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We test the theory of Part I in the exchange limit by vibrating acrylic and aluminum spheres in a box consist-
ing of two flat, vertical isothermal walls, two bumpy, horizontal, insulated walls, and two flat vertical insulated
surfaces. The steady heat flux through the thermally-guarded hot wall is recorded at different temperatures of
the opposite wall cooled by thermoelectric modules, and enhancements of suspension conductivity are calculated
using a lumped-parameter model of the box. To compare results and theory, we also predict vertical profiles of
agitation and solid volume fraction in the box using granular dynamics.
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1. Introduction

The heat transfer to dense suspensions of ag-
itated grains, in which granular fluctuation ve-
locity is not induced by fluid turbulence, has
elicited relatively few experiments [1,2], in con-
trast with thermal conduction through static
packings, which have received greater atten-
tion [3]. In Part I, we outlined a theory for
such heat transfer by focusing on a generic fluid-
particle system with uniform solid volume frac-
tion ν and “granular temperature” Θ, but with-
out an average relative velocity between fluid and
solids [4]. (The granular temperature has units of
fluctuation velocity squared and measures gran-
ular agitation). We considered grains of a sin-
gle diameter d, density ρs, mass m = (π/6)ρsd

3,
specific heat cs and material conductivity ks uni-
formly suspended in a fluid of density ρg, specific
heat per mass cg, conductivity kg and viscosity
µ, confined between two parallel flat isothermal
walls at different temperatures and separated by
the distance L. We showed that grains enhance
the heat flux q transferred through these walls
above its value q0 in the clear fluid at rest ac-
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is a thermal self-diffusivity of the agitated grains,
g12(ν) is the Carnahan-Starling pair distribu-
tion [5]; and Kn = λs/L is a Knudsen number ac-
counting for the relative size of the granular mean
free path λs = d/[6

√
2νg12] and L. In Eq. (1),

Kgt = kgt fM (ν; ξst) (3)

is the conductivity of the gas-solid mixture with
ξst ≡ ks/kgt;

kgt

kg
= 1 + ω

9
√
π

Prt

(ρgcg
ρscs

)
fM (ν; ξs)× (4)

g12 (1 + 2Kn)
(Ks

Kg

)
is the molecular conductivity of the gas aug-
mented by particle-induced velocity fluctuations,
where Prt ' 0.9 is a turbulent Prandtl number
and ξs ≡ ks/kg; and

Kg = kg fM (ν; ξs) (5)

1
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Table 1
Nomenclature
a0 vibration amplitude
aν , bν , cν , dν constants in Eq. (8)
A, Ah individual heater surface areas
A1, A2, A3 functions in Eq. (6)
cg, cs fluid, solid specific heats per mass
d grain diameter
e, ew particle, wall restitution
E1, E2, E∗ stiffnesses
f vibration frequency
f2, f3, f4 granular dynamics functions of ν
g gravitational acceleration
g12 binary sphere pair distribution
h particle heat transfer coefficient
hc1, hc2, he, hb wall heat transfer coefficients
H volumetric rate of heat exchange
I integral of solid volume fraction
kg, ks fluid, solid thermal conductivities
keff effective thermal conductivity
kt, kgt turbulent, total fluid conductivities
Kg, Ks mixture, solid-phase conductivities
Kgt augmented mixture conductivity
L thermal wall-to-wall distance
L0 reference width in Eq. (8)
L† relative length scale in Eq. (7)
m grain mass
M constant in κ
N number of realizations
Ps granular pressure
q0, q clear gas, suspension wall fluxes
q+, q− heat fluxes at hot, cold walls
Q̇s steady heat rate supplied
Rb box thermal resistance
Sb box external area
t time
Tg, Ts fluid, solid thermal temperatures
T∞, ambient temperature
T+, T− temperatures of hot and cold walls
vi grain fluctuation velocity along i
x, y, z cartesian coordinates
X, Z wall-to-wall distances
zc filling height at νc

Table 2
Greek
β0, β0w particle, wall tangential restitutions
γ granular energy collisional dissipation rate
Θ granular temperature
ι variable of integration
κ conductivity of granular fluctuation energy
λs grain mean free path
µs, µw particle, wall friction coefficients
µ fluid viscosity
ν solid volume fraction
νf , νc freezing, randomly jammed values of ν
ξs ks/kg

ξst ks/kgt

ξ1 first root of ξ/ tan ξ = 1−Bi
Ξ collision number wall flux
ρg, ρs fluid, solid material densities
σ1, σ2 Poisson’s ratios
Ψ flux of granular fluctuation energy
ω constant in Eq. (4)
Ω slope in Eq. (42)

Table 3
Dimensionless groups
Bi Biot number
Da Damköhler second ratio
Foc time-of-flight Fourier number
Kn Knudsen number
Nu particle Nusselt number
Pr Prandtl number
Prt turbulent Prandtl number
Ra Rayleigh number
Re particle Reynolds number
Γ dimensionless acceleration
Λ dimensionless vibration self-diffusivity (Eq. 31)
Υ vibration Froude number

Table 4
Scripts
†, ∗, dimensionless
¯ average along z
g, s gas, solid
air, He air, helium
th, nx, ex theory, numerical simulation, experiment
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is the mixture conductivity at rest evaluated at
the bulk solid volume fraction ν and ξs. To evalu-
ate mixture conductivities, we adopted the func-
tion recommended by Meredith and Tobias [6],

fM (ν; ξ) =
A1 − 2ν +A2 − 2.133A3

A1 + ν +A2 − 0.906A3
, (6)

where A1 = (2 + ξ)/(1 − ξ), A2 = 0.409ν7/3(6 +
3ξ)/(4 + 3ξ), A3 = 3ν10/3(1 − ξ)/(4 + 3ξ).
In Eq. (1), the distance between hot and cold
isothermal walls is made dimensionless using

L† =
L

d

√
12ν Nu

(Kgt/kgt)
f1 f2

(
1 +

Kgt

Ks

)
, (7)

in which the particle Nusselt number Nu is based
on kgt and grain radius, and remains unity. The
function

f1(ν;L/d) =
1 + ν(1− e−L/L0)(bν + aνν)
1 + ν(1− e−L/L0)(dν + cνν)

, (8)

in which the parameters L0/d ≈ 12.8, aν ≈ 1385,
bν ≈ 230, cν ≈ 4370, and dν ≈ 327 arise from our
integration of HAB theory [7], captures effects of
spatial ordering imposed by the thermal walls on
Kg and the volumetric rate of heat exchange H̃
between solids and fluid. The function

f2(Bi,Foc) ≈ exp(−ζ2
1Foc)× (9)

