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We predict heat transfer enhancement through dense homogeneous suspensions of agitated solids in conductive
fluids by coupling the fluid and solid phases through a volumetric source term. The enhancement is governed
by a Damköhler number demarcating an “exchange limit” where the source term dominates, and a “diffusion
limit” set by the ability of agitated particles to self-diffuse. We point out effects of particle ordering on mixture
conductivity and volumetric heat exchange rate, carry out thermal simulations to justify the form of these terms,
and model further enhancements from gas velocity fluctuations induced by solids of high agitation.
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1. Introduction

Heat transfer in fluid flows heavily laden with
solid particles is crucial to processes in the chem-
ical, mining, power, pharmaceutical, food and
oil industries, as well as in the combustion of
solid fuels. Accordingly, heat transfer in gas-solid
mixtures has been the object of several experi-
ments, see for example Glicksman [1] and Molerus
and Wirth in fluidized beds [2], Jepson, Poll and
Smith [3] in pneumatic transport, and Patton,
Sabersky and Brennen [4] and Natarajan and
Hunt [5] in granular flows. Numerical simula-
tions also began to address how idealized particles
exchange heat with a wall and the surrounding
fluid [6].

In Part I of this paper, we consider homo-
geneous dense suspensions of agitated particles
in a gas. For simplicity, we restrict attention
to systems in which there is no difference be-
tween the average velocity of the solids and gas.
By agitation we mean that particles have sig-
nificant fluctuation velocities about the average.
For nearly spherical particles with relatively large
Stokes number [7–9], these fluctuations arise from
inter-particle collisions. This has led to theories
in which the particle phase is modeled with ele-

∗Corresponding author. Voice (607) 255 4193; fax (607)
255 1222; electronic mail: Michel.Louge@cornell.edu.

ments of the kinetic theory, while the flow is as-
sumed to be laminar [10] or turbulent [11–15].
In such flows, particle agitation is measured with
the “granular temperature” Θ ≡ (1/3)v′iv

′
i, where

v′i is the particle fluctuation velocity in the carte-
sian direction i. It is with this parameter that
the solid phase can transmit momentum through
an effective viscosity. The granular temperature
owes its name to an analogy with the transla-
tional temperature that is defined in the kinetic
theory for a gas of hard spheres. Thus, Θ bears
no relation to the usual thermal temperature of
the solids, which we will later denote with the
distinct symbol Ts.

Collisions also give rise to an effective conduc-
tivity of the solid phase that enhances the net
transfer of thermal energy [16]. However, as Sun
and Chen showed [17], individual impacts are too
short in most cases to permit the conduction of
any significant heat between particles during their
ephemeral contact. Instead, the collisional en-
hancement of the thermal heat flux first involves
an exchange of heat with the gas, and then the
gas transfers its energy to the wall. Accordingly,
Louge, Mohd. Yusof and Jenkins developed a the-
ory that identifies distinct thermal temperatures
for the gas and solids phases [18]. Its mechanism
is twofold.

First, the granular agitation induces the self-
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Table 1
Nomenclature
a0 vibration amplitude
aν , bν , cν , dν constants in Eq. (48)
A, As grain surface areas
A1, A2, A3 functions in Eq. (4)
cg, cs fluid, solid specific heats per mass
d grain diameter
Ds granular self-diffusivity
e normal restitution coefficient
E1, E2, E∗ stiffnesses
f , fc vibration, impact frequencies
g0, g12 wall, binary pair distributions
h heat transfer coefficient
h11, g11 functions in Eq. (27)
H volumetric rate of heat exchange
i, j, k indices
Ia, Iν integrals in Eqs. (29), (31)
kg, ks gas, solid thermal conductivities
keff effective thermal conductivity
kt, kgt turbulent, total fluid conductivities
Kg, Ks mixture, solid-phase conductivities
Kgt augmented mixture conductivity
`∗ dimensionless decay length of Θ
L channel width
L† dimensionless length scale in Eq. (16)
L0 reference width in Eq. (48)
M constant in κ from Eq. (58)
n particle number density
N number of spheres
q0, q clear gas, suspension wall heat fluxes
qD, qE wall flux in diffusion, exchange limits
q̇s heat rate
Q0, Q cumulative heat exchanged
r radial coordinate
Rdiss dissipation function [7,8]
S wall, strip areas
t time
Tg, Ts gas, solid thermal temperatures
T+, T− temperatures at y = ±L/2
v′i, u′i particle, fluid fluctuation velocities
Vs sphere volume within a strip
w∗

√
Θ/Θ0

xi i-coordinate
x, y, z cartesian coordinates
yc sphere center coordinate

Table 2
Greek
αs granular thermal diffusivity
α1 function in Eq. (27)
γvis, γ granular energy viscous, collisional dissipation rates
Γu strain rate
εm non-continuum lubrication parameter
ζ relative distance to first center (Eq. 25)
θ1, θ2 functions in Eq. (27)
Θ, Θ0 granular temperatures
κ conductivity of granular fluctuation energy
λs, λg grain, gas mean free paths
µ fluid viscosity
µt eddy viscosity
ν solid volume fraction
ξs ks/kg

