history of k†a from the hot wire, except perhaps
at t† < 10−2, which has no practical importance
to this measurement.
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Figure 7. Excess (M† > 0) or deficit (−1 6 M† <
0) of particle mass in the region 1 6 r† 6 2 vs.
dimensionless time for the conditions ν̄ = 0.01,
∂(Kg/kg)/∂ν = 3, Pr = 146, C† = 0.78,
Le∞ = 3 10−5, and θ∞ = 490, corresponding
to 10nm particles of copper in ethylene glycol at
300◦K probed by a wire of 20 µm diameter at
q̇ = 1W/m. For such conditions, a unit inter-
val in t† corresponds to 4.2 ms. To obtain these
curves, we discretized space in 3200 intervals in
the range 1 6 r† 6 100. Solid lines represent
solutions of Eqs. (61)-(64) without settling diffu-
sion, Dν = 0. Dotted lines are obtained with D†

ν

from Eq. (65) with L/rw = 50. The bottom two
curves are obtained with relatively strong positive
thermophoresis, β = 0.035, for which the parti-
cles behave like silica (ks = 1.4W/m◦K) [34], and
no prior particle adhesion, n`νs = 0. The curve
labeled “resuspension” represens thermophoresis-
driven resuspension with β = 0.035 and Γr =
9.4, corresponding to A132 = 20 10−20J, η0 =
0.17nm [66], and a 1 µm layer of initially adhered
particles, n`νs = 100. The rising curve is for neg-
ative thermophoresis with β = −0.006. (Dν has
negligible effects in this case).
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Figure 8. Dimensionless apparent conductivity
ka/K̄g inferred from hot-wire measurements with
Eq. (50) vs. dimensionless time for conditions
of Fig. 7. The dashed line has β = 0 (no ther-
mophoresis) and, like its counterparts in Fig. 6,
asymptotes to k†a → 1 as t† → ∞. The bottom
solid line has β = +0.035 and Γr = 0 (no resus-
pension), and the dotted line has β = +0.035 and
Γr = 9.4. Because of thermophoretic migration of
particles away from the hot wire, the dotted and
dashed curves asymptote to the clear fluid value
k†a → kg/K̄g < 1 marked by the horizontal line
labeled “clear fluid”. The top solid line has nega-
tive thermophoresis with β = −0.006. The mag-
nification of time scale on the right shows how
rapidly such negative thermophoresis can accu-
mulate particles near the wire and raise the ap-
parent conductivity.

Figures 7 and 8 distinguish two regimes of ther-
mophoretic migration depending on the sign of
β. For nominal properties of copper nanoparti-
cles in ethylene glycol (β = 0.26kg/(ks + 2kg) '
1.6 10−4), positive thermophoresis causes neg-
ligible migration of solids away from the wire,
unless the measurement is carried out too long,
t† � 1000. If instead copper exhibited effective
thermophoretic coefficients as high as those sug-
gested by Giddings, et al [34], β ' 0.035, then
substantial deficits of solids could quickly appear
next to the wire. However, as Fig. 8 shows, such
deficit would lead to apparent conductivities ka

that are lower, instead of higher, than that of the
base fluid, as k†a → kg/K̄g < 1 as t† →∞.

Relatively strong particle resuspension could
produce a temporary excess of solids near the
wire, resulting in values of k†a larger than with-
out thermophoresis at comparable times t† < 40.
In spite of this, resuspension should eventually
exhaust the initial supply of adhered particles
(Eq. 60, t† & 200). At that stage, the appar-
ent conductivity ka would dip below kg, and fi-
nally return to the clear fluid asymptote as ther-
mophoresis draws particles away from the wire.
Therefore, even if an exceptional number of par-
ticles had previously fouled the wire, particle re-
suspension should only play a minor role in the
transient measurement. In general, if Eastman, et
al [6] waited long enough to record apparent con-
ductivity, positive thermophoresis cannot explain
the anomalous increase in keff that they reported.