[1− Bi
5

+
3

520
Bi2 +

99
13000

Bi3]

captures the dependence of H̃ on the grain Biot
number

Bi = Nu/ξst (10)

to a good approximation for Bi < 1.3, where the
eigenvalue ζ1 ≈

√
3Bi[1 − Bi/10 + Bi2/156] and

the Fourier number based on mean granular time
of flight is related to Ks/Kg using

Foc =
ξs

54νg2
12(1 + 2Kn)(Ks

Kg
)fM (ν; ξs)

. (11)

The Lattice-Boltzmann numerical simulations
of Verberg and Koch indicate that, in dense
suspensions of spheres, the gas Reynolds stress

is proportional to strain rate and ρgΘ1/2d [8].
Equivalently, we suggested in Part I that the
parameter ω in Eq. (4) is a function of ν that
must vanish at ν = 0 [4]. We then adopted Ver-
berg and Koch’s measurement of ω = 0.037 at
ν = 0.3 and, in the absence of published mea-
surements at other volume fractions, assumed
ω = (0.037/0.3)ν.

In short, to capture effects of particle-induced
gas velocity fluctuations on heat transfer, our ap-
proach is to raise the gas conductivity from its
molecular value kg to kgt, to calculate kgt from
the measurements of Verberg and Koch [8] in
numerical simulations of dense gas-solid suspen-
sions, and to account for the resulting conductiv-
ity augmentation in the mixture conductivity, the
particle Biot number, and the gas-solid heat ex-
change rate. We adopt this approach rather than
invoking an empirical correlation [9] that raises
the Nusselt number of an individual sphere with
a particle Reynolds number based on fluctuation
velocity,

Re =
9
√

3πg12
Pr

(ρgcg
ρscs

)
× (12)

fM (ν; ξs)
(Ks

Kg

)
(1 + 2 Kn),

where Pr = µcg/kg is the Prandtl number of the
gas.

An important assumption of our thermal the-
ory is that grains do not exchange any apprecia-
ble heat during their ephemeral collisions among
themselves or with the wall. This is the case if

ρ
1/5
s E∗4/5d cs

Θ3/10ks
� 1, (13)

where E∗−1 = [(1− σ2
1)/E1 + (1− σ2

2)/E2] com-
bines the Young’s moduli Ei and Poisson’s ratios
σi of the two impact protagonists. This assump-
tion implies that, although grains can transport
heat through self-diffusion (Eq. 2), they must first
exchange this heat with the fluid, before it can be
transferred by the fluid to the wall. These two se-
rial processes resemble the competition between
diffusion and chemical kinetics in diffusion flames,
and are similarly arbitrated by a Damköhler sec-
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ond ratio

Da =
(Kg/Ks)(L†/2)

tanh(L†/2)
, (14)

which delineates two asymptotic situations. At
high Da, self-diffusion dominates q/q0 in a regime
that we call the “diffusion limit,” for which the
thermal temperatures of fluid and solid are iden-
tical, and thus assumption (13) is not as crucial.
At low Da, self-diffusion no longer matters di-
rectly, but instead q/q0 is governed by the ability
of individual spheres to exchange heat with the
fluid through the difference between their thermal
temperature and that of the fluid. In this “ex-
change limit,” granular agitation can still play a
role, as mentioned earlier, by raising the mixture
conductivity from Kg to Kgt, the particle Biot
number, and the gas-solid exchange rate through
kgt. These effects are captured to a good approx-
imation by Eqs. (1) to (11), without having to
integrate the governing thermal equations numer-
ically.

In Part II, we test this theory with an ex-
periment consisting of an insulated vibrated box
containing agitated spheres in air between two
isothermal flat walls, one cooled and the other
heated. The thermal heat flux is inferred from
the electrical energy supplied to the heated wall
at steady-state. We begin Part II with a descrip-
tion of the experiment. Further details are pro-
vided in Chen’s doctoral thesis [10]. To compare
experimental data and theory, we derive a model
for solids agitation in the box, which gravity ren-
ders inhomogeneous in the vertical direction.

2. Apparatus

To produce a dense, relatively uniform suspen-
sion of agitated particles in the laboratory with-
out an average relative velocity between gas and
solids, a simple way is to shake spheres in a rect-
angular box. Such shaking must be sufficient
to agitate the spheres without creating excessive
granular condensation at the base of the box. Fol-
lowing a brief description of the apparatus in sec-
tion 2.1, we outline a simple analysis of granular
shaking in section 2.2.

In evaluating the heat flux q, the principal

ceramic board

heatercooler

heat sink

2

1

3

yz

Figure 1. Sketch of a cross-section of the vibrated
box in the (y, z) plane. Dimensions are not to
scale. Large arrows labeled 1, 2 and 3 mark heat
energy paths corresponding to the three terms in
Eq. (41).

challenge is to account for thermal flows that
do not traverse the suspension. Our strategy
is to minimize conduction through, and convec-
tion away from, the box walls. However, be-
cause such parasitic heat flows cannot be elim-
inated, we employ a measurement strategy that
keeps them nearly constant, maintains a nearly
two-dimensional temperature field where mea-
surements are performed, and extracts q from a
simple lumped-parameter model of the box and
its contents. We summarize this heating strategy
in section 2.3.

2.1. Description
Figure 1 is a conceptual sketch of the appa-

ratus. A sinusoidal vibration of amplitude a0

and frequency f = 50 Hz is produced in the
upward vertical direction z by a VTS-100 shake
table driven by a function generator and capa-
ble of delivering a 450 N peak force. We cal-
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ibrate and verify the table displacement time-
history using a capacitance probe system of preci-
sion better than 10 µm and bandwidth 0−4 kHz.
Each experiment is run at the five amplitudes
a0 = 0.72, 0.96, 1.27, 1.69, and 1.96 mm.

The thermal heat flux traverses the suspension
from the heating (right) to the cooling (left) sur-
faces separated by a distance L = 25 mm along
y. The depth along x is bounded by two flat, ver-
tical insulated walls a distance X = 76 mm apart
made of RESCOR 360HS ceramic board with a
relatively low conductivity of 0.07 W/m◦K and
thickness of 15 to 30 mm. Spheres are agitated
by colliding among themselves and with bumps
on the top and bottom walls consisting of rect-
angular brass bars of 4 mm width spanning the
entire depth. The bars are thin and hollow to
minimize fatigue of the ceramic in which they are
imbedded, while increasing its stiffness. They are
separated by ceramic-filled gaps of 2 mm to re-
duce wall conduction along y. The vertical dis-
tance between opposite bars is Z = 25 mm. The
box is held together by threaded metal braces out-
side the ceramic walls. External dimensions are
105× 60× 85 mm3 along x, y and z.