ξst ks/kgt

ξi roots of ξ/ tan ξ = 1−Bi
ρg, ρs fluid, solid material densities
σ1, σ2 Poisson’s ratios
τ flow characteristic time
τc, τe collision, contact conduction times
ω constant in Eq. (55)

Table 3
Dimensionless groups
Bi Biot number
Da Damköhler second ratio
Fo, Foc Fourier numbers
Kn Knudsen number
Les granular Lewis number
Nu, NuL particle, channel Nusselt numbers
Nueff effective particle Nusselt number
Pr Prandtl number
Prt turbulent Prandtl number
Re particle Reynolds number
St, Stγ Stokes numbers

Table 4
Scripts
†, ∗ dimensionless
˜ oscillating quantity
g, s gas, solid
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diffusion of solid particles [19] across regions with
different thermal temperatures. This transport is
not driven by a gradient of particle concentration,
but it is responsible for the effective conductiv-
ity of the agitated solid phase. If the latter pos-
sesses a gradient of thermal energy, particle self-
diffusion can drive a heat flux through it, even if
the solid concentration is uniform. Second, be-
cause particles have a finite thermal inertia, they
do not adopt instantly the temperature of the sur-
rounding gas. The resulting temperature differ-
ence then drives a thermal exchange between gas
and solids.

Near the wall, this exchange amplifies the gas
temperature gradient, as particles from warmer
regions, for example, bring energy closer to a cold
wall than what the conductivity of the gas would
alone accomplish. Thus, although agitated solids
do not themselves exchange any heat with the
wall during their direct, ephemeral contact with
it, their self-diffusion from other regions can raise
the heat transfer through the gas.

Therefore, in this view, the overall heat trans-
fer at the wall depends on the energy exchanged
between gas and solids with distinct thermal tem-
peratures, as well as on the magnitude of the self-
diffusion of the agitated grains. It is the compe-
tition between these two rate-limiting processes
near the wall that determines the regime of heat
transfer enhancement that is observed there.

Another approach is to regard the suspension
as a medium endowed with a single thermal tem-
perature and an enhanced mixture thermal con-
ductivity [20]. While useful in the bulk, that ap-
proach requires a regularization of the thermal
boundary condition at a wall to account for the
role of particle agitation [21]. As we will show,
it is only appropriate in the limit where diffusion
dominates.

In Part I of this paper, we first examine the
competition between thermal exchange and par-
ticle self-diffusion with a generic analysis of ag-
itated spherical grains suspended in a fluid. By
analogy with the second Damköhler ratio, we de-
rive a number gauging the relative importance of
the two mechanisms.

Using relatively crude numerical simulations,
we then test the origin of the thermal exchange

rate and the role of the Biot and Fourier numbers
for individual grains. Near the flat wall, we show
that the exchange is affected by the pair distri-
bution at contact, which induces spatial fluctu-
ations of available surface area and volume. We
model the role of the conductive grains in enhanc-
ing the static mixture conductivity in the contin-
uous phase. Finally, we identify phenomena that
complicate our generic analysis at high solids agi-
tation by augmenting the effective gas conductiv-
ity in the wake of moving grains.

In Part II, we will describe an experiment
designed to test the theory with a vibrated
box heavily laden with macroscopic spherical
grains. Because energetic vibrations are required
to maintain the grains agitated in the presence
of gravity, particle self-diffusion is so intense that
the experiment resides in the “exchange limit”,
where heat transfer enhancement is set by the
volumetric rate of energy exchanged between gas
and solids. The high granular agitation also aug-
ments the mixture conductivity and the rate of
heat transfer between individual grains and the
gas by raising particle-induced gas velocity fluc-
tuations.

We will focus on the “diffusion limit” in Part
III. There are roughly two ways to reach this
limit. The first, which employs macroscopic
grains, would be to carry out experiments in mi-
crogravity, so that agitation could be reduced
without collapsing the suspension. The second
is to shrink the system size. In Part III, we will
illustrate the latter by considering colloidal sus-
pensions of nanoparticles.

We begin Part I by illustrating the exchange
and diffusion limits with a simple analysis of the
heat transfer enhancement at a wall confining a
fluid laden with agitated particles.

2. Generic model of thermal enhancement

Consider a uniform suspension of grains of di-
ameter d, material density ρs, material conduc-
tivity ks and material specific heat cs agitated at
a constant “granular temperature” Θ in a fluid
of thermal conductivity kg between two infinite
parallel flat walls separated by a distance L. We
set the origin midway between the walls located
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at y = ±L/2. Variables are only function of the
thermal gradient direction y, the phenomenon is
steady on time scales � d/

√
Θ, and there is no

mean relative velocity between grains and fluid.
On planes of constant y, the average thermal tem-
perature of the fluid is Tg and that of the grains
is Ts. The uniform solid volume fraction is ν and
the number density of grains is n = 6ν/πd3.

In this simple picture, the thermal energy
ODEs for the fluid and granular phases are, re-
spectively,

0 = − d

dy

(
−Kg

dTg

dy

)
+ H, (1)

and

0 = − d

dy

(
−Ks

dTs

dy

)
−H, (2)

where H is the average volumetric rate of ther-
mal energy given by the grains to the fluid, Kg

is the conductivity of the gas-solid mixture, and
Ks is the effective conductivity of the granular
phase. We will revisit these thermal governing
equations in Part III, for cases in which ν is no
longer uniform.