In contrast, negative thermophoresis has a
more profound effect on the apparent conductiv-
ity. As Figs. 7 and 8 show, the relatively modest
β = −0.006 can cause a densification of the mix-
ture near the wire, thus leading to a late upsurge
of k†a. However, because thermophoretic diffusiv-
ity typically grows with T [39,41], and because
temperature gradually rises in hot-wire conduc-
timetry, β may not remain negative at long times.
On the other hand, because the temperature at
which β becomes > 0 appears to increase with
ν [40], β might remain < 0 despite the growth of
T near the wire. If it does, then negative ther-
mophoresis could be responsible for a substan-
tial, albeit artificial, augmentation of the appar-
ent conductivity at long times. A similar artifact
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at long times may also arise from the onset of free
convection around the wire [29].

However, if hot-wire conductimetry properly
accounted for the role of the sheath in delay-
ing approach to the asymptote (Fig. 6), and if
thermophoresis remained positive, explanations
for the thermal anomalies of metal nanoparticles
must be found elsewhere. Keblinski, et al [7] dis-
missed the role of ballistic phonons and Xue, et
al [16] that of liquid layering. Ben-Abdallah [17]
dismissed near-field interactions. Prasher, et
al [10] pointed out that the interfacial resistance
at the particle surface [67] should decrease keff.
Our analysis of the diffusion limit in section 2.2
agreed with others [7,8,10,19] that Brownian dif-
fusion of thermal energy is also negligible. On
the other hand, Vadasz, et al [18] suggested that
enhancements may be due to hyperbolic conduc-
tion. Leong, et al [14] proposed that the ordered
interfacial layer of liquid molecules at the solid
surface could have much higher conductivity than
the base fluid, thus raising the effective volume
fraction of highly conductive material in the mix-
ture.

Particle aggregation also plays an important
role in nanofluids. Lin, et al [68–70] described the
fractal nature of colloid aggregates and identified
the universality of diffusion-limited and reaction-
limited regimes of aggregation. Prasher, et al [13]
showed that nanoparticles could form such fractal
clusters occupying the fraction νa of the suspen-
sion volume and exhibiting high effective cluster
conductivity kcl. In fact, Hong, et al [11] observed
clusters on the order of ∼ 1 µm, which they could
not dissolve completely by ultrasounds. For per-
colating metal clusters with ξs ≫ 1, it is plausi-
ble that connected particle chains would produce
kcl/kg � 1, despite the clusters’ relatively di-
lute internal volume fraction νcl and the presence
of interfacial Kapitza resistance at particle con-
tact regions [14,16]. With overall volume fraction
ν = νaνcl, the mixture conductivity would then
become Kg/kg ' 1 + 3νa = 1 + 3ν/νcl. Thus, the
presence of clusters with high intrinsic kcl could
effectively rescale volume fraction and raise the
slope of ∂(Kg/kg)/∂ν from 3 to 3/νcl.

It is unclear how thermophoretic forces would
affect such fractal clusters. However, the data of

Putnam and Cahill [36,39] and Vigolo, et al [43]
suggest that β is independent of particle diame-
ter. Because the viscous settling of a cluster is
typically set by its outer size, the thermophoretic
migration might be described by substituting that
size wherever d appears in the dimensionless num-
bers of section 3.4.

5. Conclusions

We have examined the role of particle agitation
in enhancing the effective conductivity of fluid-
solid suspensions. In Part I, we showed that, be-
cause macroscopic grains rarely exchange signif-
icant heat during their ephemeral collisions with
each other and with walls, the enhancement is a
competition between two rate-limiting processes,
namely the ability of particles to self-diffuse and
to exchange heat with the surrounding fluid [1].
Accordingly, we distinguished two regimes, called
the “diffusion” and “exchange” limits, in which
one or the other process dominates. In Part II,
we tested the theory in the exchange limit by vig-
orously vibrating spheres in a box traversed by a
controlled thermal heat flux, and obtained a heat
flux enhancement as high as a factor of 20.

In Part III, we illustrated the diffusion limit
by considering the transfer of heat through di-
lute suspensions of small colloidal spheres in an
incompressible liquid. In this regime, which is
governed by diffusion, particles exchange, on av-
erage, negligible heat with their surroundings,
thus locally adopting the thermal temperature
of the fluid. They also exhibit Brownian agita-
tion, which could in principle enhance the thermal
conductivity of the solid phase. However, unlike
massive grains having a self-diffusive conductivity
weakly dependent on particle concentration, the
particle conductivity associated with Brownian
self-diffusion is proportional to solid volume frac-
tion, thus making the resulting enhancement too
small to matter. Unlike the macroscopic grains
considered in Part II, the Brownian motion of
nanoparticles is not sufficient to agitate the sur-
rounding fluid and augment its effective conduc-
tivity either [28].