We conduct experiments with acrylic spheres
of 2, 3.2 and 4 mm diameter, and with aluminum
spheres of 3.2 mm diameter. The latter have a
very low Biot number (∼ 1.5 10−4 at kt = 0)
and a large ks that has the potential to generate
high mixture conductivities. The former have a
higher Bi ∼ 0.2 at kt = 0, so that the correc-
tion in Eq. (9) can differ significantly from unity
as kt grows. In separate experiments, we employ
the technique of Foerster, et al [11,12] to mea-
sure impact parameters. For binary collisions,
these include the coefficients of normal kinematic
restitution e, friction µs and tangential restitu-
tion β0. For impacts of those spheres with metal
bumps, the respective parameters are ew, µw and
β0w. They are listed in Table 5. A disadvantage
of aluminum spheres is that they dissipate much
energy in collisions and, as we will later discuss,
their suspensions are more likely to collapse in the
vibrated box. Properties of gases used are shown
in Table 6.

Figure 2 is a sketch of the assembly. Heat
is generated by three square Watlow thick-film
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Building Block

(Ceramic board)

Film Heater

Thermal Electronic (Peltier) Cooler

Metal Bump
Building Block

(Ceramic board)

Heat Sink

Thermocouples

Copper Plates

Thermistors

Figure 3.3: Test cell assembly, with two ends removed. Heater side has 3 separate

copper plates in order to cut off interaction between the center heater and the

guard heaters. Electronic coolers are sandwiched by copper plate and heat sinks.

Table 3.1: Dimensions of the test cell, all dimensions are in mm.

Width Height Depth Wall Bump Gap between

(bump to bump) Thickness width bumps

26.7 24.5 76.2 15-20 4 2

Figure 2. Assembly sketch of the vibrated box
without the ceramic retaining side walls perpen-
dicular to x.

electrical heaters with negligible capacitance or
inductance. To minimize temperature variations
on the heating surface exposed to the suspension,
each heater is covered over its entire surface of
area A = 25.4 × 25.4 mm2 by a square cop-
per plate bonded using highly conductive ther-
mal paste. A copper-constantan thermocouple is
inserted beneath each plate. The thermal flux
is inferred from the power supplied to the cen-
tral heater using the lumped-parameter model
discussed in section 2.3. A Watlow “Series 96
1/16 DIN” controller maintains the thermocouple
temperature at T+ = 333◦K ±0.1◦K by supply-
ing short . 200 msec bursts of 60 Hz AC volt-
age to the heater. A National Instrument DAQ-
1200 card mounted in a laptop computer acquires
power consumption data at a sampling rate of
4 kHz using the LabView software. The laptop is
operated on batteries to minimize electrical sup-
ply noise.

The two side heaters act as a “guard” making
the thermal problem nearly two-dimensional. To
that end, they are jointly set to the operating
temperature of the central heater with a separate
Watlow controller. Because the three adjacent
heaters are separated by a thin layer of RESCOR
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360HS ceramic, and because great care is taken
to equate their temperatures, we calculate that
conduction from the central heater along the x-
direction is < 1% of the heat flux |q| traversing
the box.

The heat flux is absorbed by three Mel-
cor CP0.8-127-06L thermoelectric coolers of
24.6 × 24.6 mm2 inserted between a single cop-
per plate exposed to the suspension and external
aluminum fins air-cooled by forced convection.
A Melcor MTCA-9060 controller maintains the
plate temperature at four possible steady values
T− = 293◦, 303◦, 313◦ or 323◦K monitored by
three YSI series 44008 thermistors inserted be-
neath the plate. For these operating tempera-
tures and at the effective emissivity of the suspen-
sion and the polished copper plates, the radiation
flux emitted by the central heater or received by
the coolers is < 1% |q|.

The thermal response time of the system is rel-
atively high, thus making readings stable, but
compelling us to wait before a steady-state is
achieved. At worst, when heater and cooler are
suddenly turned off, the box at rest returns to
the ambient temperature on a 1/e time of ap-
proximately 13 min.

2.2. Shaking
A challenge of our experiments is that gravity

and energy dissipated in collisions create vertical
inhomogeneities in granular agitation and solid
volume fraction, thus complicating the interpre-
tation of thermal data with a theory meant for
uniform Θ and ν. Gravity draws grains to the
bottom unless agitation is high enough to mini-
mize the resulting imbalance in solid volume frac-
tion. In the worst case, an insufficient vibra-
tion energy input can collapse the suspension. In
this section, we describe a simple one-dimensional
granular dynamics model capturing these effects,
and we briefly outline Discrete-Element-Modeling
(DEM) numerical simulations to infer the gran-
ular temperature in experiments. Other simula-
tions and more detailed analyses may be found,
for example, in references [13–16].

To compare measurements of q/q0 with pre-
dictions of the theory, we first evaluate the self-
diffusive conductivity Ks of the solid phase us-

ing Eq. (2). To that end, we compute the av-
erage dimensionless granular temperature Θ̄∗ ≡
Θ̄/(a02πf)2 in numerical simulations employing
the DEM hard-sphere algorithm described by
Hopkins and Louge [17]. The algorithm detects
collisions once spheres have overlapped slightly
and, for the sake of computing speed, periodi-
cally optimizes the time step between consecu-
tive realizations to achieve a small average toler-
ated overlap. It calculates post-impact velocities
based on the normal restitution, friction and tan-
gential restitution parameters recorded in inde-
pendent collision experiments [11,12].

We assume that the N grains in the box have
no mean velocity, and compute their mean tem-
perature over several realizations

Θ̄ =
1
N

N∑
i=1

(v2
x + v2

y + v2
z

3

)
, (15)

where vx, vy and vz are grain velocities in the
three cartesian directions. The rectangular sim-
ulation domain is bounded with flat walls sep-
arated by the same relative distances Y/d and
Z/d as in the experiments. For simplicity, the do-
main has periodic boundaries along x separated
by L. The virtual box is vibrated along z at the
dimensionless acceleration Γ ≡ (2πf)2a0/g, and
contains spheres with impact parameters in Ta-
ble 5. Because collision velocities on the order of
0.02 <

√
Θ < 1.1 m/s are within the range where

we observe constant impact parameters [11,12],
we expect

√
Θ to scale with (2πfa0), unlike the

more complicated scaling that Falcon, et al have
reported [18].