Grains of Biot number Bi ≡ h(d/2)/ks � 1
have nearly uniform internal temperature Ts. By
exchanging heat with their surroundings through
the surface of area A = πd2 at a convection coef-
ficient h, they contribute, on average, to a volu-
metric rate [5,18,20,21]

H = nAh(Ts−Tg) = 12ν
kg

d2
Nu(Ts−Tg), (3)

where, for now, we take the grain surface area nA
available for heat exchange with the fluid in a unit
volume to be invariant, and the Nusselt number
Nu ≡ h(d/2)/kg to be unity and to be based on
the molecular conductivity kg of the gas. We will
re-examine these assumptions later.

We distinguish the mixture conductivity Kg of
the fluid phase from the material conductivity kg

of the pure fluid. While kg is invariant, Kg is
affected by the presence of particles. At negligi-
ble agitation, it is well approximated by homoge-
nization models inspired by that of Maxwell [22].
For spherical grains, we adopt the semi-empirical

expression of Meredith and Tobias [23] for Kg,
which is equivalent to Maxwell’s original model
at low ν and ξs ≡ ks/kg, but performs better at
ν > 0.1 and ξs > 10 [24],

Kg

kg
=

A1 − 2ν + A2 − 2.133A3

A1 + ν + A2 − 0.906A3
≡ fM (ν; ξs), (4)

where A1 = (2+ ξs)/(1− ξs), A2 = 0.409ν7/3(6+
3ξs)/(4+3ξs), and A3 = 3ν10/3(1− ξs)/(4+3ξs).
At high agitation, Kg is also influenced by gas ve-
locity fluctuations induced by the moving grains.

Granular agitation gives rise to self-diffusion of
the grains with coefficient [18,19]

Ds =
d
√

Θ
(9
√

π)νg12

( 1
1 + 2Kn

)
, (5)

where g12(ν) is the pair distribution of colliding
spheres “1” and “2” at contact, which, for two
identical spheres, is well represented by the Car-
nahan and Starling expression [25]

g12 =
2− ν

2(1− ν)3
, (6)

as long as ν stays below the “freezing” value ≈
49% [26]. In Eq. (5), the term in parentheses
is a correction for high Knudsen number Kn =
λs/L that is significant when the granular mean
free path λs = d/[6

√
2νg12] between consecutive

impacts is on the order of the vessel size L [18,27].
The self-diffusion leads to a thermal diffusivity of
the dispersed solid phase [18],

αs ≡
Ks

ρsνcs
= Ds/Les, (7)

where Les ≡ Dsρsνcs/Ks is a granular Lewis
number that we take equal to one.

The crucial assumption is that grains collide
too quickly to exchange any significant thermal
energy with each other or with the wall [17,18].
As these references indicate, it is valid as long as
the time of particle contact in an impact

τc ∼
ρ
2/5
s d

Θ1/10E∗2/5
(8)

is much smaller than the time to equilibrate the
particle temperature by conduction through the
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area of contact

τe ∼
ρ
3/5
s E∗2/5d2cs

Θ2/5ks
, (9)

where E∗−1 ≡ [(1−σ2
1)/E1 +(1−σ2

2)/E2] is a re-
duced inverse stiffness that combines the Young’s
moduli Ei and Poisson’s ratios σi for the two im-
pact protagonists of indices 1 and 2. Thus, our
assumption is valid as long as τc � τe or, equiv-
alently, when

ρ
1/5
s E∗4/5d cs

Θ3/10ks
� 1. (10)

For spheres engaged in violent, non-Hertzian im-
pacts, the experiments of Ben-Ammar, et al [28]
indicate how plastic yield can decrease τe, thus
making it more difficult to uphold condition (10).

We solve Eqs. (1)-(3) subject to the following
boundary conditions at the two confining walls:
prescribed fluid temperatures,

Tg(y = ±L/2) = T±, (11)

and vanishing fluxes of thermal energy through
the solid phase or, with Ks 6= 0,

dTs

dy
(y = ±L/2) = 0, (12)

which reflect the lack of direct thermal en-
ergy transfer in ephemeral collisions between the
grains and the wall. Defining the dimensionless
thermal temperatures of the fluid and solid phases

T †g,s ≡
Tg,s − (T+ + T−)/2

(T+ − T−)
, (13)

and the dimensionless distance y† ≡ y/L, we
write the solution as

T †s =
y†L† cosh(L†/2)− sinh(y†L†)

L† cosh(L†/2) + 2(Ks/Kg) sinh(L†/2)
,

(14)

and

T †g =
y†L† cosh(L†/2) + (Ks/Kg) sinh(y†L†)
L† cosh(L†/2) + 2(Ks/Kg) sinh(L†/2)

,

(15)

where the dimensionless scale of the system is

L† ≡ L

d

√
12νNu

( kg

Kg
+

kg

Ks

)
. (16)

In the absence of particles, the temperature
would vary linearly between y = ±L/2. There-
fore, with a pure fluid, the heat flux at either wall
would be

q0 = −kg
dTg

dy

∣∣∣
±y/2

= −kg
(T+ − T−)

L
. (17)