On the other hand, for small particles, the ex-
istence of macroscopic temperature gradients in-
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duces a thermophoretic migration of solids [32],
which prevents the mixture from achieving a
steady homogeneous concentration. In cases
where the temperature gradient is uniform, the
thermophoretic force causes a hindered settling
resembling sedimentation and similarly provok-
ing an additional diffusion [57], the magni-
tude of which can exceed its Brownian counter-
part. Through volume conservation, the ther-
mophoretic advection and settling diffusion cause
reverse fluxes in the fluid, even in a suspension
globally at rest. Therefore, although the fluid-
solid mixture possesses a single thermal temper-
ature, one should distinguish the thermal govern-
ing equations of the two phases, which exhibit
different advection velocities and diffusion fluxes.

As Putnam, et al showed [37,39], thermophore-
sis can drive particles to regions that are cold
(β > 0) or hot (β < 0), depending on sol-
vent composition, temperature, and volume frac-
tion [40]. If thermophoresis is intense, for ex-
ample with particles having relatively low ma-
terial conductivity, or with metal particles with
anomalous surface potential distribution [34], the
thermophoretic settling diffusion can induce a
particle-phase “flash” conductivity augmenting
significantly the mixture conductivity captured
by homogenization models [22]. However, this
enhancement is ephemeral, as thermophoresis in-
evitably creates inhomogeneities in particle con-
centration.

Our calculations suggested a technique to op-
pose particle thermophoretic migration by plac-
ing an ultrasonic transducer emitting progressive
acoustic waves from a hot wall [47]. Unfortu-
nately, such ultrasonic relief of thermophetic mi-
gration is only conceivable for solids larger than
typical nanoparticles. We also estimated that the
self-diffusion associated with ultrasonic particle
fluctuation velocity is small compared with the
settling diffusivity driven by ultrasonic particle
advection.

We also considered how the gradual migra-
tion of nanoparticles away from hot surfaces af-
fects the reliability of transient hot-wire conduc-
timetry, which is meant for homogeneous flu-
ids of invariant properties. We recalled that an
electrically-insulating sheath causes a delay in the

time needed for the apparent thermal conductiv-
ity to reach its asymptote [63], thus implying that
wire measurements with conductive nanoparti-
cles be carried out at long times, but not too
long for free convection to play a role [29], and
not with excessive electrical power that positive
thermophoresis may deplete (or negative ther-
mophoresis augment) the particle population at
the wire. In this context, because time scales as
wire radius squared, we recommend that hot-wire
conductimetry data be reported together with
measurement time delay, electrical power, wire
geometry [71], and solvent composition [37].

We showed that, as positive thermophoresis de-
pletes the particle population near the wire, it
should reduce the long-time asymptotic value of
the apparent conductivity. Thus, the anomalous
increase in the long-term hot-wire conductivity
of metal nanoparticles [6] cannot be attributed
to positive thermophoresis, unless measurements
were carried out too soon. We also examined
whether the resuspension of particles previously
adhered to the wire played any role. While such
resuspension by positive thermophoresis could
create a temporary increase in apparent conduc-
tivity, the gradual departure of particles from
the wire and its vicinity should again result in
a smaller apparent long-term conductivity, thus
making it unlikely, once again, for positive ther-
mophoresis to be responsible for anomalous hot-
wire conductivity measurements.

However, we showed that negative ther-
mophoresis, which can occur, for example,
in aqueous suspensions of charged polystyrene
spheres at relatively low ionic strength or tem-
perature [37], could let the apparent hot-wire con-
ductivity rise at long times due to particle migra-
tion toward the wire. Finally, we recalled the con-
clusions of others [68–70] that nanoparticle clus-
tering likely plays an important role in the trans-
port properties of nanofluids, including thermal
conductivity.
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