To model the granular system, we consider fric-
tionless spheres colliding between two horizontal
planes vibrating in unison as z0 = a0 sin(2πft).
Quantities only vary along z. The mean volume
fraction in the domain is

ν̄ =
1
Z

∫ Z

0

νdz, (16)

where the overbar denotes spatial averaging along
z. The granular pressure is

Ps = f4(ν)ρsΘ. (17)
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In the presence of the gravitational acceleration
g, a vertical hydrostatic gradient develops. Ne-
glecting contributions from the gas,

dPs

dz
= −ρsνg. (18)

Without stress work or convection, the balance of
fluctuation energy for nearly elastic, frictionless
spheres is

0 = −dψ
dz
− γ, (19)

where

ψ = −κdΘ
dz

(20)

is the flux of granular fluctuation energy
across horizontal planes, with conductivity κ =
f2(ν)ρsd

√
Θ. In Eq. (19), γ = f3(ν)(1 −

e2)ρsΘ3/2/d is the volumetric rate of collisional
dissipation. (In this equation, we neglect the
role of the gas in dissipating Θ [19,20]). For
nearly elastic, frictionless spheres, Jenkins and
Richman [21] provided expressions for the func-
tions f2(ν) = (4/

√
π)Mν2g12 with M ≡ 1 +

(9π/32)[1 + 5/(12νg12)]2, f3(ν) = (12/
√
π)ν2g12,

and f4(ν) = ν(1 + 4νg12).
We make the governing equations dimension-

less by defining z′ ≡ z/Z, P ′s ≡ Ps/(ρsgd),
Θ′ ≡ Θ/(gd), and ψ′ ≡ ψ(Z/d)/[ρs(gd)3/2]. We
write the result as a system of four coupled non-
linear ODEs,

dP ′
s

dz′
= −ν Z

d
, (21)

dΘ′

dz′
= − ψ′

f2Θ′1/2
, (22)

dψ′

dz′
= −f3(1− e2)

(Z
d

)2

Θ′3/2, (23)

and

dI

dz′
= ν. (24)

We use the integral I ≡
∫ z′

ι=0
ν(ι)dι, where ι is a

variable of integration representing z′, to enforce
the average solid volume fraction in the box. At

each step of integration, the program determines
ν from P ′s and Θ′ by inverting numerically the
function f4(ν) = P ′s/Θ

′ from Eq. (17) with a fast
interpolation look-up table.

We prescribe boundary conditions at the hori-
zontal vibrated walls, which supply a flux of fluc-
tuation energy to the suspension. Richman [22]
derived a theoretical expression for ψ through a
randomly vibrated bumpy boundary. Because the
geometry and operation of our box are different,
we take a heuristic approach based on a simpler
scaling for ψ that produces reasonable agreement
with numerical simulations. Specifically, we as-
sume that grains acquire a fluctuation velocity
proportional to the product of the normal resti-
tution coefficient ew and the velocity amplitude
of the wall, and write the corresponding flux

ψ ∼ m(2πfa0ew)2Ξ, (25)

where the number of collisions per unit area of
the wall and unit time is [23]

Ξ =
(3
√

2
π3/2

)(Θ1/2

d3

)[ν(1 + 2ν)
(1− ν)2

]
. (26)

Chen derived a more rigorous expression for ψ
involving all wall impact parameters [10]. How-
ever, his more detailed analysis, which produced
different expressions of ψ for the inward and out-
ward strokes of the vibrated wall, only captured
qualitative trends for variations of ψ with ν and
impact parameters.

If grains collide with both top and bottom
walls, we write the corresponding dimensionless
boundary fluxes as

ψ′(z′ = 0, 1) = ±
√

1
2π

(Z
d

)
Υ

[ν(1 + 2ν)
(1− ν)2

]
Θ′1/2,

(27)

where the plus and minus signs correspond to
z′ = 0 and z′ = 1, respectively, and indicate
that both boundaries supply fluctuation energy
to the suspension. In this system, there are four
dimensionless parameters, namely Z/d, ν̄, e and
Υ ≡ (2πfa0ew)2/gd. Υ is related to the rela-
tive vibrational acceleration Γ, which is invoked
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more often in studies of vibrated grains. We in-
tegrate Eqs. (21) to (24) numerically with Mat-
lab’s bvp4c code, subject to the two boundary
conditions (27), and to I = 0 at z′ = 0 and I = 1
at z′ = 1.

If Υ or e are too small, or if Z/d is too large,
as in experiments with 2 mm acrylic or 3.2 mm
aluminum spheres, the suspension may not reach
the top of the box. In such “collapsed” situation,
we no longer prescribe ψ at z′ = 1, but instead
write that the suspension weight is entirely borne
by the bottom wall,

P ′s(z
′ = 0) = ν̄

Z

d
. (28)

For such experiments, the expression of Carnahan
and Starling [5] for the pair distribution function

g12 =
(2− ν)

2(1− ν)3
(29)

is no longer valid if the local ν exceeds the “freez-
ing” value νf ≈ 0.49; in that event, we invoke
Torquato’s extension for ν > νf ,

g12 =
(2− νf )

2(1− νf )3
× (νc − νf )

(νc − ν)
, (30)

where νc ≈ 0.64 is the volume fraction of the
random jammed state [24].

Once profiles ν(z′) and Θ′(z′) are established,
we use Eq. (2) to find vertical variations of

Ks

Kg
=

Λ Θ′1/2

(1 + 2Kn)(9
√
π)g12fM (ν; ks/kg)

, (31)

and we substitute the results in Eqs. (1) and (3)-
(11)to evaluate how Bi, Foc, Kn, kgt, ξst, Kgt, L†

and, ultimately, q/q0 vary along z′. Thus, a new
dimensionless number Λ ≡ ρscsd

√
gd/kg appears

when gravity is present. Because the suspension
behaves as a medium with conductivity varying
in the direction perpendicular to the temperature
gradient, the total flux is obtained by summing
the contributions of elementary slices of dimen-
sionless height dz′,

q̄

q0
=

∫ 1

z′=0

q(z′)
q0

dz′. (32)
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Figure 3. Vertical profiles of solid volume
fraction ν, dimensionless granular temperature
Θ/(2πfa0)2 and flux ratio q/q0 at a vibration am-
plitude a0 = 1.69 mm and frequency f = 50 Hz
(Γ = 17) for acrylic (solid lines, Υ = 8.4) and alu-
minum (dashed lines, Υ = 2.2) spheres of 3.2 mm
diameter (L/d = Z/d = 7.9) at ν̄ = 0.325. Rel-
evant gas and solid properties to calculate q/q0
from Eqs. (1) to (11) are shown in Tables 5 and
6. The arrow points toward the direction of grav-
ity.
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Figure 4. Mean dimensionless granular tem-
perature Θ̄∗ ≡ Θ̄/(2πfa0)2 in the box versus
Υ ≡ (2πfa0ew)2/gd for 2 mm acrylic spheres
(L/d = Z/d = 12.7) at ν̄ = 0.065 (top) and
ν̄ = 0.39 (bottom). Note the different ranges on
the ordinate axis. Lines are predictions of the
model in Eqs. (21) to (24). Crosses and squares
are data from numerical simulations at ν̄ = 0.065
and ν̄ = 0.39, respectively. In the bottom figure,
the model predicts two overlapping solutions.