Our assumption is that particles do not con-
tribute to the heat flux q through the wall during
their ephemeral contacts with the latter. How-
ever, they affect the mixture conductivity. Thus,
with particles, the wall flux is

q = −Kg
dTg

dy

∣∣∣
±y/2

. (18)

Then, differentiating Eq. (15), the thermal en-
hancement can be written as the ratio

q

q0
=

(Kg

kg

)( 1 + Ks

Kg

1 + Ks

Kg

tanh(L†/2)
(L†/2)

)
. (19)

This expression may be interpreted as a dimen-
sionless effective conductivity of the suspension,
or as an overall Nusselt number based on the
channel’s half-width, NuL ≡ keff/kg ≡ q/q0. Be-
cause the mixture is at rest, Ts and Tg vary only
along y, and, unlike laminar convection in a pipe,
NuL remains the same whether a constant flux,
or a constant temperature, is imposed at the wall.
The first term in Eq. (19), Kg/kg, represents
changes in the mixture fluid conductivity due to
the mere presence of particles. This can arise
from conduction through the grain material, as
captured by static homogenization models (sec-
tion 3.1), or from changes in the fluid conductivity
associated with, for example, fluid velocity fluc-
tuations induced by grain agitation (section 3.4).

The second term in parentheses represents the
additional enhancement due to granular thermal
self-diffusion. Because grains do not transfer any
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appreciable heat directly to the wall, their self-
diffusion can only increase the overall heat trans-
fer, once they have exchanged heat with the sur-
rounding fluid. By analogy with diffusion flames,
where either chemical kinetics or diffusion can be
rate-limiting, we define a Damköhler second ratio

Da ≡ (Kg/Ks)(L†/2)
tanh(L†/2)

. (20)

Values of Da→ 0 occur in flows with considerable
granular agitation (Ks � Kg). In this limit, L†

and q/q0 become independent of Ks,

qE

q0
≡ lim

Ks/Kg→∞

( q

q0

)
=

(Kg

kg

) (L†/2)
tanh(L†/2)

, (21)

so that agitation is not rate-limiting. Instead, for
a given Kg and in a vessel of finite size, because

∂(qE/q0)
(qE/q0)

=
(∂L†

L†

)(
1− L†

sinhL†

)
≈ ∂L†

L†
=

1
2

∂H

H
,

(22)

the ratio qE/q0 is governed by the grains’ abil-
ity to exchange heat with the surrounding fluid
through H in Eqs. (1) and (2). We call this regime
the “exchange limit.”

In contrast, values of Da� 1 occur in systems
where the vessel size greatly exceeds the particle
diameter (L† � 1). Here, q/q0 becomes indepen-
dent of L† or H,

qD

q0
≡ lim

L†→∞

( q

q0

)
=

(Kg

kg
+

Ks

kg

)
, (23)

and it is no longer necessary to distinguish
the thermal temperatures of the fluid and solid
phases, Tg ' Ts. In this regime, which we call
the “diffusion limit,” the heat flux ratio increases
with the conductivity Kg of the fluid-solid mix-
ture augmented, if particles are sufficiently agi-
tated, by the self-diffusive conductivity Ks. If
they are not,

lim
Ks→0

(qD

q0

)
=

(Kg

kg

)
. (24)

As we will discuss in Part III, equations (23) or
(24) are relevant to suspensions of nanoparticles.

The diffusion limit, for which Ks matters but not
H, should also be accessible in microgravity sus-
pensions of macroscopic grains, where relatively
modest agitation can be generated without col-
lapsing the suspension.

Figure 1 illustrates the transition between the
two limits and the corresponding dimensionless
profiles of fluid and grain thermal temperatures.
In the diffusion limit with large Da, profiles of
fluid and solid thermal temperatures are identi-
cal except near the walls (Fig. 1, top left). As
Da decreases, the distinction becomes more pro-
nounced (Fig. 1, top middle). In the exchange
limit with small Da, solids have considerable self-
diffusive conductivity Ks, and thus exhibit nearly
uniform temperature between hot and cold walls
(Fig. 1, top right). By exchanging heat with the
fluid, solids in the exchange limit steepen the fluid
temperature gradient at the wall, and thus raise
the wall heat transfer. For given ν and L/d, fur-
ther steepening can occur if Kg or kg are aug-
mented by particle-induced fluid velocity fluctu-
ations (section 3.4).

3. Complications

The picture presented in the previous section
is complicated by local ordering induced by the
flat thermal walls, and by the possible creation
of fluid velocity fluctuations by fast-moving par-
ticles. Such fluctuations affect H by raising
the heat transfer coefficient around individual
spheres. The ordering modifies the mixture con-
ductivity Kg and the source term H by altering
the available particle surface and volume. It is
captured by theories for the pair distribution of
hard spheres interacting with the wall. We con-
sider the role of such ordering first. To avoid
further complications, we ignore a particle size
distribution, which would lead to segregation [9].