For consistency with Eq. (15), we evaluate Θ̄ as a
weighted average involving the local solid volume
fraction,

Θ̄ =
∫ Z

0

Θνdz
/ ∫ Z

0

νdz. (33)

Figure 3 contrasts vertical profiles for a situa-
tion in which grains are well agitated through the
height of the box, to another in which the suspen-
sion has begun to collapse to the bottom. In the
first (solid lines), the flux ratio q/q0 is nearly uni-
form. In the second (dashed lines), the collapse
creates a mildly agitated region of high solid vol-
ume fraction near the base, where the sharp rise
in q/q0 is a result of much higher local values of
Kg/kg. In the extreme case when Θ→ 0, the en-

tire granular medium fills the bottom of the box
to a height zc = Zν̄/νc with mixture conductivity
Kg/kg = fM (νc; ξs), and Eq. (32) tends to

q̄

q0
→

(zc

Z

)
fM (νc; ξs) +

(
1− zc

Z

)
. (34)

Because experiments with the collapsed system
are dominated by Kg/kg, they are not as instruc-
tive for studying the thermal behavior of agitated
grains. In that case, Vargas and McCarthy [3], for
example, offer a better account of the relevant
heat transfer, which crucially depends on static
stresses applied to the granular assembly that are
not considered here.

As Tables 7 to 10 indicate, although the nu-
merical simulations have more realistic geometry
and impact parameters than the model, the mean
granular temperatures measured in simulations
using Eq. (15) agree well with model predictions
of Eq. (33), except in certain collapsed situations.
The model is particularly useful at relatively
small values of Z/d, for which vertical profiles
are pronounced. In that case, Fig. 4 compares
model and simulations for Θ̄∗ ≡ Θ̄/(2πfa0)2 ver-
sus Υ for 2 mm acrylic spheres at two values of ν̄.
At ν̄ = 0.065, the suspension is agitated through
the range of z/Z. At ν̄ = 0.39, it collapses par-
tially and achieves a much lower Θ̄∗. Curiously,
for ν̄ = 0.39, the model predicts two overlapping
solutions in the range 7 . Υ . 10. However, sim-
ulations suggests that the more energetic state is
not stable.

A simpler calculation allows us to predict the
level of granular temperature achieved in nearly
homogeneous suspensions, without invoking the
numerical model. Assuming that Θ ' Θ̄ and ν '
ν̄ are uniform in the box, a balance of fluctuation
energy supplied through the two boundaries of
area (X L) and consumed in the volume (X L Z)
yields 2ψ ∼ γZ, or

Θ̄∗ ' 1
3
√

2
e2w

(1− e2)
(1 + 2ν̄)(1− ν̄)

(2− ν̄)ν̄
1

(Z/d)
(35)

For experiments with 3.2 and 4 mm acrylic
spheres, for which the model predicts nearly uni-
form ν and Θ, Eq. (35) agrees with simulations
to better than 28%. Ideally, experiments should



Heat transfer experiments with agitated solids 11

be carried out in this nearly homogeneous regime.
The best way to do so is to conduct them in mi-
crogravity, so issues arising from suspension col-
lapse are avoided.

2.3. Heating strategy
The guard heater described in section 2.1 mini-

mizes conduction losses in the depth x of the cell,
thus making heat transfer nearly two-dimensional
in the plane (y, z). However, this technique does
not eliminate heat conduction through the walls.
Because the porous ceramic box material has a
conductivity just above that of air, it transfers
heat at a rate comparable to the suspension’s.
Managing wall conduction is the principal chal-
lenge of heat transfer measurements with gas-
solid mixtures. Our strategy is to keep such
conduction as constant as possible by fixing the
heater temperature T+, and to infer the sus-
pension conductivity from tests at four different
cooler temperatures T−.

Another challenge is that the fluctuation en-
ergy dissipated in grain collisions can produce sig-
nificant heat. To account for this, we add the
volumetric rate of collisional dissipation to the
thermal balance of the particle phase,

0 = − d

dy

(
−Ks

dTs

dy

)
−H + γ, (36)

which we solve simultaneously with its counter-
part for the gas phase

0 = − d

dy

(
−Kg

dTg

dy

)
+H, (37)

subject to the boundary conditions Tg = T± and
dTs/dy = 0 at y = ±L/2. In these equations,
Tg and Ts are the thermal temperature of the
gas and solids, respectively, and H is the average
volumetric rate of thermal energy that particles
supply to the gas. If γ 6= 0, a one-dimensional
balance of thermal energy reveals that the heat
flux q− < 0 crossing the cold plate differs from
its counterpart q+ < 0 through the hot wall ac-
cording to

q+ − q− = γL. (38)

Because Eqs. (36) and (37) are linear in γ, Tg and
Ts, and because q+ = q− = q when γ = 0, one

can show that (q++q−)/2 = q, where q < 0 is the
heat flux crossing both thermal walls at vanishing
γ. Combining this relation with Eq. (38), we find

q+ = q + γ
L

2
. (39)

The objective of our experiments is to measure
the apparent conductivity of the suspension

keff ≡ −qL/(T+ − T−). (40)

As Fig. 1 illustrates, our strategy identifies three
principal paths for the rate Q̇ of electrical heat
supplied to the central heater of exposed area Ah,

Q̇ = −Ahq
+ +

(T+ − T−)
Rb

+ (41)

hbSb

(T+ + T−

2
− T∞

)
.

In this equation, the first term is the rate of
heat transferred to the suspension through the
hot plate (path labeled 1 in Fig. 1). The second
term represents heat conduction through the ce-
ramic walls of overall thermal resistance Rb (path
labeled 2). The third term approximates convec-
tive losses from the box as a rate driven by the
difference between the intermediate wall temper-
ature (T+ +T−)/2 and the ambient T∞, through
a constant exchange area Sb at a convection coef-
ficient hb (path labeled 3). We rearrange Eq. (41)
to isolate the dependence of Q̇ on T−,

Q̇ = −(hbSbT∞ + γ
AhL

2
) + (42)

T+
( 1
Rb

+
hbSb

2
+ keff

Ah

L

)
− ΩT− ,

where Ω ≡ keffAh/L−hbSb/2 + 1/Rb is the slope
of the linear relation between Q̇ and T−, which
we record once a steady-state is achieved. Cru-
cially, this slope is independent of γ and T∞.
Then, by adopting the same protocol for cool-
ing the box in all experiments, we ensure that
(hbSb/2 − 1/Rb) is a constant. To determine its
magnitude, we first run baseline tests with he-
lium. To prevent the latter from escaping the
box or from penetrating its air-filled ceramic wall,
we coat the inside surface of the cavity with a
thin plastic sealant. We then record the slope
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107

(a) 293K-333K (b) 303K-333K

(c) 313K-333K (d) 323K-333K

Figure 3.12: Isotherms in the cell interior and the cell wall with different cooler

temperature and heater temperature settings. We set heater temperature at a

fixed value and vary the cooler temperature. In the above captions, the left value

is the cooler temperature and the right one is the heater temperature. ANSYS

numerical simulation parameters are: the geometry of the cell is shown in table 3.1;

thermal conductivity of the ceramic board kc = 0.06842 W
m·K ; Natural convection

heat transfer rate h = 4.0 W
m2·K on the surfaces other than cooler side; On the cooler

side, due to the presence of forced convection, the heat transfer coefficient takes

the value of 8 W
m2·K . h = 20 W

m2·K at the heat sink.

Figure 5. A typical two-dimensional finite-
element ANSYS numerical simulation of heat flow
through the box. The square internal cavity has a
uniform kg = 0.13 W/m◦K. The outside is air at
300◦K. We estimate free convection coefficients
he = 4 W/m2K from available correlations [25]
for all external surfaces but the cooler’s shown on
the left. For the latter, we assume instead that
forced convection extracts heat at a coefficient
hc1 = 20 W/m2K from cooling fins represented as
an isothermal rectangle behind the TEM cooler.
On the ceramic (left) surface above and below the
fins, we assume an intermediate hc2 = 8 W/m2K.

ΩHe of Q̇ versus T−. Because these baseline tests
have a low Rayleigh number Ra = 2gL3ρ2

gcg(T
+−

T−)/(T+ + T−)kgµ < 800, they are not affected
by free convection [25], and their effective con-
ductivity is that of helium, kHe = 0.159 W/m◦K.
Then, for granular suspensions in air, we extract
the flux ratio using

q̄

q0
=
kHe

kair
+ (Ω− ΩHe)

( L

kairAh

)
, (43)

where kair = 0.0277 W/m◦K is the conductivity
of air evaluated at a typical temperature of our
experiments.

The lumped-parameter data reduction strategy
of Eq. (42) assumes that the heat flow is mainly
directed along y. We test this assumption with
two-dimensional finite element ANSYS numerical

0.6

0.8

1

Q (W)

290 310 330

T - (°K)

helium

.

Figure 6. Power consumption of the central
heater versus cooler temperature to determine the
helium baseline slope ΩHe. The three runs with
different symbols indicate different ambient con-
ditions. Lines are least-squares fits to experimen-
tal data.

simulations sketched in Fig. 5. In these, ceramic
walls and cavity have known conductivities; the
heater is a thin rectangle at constant tempera-
ture; the cooler and its fins are represented by a
thick isothermal rectangle; and convective heat
exchanges occur between the external surfaces
and the ambient with heat transfer coefficients
appropriate to the kind of convection they expe-
rience. We run the simulations with values of T+

and T− similar to those in experiments and verify
that, despite external losses, the electrical energy
supplied to the central heater plots as a straight
line versus T−, even in the worst case when the
cavity is filled with stagnant air, which has the
lowest conductivity we can expect to test, and
would thus induce the strongest departure from
one-dimensional heat flow from heater to cooler.

Figure 6 shows experimental data for evaluat-
ing the helium baseline slope. Although the in-
tercept of Q̇ versus T− can vary with changes
in ambient conditions, ΩHe is remarkably insensi-
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tive to those changes. From this graph, we adopt
ΩHe = 6.6 10−3 W/◦K. Figure 7 is typical raw
data for 4 mm acrylic spheres vibrated in air.

Although the Rayleigh number of the helium-
filled cavity was too small to portend any free
convection in baseline tests, we suspected that
experiments with air alone (Ra ∼ 48, 000) could
be tainted by such effects. Using Eq. (43) to re-
duce data similar to Fig. 6, we calculated an ap-
parent conductivity for clean air as much as 21%
above kair without vibration, and as high as 70%
with vibration. Although this increase is smaller
than what is expected of free convection in a cav-
ity of this size and value of Ra [25], confinement
by the side walls of normal x likely frustrated
the development of free convection of air in the
box, and further reassured us that free convection
should not affect helium baseline tests. Similarly,
the presence of rapidly moving grains should also
make free convection irrelevant to agitated sus-
pensions.

3. Results

Tables 7 to 10 lists all data and model predic-
tions for the flux ratio q̄/q0 versus dimensionless
acceleration Γ for acrylic and aluminum spheres.
They also include simulation measurements and
model predictions of mean dimensionless temper-
ature Θ̄∗, and the corresponding values of Ks/Kg

from Eqs. (2) and (5). In these tables, values of
q̄/q0 in boldface represent conditions for which
the heat generated by particle collisions is at least
10% of the nominal heat transferred through the
hot plate i.e., γL/2 > 0.1|q|. Such conditions are
typically observed with relatively dense suspen-
sions of large spheres at high agitation.

As Figs. 8 and 9 illustrate, our thermal theory
captures variations of q̄/q0 with Ks/Kg, ν̄ and
L/d in the exchange limit. These figures also in-
dicate that vertical variations of ν and Θ can af-
fect q̄/q0 substantially at low agitation. Figure 10
highlights the role of ξs = ks/kg and, to a lesser
extent, of the Biot number, by comparing q̄/q0 for
aluminum and acrylic spheres of the same diam-
eter. Unfortunately, because aluminum spheres
dissipate agitation at a greater rate, their suspen-
sions are all partially collapsed near the bottom

0.5

0.7

0.9

Q (W)

290 310 330

T - (°K)

.