3.1. Available surface and volume
Because H ∝ nA, the source term in Eqs. (1)

and (2) depends on the external surface area that
each grain has available to exchange heat with
the surrounding fluid. Similarly, the homogenized
expression for Kg varies with local solid volume
fraction. The ordering of spherical grains induced
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Figure 1. Dimensionless profiles of fluid and solids
temperature, respectively T †g (dashed lines) and
T †s (solid lines), along y† (top three graphs), and
flux ratio q/q0 versus Ks/Kg (bottom graph) for
Kg/kg = 1.13 and L/d = 8, corresponding to
spheres of 3.18 mm uniformly agitated in a box
with distance from hot to cold walls of 25.4 mm
containing air and solids (ks/kg ≈ 6) at a volume
fraction ν = 6.5%, like experiments described in
Part II. We ignore for now the augmentation of
Kg or kg by solids agitation, and take Nu = 1.
Circles on the bottom curve indicate the three
distinct values of Ks/Kg for the top profiles. The
corresponding Damköhler numbers are, from left
to right, Da = 12, 0.7 and 0.07.

by our flat thermal walls provoke local oscillations
of the probability to find particle centers within
a given distance from such walls. In turn, these
spatial variations let the grain surface area per
unit volume ñA and the fraction of the volume
occupied by solids, which appears in Eq. (4), os-
cillate as well.

The oscillations, which we denote by a tilde,
are captured by theories pioneered by Percus and
Yevick (PY) [29,30] for hard spheres. For sim-
plicity, we assume that the “bulk” solid volume
fraction ν is invariant near the wall, and that any
quantity varies only with y, the coordinate nor-
mal to and, in this case, originating at the wall.
Because hard spheres cannot penetrate the latter,
their centers lie at y > d/2, and it is convenient to
define the dimensionless distance ζ to the center
of spheres touching the wall,

ζ ≡ y

d
− 1

2
. (25)

The PY theory calculates the elementary number
of spheres dN with centers in the range ζ ∈ [ζ, ζ+
dζ] per unit area S of the wall as

dN

S
=

6
πd2

νg0(ζ; ν)dζ, (26)

where g0 is the spatial distribution of hard spheres
interacting with the flat wall. Lack of penetration
implies g0 = 0 for ζ < 0.

The theory of Henderson, Abraham and Barker
[31] predicts the form of g0,

g0(ζ; ν) =
1 + 2ν

(1− ν)2
(27)

−3
5
ν

10− 2ν + ν2

1 + 2ν
α1ζ +

1
5
ν(3θ1 + 2θ2)

+12ν

∫ ζ

0

ζ ′[α1(ζ ′ − ζ) + θ1 + θ2]h11(ζ ′)dζ ′

+12ν

∫ 1+ζ

ζ

ζ ′(ζ + 1− ζ ′)3[θ1 + θ2(ζ + 1− ζ ′)]

h11(ζ ′)dζ ′,

where h11(ζ ′) ≡ g11(ζ ′)− 1, α1 ≡ (1 + 2ν)2/(1−
ν)4, θ1 ≡ −2ν(1 + ν/2)(1 + 2ν)/(1 − ν)4, and
θ2 ≡ να1/2. The function g11(ζ ′) is the PY ra-
dial distribution function for a hard sphere, where
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1 6 ζ ′ < +∞ is the relative distance between
sphere centers [30]. We calculate integrals in
Eq. (27) numerically and, for convenience, pre-
pare an interpolated look-up table for g0 in terms
of ζ and ν.

We then calculate two quantities affecting heat
transfer. The first is the fraction ν̃ of the lo-
cal volume that is occupied by solid material.
To find it, we note that a sphere with cen-
ter at ζ ′ = y′/d − 1/2 contributes a volume
πd3[(1/4) − (ζ − ζ ′)2]dζ to the parallelepiped or
“strip” of thickness d × dζ and surface area S
parallel to the wall with |ζ − ζ ′| < 1/2. There-
fore, by summing this volume over the number of
spheres dN ′ in Eq. (26) with ζ ′ ∈ [ζ ′, ζ ′+dζ ′], and
upon dividing by the strip volume Sdζ×d, we find
the local oscillating “mass-averaged” solid volume
fraction at a given distance y = (ζ +1/2)×d from
the wall

ν̃(ζ) =
∫ ζ+1/2

ζ′=ζ−1/2

dN ′πd3[(1/4)− (ζ ′ − ζ)2]dζ

Sdζ × d
(28)

≡ νIν(ζ; ν),

where the integral

Iν(
y

d
; ν) ≡ 6

∫ +1/2

ζ′−ζ=−1/2

[1
4
− (ζ ′ − ζ)2

]
× (29)

g0(ζ ′; ν)d(ζ ′ − ζ)

tends to unity as y/d→∞.
The second oscillating quantity is the available

heat exchange surface area per unit volume. We
note that a sphere with center at ζ ′ = y′/d− 1/2
contributes πd/S to that quantity in the strip at
ζ. Then, the total exchange surface area per unit
volume is

ñA =
∫ ζ+1/2

ζ′=ζ−1/2

(πd

S

)
dN ′ ≡

(6ν

d

)
Ia(

y

d
; ν), (30)

where the integral

Ia(
y

d
; ν) ≡

∫ +1/2

ζ′−ζ=−1/2

g0(ζ ′; ν)d(ζ ′ − ζ) (31)

also tends to unity as y/d→∞.
We evaluate the integrals Iν and Ia numerically

with Mathematica for y > 0 subject to ζ ′ >

0

1

Iν

0 2 4y/d
0

1

Ia

0 2 4y/d

Figure 2. Dimensionless integrals Iν (left) and Ia

versus y/d. The large circle represents the size of
a sphere, the darkened left axis marks the posi-
tion of the wall, and the dashed horizontal line is
unity. Symbols are DEM simulation results col-
lected in strips perpendicular to y. The lines are
predictions of Eqs. (29) and (31). Conditions are
ν = 39%, L/d = 8.7 and a0/d = 0.1.

0. Typically, direct evaluation of these integrals
converges well up to y/d ∼ 4. We substitute ñA
for nA in Eq. (3) to capture the oscillating source
term H̃ near the wall. For simplicity, we also
assume that ν̃ may be substituted for ν in Eq. (4)
to predict the spatial variations K̃g of the local
mixture thermal conductivity,

K̃g(y/d; ν) = Kg[νIν(y/d; ν)]. (32)

Figure 2 compares the predictions of Eqs. (29)
and (31) for Iν and Ia with Discrete-Element-
Modeling (DEM) numerical simulations of
spheres agitated in a semi-infinite cubic domain
with sinusoidal vibrations in the direction x at the
amplitude a0 against two flat walls separated by
a distance L, possessing another two parallel flat
walls at different thermal temperatures located
at y = ±L/2, and having periodic boundary con-
ditions separated by L in the third cartesian di-
rection z. These is no gravity in this instance.
The DEM hard-sphere algorithm is described by
Hopkins and Louge [32].

As Fig. 2 shows, even at relatively large solid
volume fractions, Eqs. (29) and (30) capture ef-
fects of local ordering within the first two to three
sphere diameters from the wall with sufficient rel-
ative accuracy to predict ñA, K̃g and H̃ where
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oscillations in these quantities matter. However,
the theory predicts oscillations in Iν and Ia that
are increasingly out of phase with DEM simula-
tions as y/d grows.

3.2. Source term
A difficulty with grains agitated in a fluid with

thermal temperature gradients is that they are
subject to a complicated surface temperature spa-
tial distribution and time-history, even in station-
ary systems. The grains can also exhibit internal
temperature gradients, unless their Biot number
vanishes. In this context, it is unclear a priori
whether the source term is captured by Eq. (3)
under any circumstances. To address this ques-
tion, we model H by summing the contribution of
all grains in a unit volume to the heat exchanged
between an individual sphere and the surround-
ing fluid. We calculate the exchange using the
classical solution for unsteady conduction within
a single sphere immersed in an infinite fluid. We
then conduct simple thermal numerical simula-
tions to evaluate the merits of this approach.

We model agitated grains immersed in a fluid
as thermally independent spheres adopting an ini-
tial temperature Ts upon an impact, and subse-
quently exchanging heat with a fluid of known
bulk temperature Tg, at a constant Nusselt num-
ber, and on a time scale that is the inverse of the
impact frequency

fc =
24√
π

νg12

√
Θ
d

. (33)

In this view, we write the heat exchanged in unit
volume and time as

H̃ = nIa(
y

d
; ν)

dQ

dt
, (34)

where Ia(y/d; ν) is found in Eq. (31). dQ/dt is
calculated from the classical series solution for
unsteady conduction in a sphere with cumulative
heat Q transferred to the fluid [33],( 1

Q0

) dQ

dFo
= 6

∞∑
i=1

exp(−ξ2
i Fo)

[1− (1/Bi) + (ξi/Bi)2]
. (35)

In this expression, the Fourier number based on
sphere radius renders time dimensionless, Fo ≡

4kst/ρscsd
2, and the total heat eventually trans-

ferred is Q0 = (π/6)d3ρscs(Ts − Tg). The eigen-
values ξi are solutions of the equation ξ/ tan ξ =
1−Bi. To evaluate H̃, we adopt a Fourier number

Foc =
4ks

fcρscsd2
(36)

based on the grain mean free time 1/fc. Combin-
ing Eqs. (34) and (35) with definitions of Nu and
Bi, the source term becomes

H̃ = 12ν
kg

d2
Nu(Ts − Tg)Ia(

y

d
; ν)× (37)

∞∑
i=1

2 exp(−ξ2
i Foc)

[Bi− 1 + ξ2
i /Bi]

.

Unless the Fourier number is very large, it is suf-
ficient to retain only the first term in the se-
ries. For Bi < 6, the first eigenvalue is ap-
proximated to a relative error < 1% by ξ1 =√

3Bi[1 − Bi/10 + Bi2/156 + o(Bi3)], where the
term ∝ Bi5/2 is inexact. Then, the source term
is approximated to better than 1% for Bi < 1.3
with

H̃ ≈ 12ν
kg

d2
Nu(Ts − Tg)Ia(

y

d
; ν) exp(−ξ2

1Foc)× (38)

[1− Bi
5

+
3

520
Bi2 +

99
13000

Bi3 + o(Bi4)],

where terms of order higher than Bi are inexact.
In the limit of vanishing Bi, and far enough away
from the wall, Eq. (38) reduces to Eq. (3).