Figure 7. Power consumption of the cen-
tral heater versus cooler temperature for acrylic
spheres of 4 mm vibrated in air at, from bot-
tom to top, a0 = 0.72, 1.27, 1.69, and 1.96 mm
with f = 50 Hz and ν̄ = 0.065. From the least-
square fits and Eq. (43), we calculate, respec-
tively, q̄/q0 = 4.3, 4.2, 5.6, and 6.0 from the slopes
of these lines. We do not exploit their intercepts,
which, according to Eq. (42), depend upon γ and
T∞ as well as keff.
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Figure 8. Variations of q̄/q0 with Ks/Kg and
ν̄ for acrylic spheres with L/d = Z/d = 12.7.
Ks/Kg is calculated from Eqs. (2) and (5) us-
ing ν̄ and Θ̄∗

ns in Tables 7-10. From bottom
to top, squares, diamonds, circles, upward trian-
gles, downward triangles and crosses are data at
ν̄ = 0.065, 0.13, 0.195, 0.26, 0.325, and 0.39, re-
spectively. Dashed lines are the corresponding
predictions of the thermal theory in Eq. (1), as-
suming uniform ν and Θ in the box. Solid lines
are predictions of Eq. (32) combining the ther-
mal theory of Eq. (1) with vertical profiles of ν
and Θ from the vibration model of section 2.2.
Small kinks in the solid lines near Ks/Kg = 380,
240 and 145 for ν̄ = 0.26, 0.325 and 0.39, respec-
tively, are due to jumps from collapsed to agitated
solutions of the vibration model.
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Figure 9. Variations of q̄/q0 with Ks/Kg for
acrylic spheres at ν̄ = 0.195 (left) and ν̄ = 0.065
(right). From bottom to top, squares, triangles
and circles are L/d = Z/d = 6.4, 7.9, and 12.7,
respectively. Lines, see Fig. 8.
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Figure 10. Variations of q̄/q0 with Ks/Kg for
acrylic (triangles) and aluminum spheres (circles)
for L/d = Z/d = 7.9 at ν̄ = 0.195 (filled symbols)
and ν̄ = 0.065 (open symbols). Lines represent
theoretical predictions of Eq. (32) for aluminum
(solid lines) and acrylic spheres (dashed lines).

(see for example Fig. 3, dashed lines), and pre-
dictions are more difficult. Curiously, the model
suggests that, for aluminum, q̄/q0 can increase as
the suspension tends to small Ks/Kg. This is
because the collapsed region experiences greater
volume fractions, which raise Kg/kg consider-
ably due to aluminum’s greater values of ξs (see
Eq. 34). A complicating issue is that aluminum
spheres showed signs of contamination from cop-
per oxide acquired through multiple impacts with
thermal walls, thus changing their surface prop-
erties in unpredictable ways. Overall, we do not
trust our data for aluminum spheres as much as
those for acrylic. Nonetheless, the aluminum data
marks a transition from the agitated regime of
interest to the pure conduction through a static
bed of grains, which Vargas and McCarthy ex-
plored [3]. In their experiments, because the area
of contact between spheres dominates the effec-
tive conductivity of the packing, it was crucial to
control the applied stresses carefully, a precaution
which we could not reliably achieve in our setup.

4. Conclusions

In Part II, we described experiments testing
our theoretical predictions for the enhancement of
heat flux through thermal walls of vessels contain-
ing a gas and agitated spheres in the “exchange
limit.” Agitation was conferred on the particles
in a rectangular box vibrated in the vertical di-
rection. A two-dimensional temperature field was
established by surrounding the central measure-
ment heater with a thermal guard, by cooling the
opposite wall with thermoelectric modules, and
by maintaining both hot and cold thermal walls
at distinct steady temperatures. We developed
a protocol to infer heat flux from the slope of
a graph plotting power supplied to the central
heater versus temperature of the cold wall. The
protocol kept our results independent of conduc-
tion through the ceramic walls of the box, of con-
vection losses from the box, and of heat generated
by inelastic granular collisions. However, grav-
ity compelled us to calculate vertical profiles of
granular temperature and volume fraction before
interpreting the data.

We carried out tests with acrylic and aluminum
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spheres. Because acrylic spheres had nearly elas-
tic collisions, they yielded more reliable data, and
confirmed predictions of the thermal model for
variations of heat flux with agitation, solid vol-
ume fraction and particle size. On the other
hand, because suspensions of relatively inelastic
aluminum spheres were more likely to collapse
and to develop collision-induced surface contam-
ination, their data were less reliable. Overall,
our experiments showed the merits of the thermal
model described in Part I, but left open to further
research experimental comparisons in the “diffu-
sion limit.” To access the latter with macroscopic
grains, it is necessary to operate in long-term mi-
crogravity, so that a thermal steady-state may be
established without collapsing the gas-solid sus-
pension. Colloidal suspensions also reside in the
diffusion limit. We will discuss them in Part III.
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Table 7
Experimental data for 4 mm acrylic spheres. The subscripts “th”, “ns”, and “ex” refer to theory, numeri-
cal simulations and experimental data, respectively. Values of (q/q0)ex in boldface represent conditions for
which γL/2 > 0.1|q|. Θ̄∗

th and Θ̄∗
ns are average granular temperatures made dimensionless with (2πfa0)2

and calculated, respectively, from the model using Eq. (33), and from simulations using Eq. (15). Ks/Kg

is calculated from Eqs. (2) and (5) using ν̄ and Θ̄∗
ns from numerical simulations. (q̄/q0)th is the average

flux ratio calculated with the theory of Eq. (1) and averaged in the vertical direction with Eq. (32);
(q̄/q0)ex is experimental data calculated with Eq. (43).
L/d ν̄ Γ Θ̄∗

th Θ̄∗
ns Ks/Kg (q̄/q0)th (q̄/q0)ex

6.4 0.065 7.2 2.1 2.9 2900 3.3 4.3
9.7 2.1 1.9 3200 3.6 4
13 2.1 1.7 4000 4 4.2
17 2.1 2.4 6300 4.6 5.6
20 2.1 3.8 9100 4.9 6

6.4 0.13 7.2 1.1 1.3 1800 4.9 4
9.7 1.1 1.5 2600 5.4 3.5
13 1.1 1.3 3100 6.2 3.9
17 1.1 1.1 3900 7.2 4.5
20 1.1 1.3 4800 7.8 5.6

6.4 0.195 7.2 0.68 0.91 1200 6.3 5.7
9.7 0.71 0.83 1500 7.1 5.8
13 0.73 0.84 2100 8.2 5.6
17 0.74 0.88 2800 9.5 6.3
20 0.74 0.79 3100 10 8