Because K̃g and H̃ oscillate with distance from
the thermal walls, it is no longer possible to find
an analytical solution of Eqs. (1) and (2) subject
to boundary conditions (11) and (12). Instead,
we employ Matlab’s two-point boundary value
solver bvp4c, in which we calculate Ia(y/d; ν)
and Iν(y/d; ν) by interpolating look-up tables for
0 6 y/d 6 4 and 0.001 6 ν 6 0.5 and, for simplic-
ity, by truncating oscillations at large y/d setting
Ia = Iν = 1 for y/d > 4, ∀ν.

3.3. Thermal simulations
In this section, we incorporate simple heat bal-

ances in the DEM simulations to test the form of
the source term H̃ in Eq. (37) and the role of K̃g.
Figure 3 illustrates the partitioning of space used
for thermal balances in these simulations.
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fluid strip i
solid strip k

As(i,j,k)

Sg(i’)

Ss(k’)

As(i,j)

sphere j strip i’

Bi ≠ 0 Bi >>1

Figure 3. Partitioning of fluid and spheres in ther-
mal simulations. The space around the spheres is
subdivided in identical “fluid strips” of uniform
Tg parallel to the two flat thermal walls at tem-
peratures T+ and T−. The fluid strip i′ has a
cross-section Sg(i′) that excludes solid material.
Spheres of finite Biot numbers (left) are subdi-
vided in equal “solid strips” of uniform Ts per-
pendicular to the imposed mean temperature gra-
dient and typically thinner than fluid strips. The
cross-section of solid strip k′ is Ss(k′). The ax-
isymmetric exchange surface area between fluid
strip i and solid strip k of sphere j is As(i, j, k).
Because spheres move, this area is updated at
each DEM time step. Spheres with Bi= 0 have
uniform temperature Ts and thus possess a single
solid “strip,” k = 1. Spheres of high Bi (right) are
modeled as concentric shells of identical thickness
and uniform temperature; the exchange surface
area between the outer shell of sphere j and fluid
strip i is As(i, j). It is also updated at every DEM
time step.

The gas temperature profile is obtained by solv-
ing the one-dimensional transient heat conduc-
tion equation on fluid strips at times imposed by
the DEM simulation; in continuous form it is

ρgcg
∂Tg

∂t
= − 1

Sg

∂

∂y

(
− kgSg

∂Tg

∂y

)
+ H, (39)

where ρg and cg are, respectively, the density and
specific heat per mass of the fluid; Sg(y, t) is the
cross-section area of planes at constant y that is
occupied by the fluid at time t (Fig. 3). Its com-
plement is the area intersected by spheres. In the
discrete form of Eq. (39), the volumetric rate of
heat added to fluid strip i is

H(i) = q̇s(j, k)/Vg(i), (40)

where

q̇s(j, k) =
∑
j∈i

∑
k∈i

hAs(i, j, k)[Ts(j, k)−Tg(i)] (41)

is the rate of heat given by solid strip k of sphere
j to fluid strip i. In Eqs. (40) and (41), j ∈ i in-
dicates all spheres intersecting fluid strip i, k ∈ i
refers to all solid strips of sphere j intersecting
fluid strip i, Vg(i) is the fluid volume within strip
i, h = kgNu/(d/2) is the heat transfer coefficient,
Ts(j, k) is the uniform temperature of solid strip
k within sphere j, Tg(i) is the uniform fluid tem-
perature of strip i, and As(i, j, k) is the part of
the external surface area of particle j that resides
in strip i and intersects solid strip k, see Fig. 3
(left). We employ the Tri-Diagonal Matrix Algo-
rithm (TDMA) [34] to solve Eq. (39) subject to
the prescribed gas temperatures T+ and T− at
opposite thermal walls.

Knowing Tg(i), we use the TDMA again to
solve at each DEM time step the energy balance
within each sphere j of moderate Biot number
subject to (∂Ts/∂y)|y=yc±d/2 = 0 at both poles
of j centered at yc(j). In continuous form, the
sphere energy balance is

ρscs
∂Ts(j)

∂t
= − 1

Ss(j)
∂

∂y

(
− ksSs(j)

∂Ts(j)
∂y

)
(42)

−q̇s(j),

where q̇s(j) is given by Eq. (41) in discrete form
and Ss(j; y, t) is the cross-section area of sphere j
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cut by the plane of constant y at time t (Fig. 3).
In Eq. (42), Ts(j) and q̇s(j) both vary with y
within sphere j unless its Biot number vanishes.
If it does, then sphere j with Bi= 0 is no longer
subdivided in solid strips, but instead has a uni-
form temperature Ts(j).

For spheres of large Biot number, interior con-
duction is mostly radial. Accordingly, we model
it by dividing the sphere in concentric shells of
equal thickness and uniform temperature (Fig. 3,
right). We use again the TDMA to solve the heat
conduction equation, which is, in continuous form

ρscs
∂Ts(j)

∂t
= − 1

r2

∂

∂r

(
− ksr

2 ∂Ts(j)
∂r

)
, (43)

subject to symmetry at the sphere’s center

∂Ts(j)
∂r

∣∣∣
r=0

= 0, (44)

and to the surface boundary condition

−(πd2)ks
∂Ts(j)

∂r

∣∣∣
r=d/2

= (45)∑
i∈j

hAs(i, j)[Ts(j; r = d/2, t)− Tg(i)],

where i ∈ j denotes all fluid strips wetting sphere
j, and As(i, j) is the axisymmetric part of the
external surface area of particle j that resides in
strip i, see Fig. 3 (right).