6.4 0.26 7.2 0.49 0.67 790 7.6 8
9.7 0.53 0.53 930 8.7 6.9
13 0.55 0.65 1400 10 7.7
17 0.56 0.63 1800 12 8.6
20 0.56 0.71 2200 13 10.2

6.4 0.325 7.2 0.39 0.5 500 8.9 5.5
9.7 0.43 0.48 650 10 7.3
13 0.45 0.47 840 12 10.2
17 0.45 0.58 1300 14 11.3
20 0.45 0.68 1600 15 12.2

6.4 0.39 7.2 0.33 0.46 330 10 5.9
9.7 0.37 0.4 410 12 8.1
13 0.38 0.41 550 14 9.3
17 0.38 0.54 850 16 13.1
20 0.38 0.56 1000 17 13.1
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Table 8
Experimental data for 3.2 mm acrylic spheres. Symbols, see Table 7.
L/d ν̄ Γ Θ̄∗

th Θ̄∗
ns Ks/Kg (q̄/q0)th (q̄/q0)ex

7.9 0.065 7.2 1.7 1.8 2000 3.6 3.5
9.7 1.7 2.1 2800 3.9 4
13 1.7 1.7 3300 4.3 3.5
17 1.7 1.7 4500 4.7 4.6
20 1.7 1.6 5010 5.1 4.9

7.9 0.13 7.2 0.8 0.83 1200 5.3 5.3
9.7 0.82 0.92 1700 5.8 5.2
13 0.84 0.91 2200 6.5 5.3
17 0.84 0.8 2800 7.4 5.9
20 0.85 0.81 3200 7.9 7

7.9 0.195 7.2 0.5 0.64 830 6.8 7.3
9.7 0.52 0.69 1200 7.6 7.2
13 0.55 0.48 1300 8.5 6.5
17 0.56 0.55 1800 9.8 8.1
20 0.56 0.54 2100 11 9.2

7.9 0.26 7.2 0.35 0.49 550 8.2 7.3
9.7 0.38 0.44 690 9.2 7.8
13 0.41 0.41 890 10 8.7
17 0.42 0.42 1200 12 11.7
20 0.42 0.36 1300 13 13.3

7.9 0.325 7.2 0.27 0.32 320 9.5 6.7
9.7 0.3 0.33 430 11 7.3
13 0.33 0.33 570 12 7.6
17 0.34 0.34 770 14 11.5
20 0.34 0.33 880 15 15.5

7.9 0.39 7.2 0.21 0.26 200 11 6.3
9.7 0.26 0.26 270 12 7.6
13 0.28 0.28 370 14 8.3
17 0.28 0.29 500 16 11.7
20 0.28 0.3 580 17 18
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Table 9
Experimental data for 2 mm acrylic spheres. Symbols, see Table 7.
L/d ν̄ Γ Θ̄∗

th Θ̄∗
ns Ks/Kg (q̄/q0)th (q̄/q0)ex

12.7 0.065 7.2 1 1.1 1100 4.7 5
9.7 1 1 1400 5.1 5
13 1 1.1 1900 5.4 4.9
17 1 1 2500 5.8 5.4
20 1 1 2800 6.1 6.7

12.7 0.13 7.2 0.43 0.4 550 6.6 6
9.7 0.41 0.47 790 7.2 7.5
13 0.44 0.45 1000 7.9 7.5
17 0.46 0.44 1300 8.7 8.2
20 0.47 0.41 1500 9.1 9.4

12.7 0.195 7.2 0.27 0.19 290 8.3 4.7
9.7 0.24 0.19 390 9 8.1
13 0.24 0.19 520 9.9 10.4
17 0.29 0.2 700 11 11.7
20 0.29 0.23 870 12 13.9

12.7 0.26 7.2 0.18 0.14 180 9.7 6.3
9.7 0.17 0.13 240 11 11.7
13 0.16 0.13 310 11 13.2
17 0.21 0.13 420 13 15.1
20 0.22 0.13 490 14 16.8

12.7 0.325 7.2 0.135 0.092 110 11 5.6
9.7 0.13 0.1 150 12 11.2
13 0.119 0.091 190 13 15.4
17 0.17 0.1 270 15 17.9
20 0.17 0.1 300 16 19.3

12.7 0.39 7.2 0.104 0.081 70 11 5.6
9.7 0.1 0.075 91 13 12.1
13 0.095 0.07 120 15 17.3
17 0.143 0.069 150 17 19.2
20 0.145 0.064 170 18 22.9
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Table 10
Experimental data for 3.2 mm aluminum. Symbols, see Table 7. Values of (q̄/q0)th in italics denote a
suspension predicted to be near complete collapse, and for which (q̄/q0)th tends to the value in Eq. (34).
L/d ν̄ Γ Θ̄∗

th Θ̄∗
ns Ks/Kg (q̄/q0)th (q̄/q0)ex

7.9 0.065 7.2 0.1 0.4 1300 3 3.4
9.7 0.08 0.25 1300 3.1 4.1
13 0.07 0.24 1700 3.2 5.5
17 0.07 0.29 2500 3.3 5.1
20 0.06 0.37 3300 3.4 7.3

7.9 0.13 7.2 0.035 0.064 420 5.6 8.6
9.7 0.037 0.05 500 5.5 9.1
13 0.033 0.051 660 5.4 9
17 0.03 0.078 1100 5.5 9.5
20 0.029 0.075 1200 5.5 9.7

7.9 0.195 7.2 0.006 0.026 200 14 10.3
9.7 0.016 0.024 250 8.8 12
13 0.019 0.018 290 8.3 8.2
17 0.018 0.012 310 8.2 9.5
20 0.017 0.017 440 8.1 11.5

7.9 0.26 7.2 0.001 0.013 100 49 7.7
9.7 0.005 0.01 110 18 9.9
13 0.01 0.022 220 12 14.1
17 0.012 0.011 210 12 14.3
20 0.0115 0.0082 210 11 15.6

7.9 0.325 7.2 0.0004 0.008 50 65 7.5
9.7 0.0003 0.0079 67 64 8
13 0.02 0.0099 100 22 14.5
17 0.0292 0.0079 120 17 16.2
20 0.0302 0.0078 130 16 16.9

7.9 0.39 7.2 0.0003 0.0076 31 80 7.7
9.7 0.0001 0.0063 37 80 9.7
13 0.0024 0.0058 47 44 17.9
17 0.0054 0.0046 56 27 18.5
20 0.006 0.0092 92 24 21
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