To reduce the computation time needed to
reach steady state thermal profiles, we start all
simulations with an initial Tg varying linearly be-
tween the two thermal walls at T+ and T−, and
with a uniform Ts = (T+ + T−)/2. Once steady-
state has been reached, because Tg(i) is effectively
an average over the entire fluid strip i, it fluc-
tuates little with time despite particle agitation.
We map its counterpart for solids T̄s on the same
fluid strip i by summing the sensible energy that
each sphere contributes to the strip,

T̄s

∑
j∈i

∑
k∈i

ρscsVs(i, j, k) = (46)

∑
j∈i

∑
k∈i

ρscsVs(i, j, k)Ts(j, k),

where Vs(i, j, k) is the sphere volume between the
two latitudes delimited by As(i, j, k) for Bi6= 0 or
As(i, j) for Bi� 1.

-10

0

10

H†

-0.5 0 0.5y/L

-1

0

1

-0.5 0 0.5y/L

Bi = 0 Bi = 3.7

Figure 4. Dimensionless source term H† vs. y/L.
Circles are computed from thermal simulations
using Eq. (40) and 99 fluid strips; the dashed line
on the left is the prediction of Eq. (3) without
spatial variations of ν (it clearly fails near the
walls); the solid line is the prediction of Eq. (37)
with actual oscillations ν̃ in K̃g and ñA in H̃.
In Eq. (37), it is sufficiently accurate to retain
only the first term in the series. Conditions are
ν = 10%, L/d = 9.7, a0/d = 0.1, and Nu= 1.
Left graph: Bi= 0 (uniform temperature imposed
within each sphere consistent with the high solid
conductivity ks/kg = 5900) and Fo = 0.95; in the
bulk, this leads to a relatively low local Fourier
number Fo ≈ 0.1, Ks/Kg ≈ 57, and Kg/kg ≈ 1.3.
Right: simulations using the method in Fig. 3
(right) with 10 shells; conditions are Bi= 3.7 and
Fo = 0.57, with Fo ≈ 0.1, Ks/Kg ≈ 94, and
Kg/kg ≈ 0.91.

In addition to the relative vibration amplitude
a0/d, the relative box size L/d, its geometrical
aspect ratios, ν, and impact parameters, ther-
mal simulations are characterized by three dimen-
sionless numbers, namely the particle Nusselt and
Biot numbers, and a global Fourier number based
on vibration frequency f , Fo ≡ 4ks/fρscsd

2.
Figure 4 shows the resulting source term, made

dimensionless using H† ≡ Hd2/[kg(T+ − T−)ν].
At high Biot number (Fig. 4, right), it is im-
portant to include the series correction term in
Eq. (37), generally truncated to first order, to
predict H† accurately. For this correction, the ap-
propriate Fourier number is based on local mean
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free time, see Eq. (36). However, H† hardly mat-
ters to heat transfer at the wall when Bi � 1:
because H† ∝ 1/Bi is low, the thermal temper-
atures of fluid and solids are nearly decoupled.
Thus, the fluid temperature has a nearly straight
profile between opposite walls, irrespective of par-
ticle agitation or Damköhler number. Similarly, if
the spheres have the slightest agitation, their self-
diffusion ensures that Ts is independent of y/L.
Effectively, L† → 0 as Bi →∞. Thus, consistent
with Eq. (19), q/q0 ≈ Kg/kg. Therefore, solids
with Bi � 1 do not enhance the thermal flux at
the wall. Instead, because ks/kg = Nu/Bi < 1,
they typically reduce the mixture thermal con-
ductivity, Kg < kg.

At low Biot numbers, the series term in
Eq. (37) approaches unity. This equation predicts
H̃ accurately again, as long as spatial oscillations
are considered with Ia(y/d; ν), see Fig. 4 (left).
As the dashed line in Fig. 5 shows, failing to cap-
ture Ia properly, for example by adopting Eq. (3),
over-estimates H̃ at the wall, where the thermal
exchange between fluid and solids matters most.
In the exchange limit, Eq. (22) indicates that the
flux ratio scales as q/q0 ∝ H1/2 ∝ Nu1/2. There-
fore, in this limit, the role of spatial oscillations
in reducing q/q0 is conveniently captured by an
effective Nusselt number

Nueff ≡ Nu×
[

lim
Ks/Kg→∞

( q̃

q0

)]2/
(47)[

lim
Ks/Kg→∞

( q

q0

)]2

,

which may be substituted for Nu in Eq. (16) to
predict q̃/q0 analytically from Eq. (19) without
computing Iν or Ia. In Eq. (47), which defines
Nueff, q̃ denotes the flux calculated with spatial
oscillations in Iν and Ia, and q without. To eval-
uate Nueff, we integrate Eqs. (1) and (2) numer-
ically as mentioned in the last paragraph of sec-
tion 3.2.

Figure 6 shows how Nueff/Nu varies with ν. In
the range 0 6 ν 6 0.5 and L/d > 5, the following
expression conveniently captures this prediction
to a relative error < 2%:

Nueff

Nu
≈ 1 + ν(1− e−L/L0)(bν + aνν)

1 + ν(1− e−L/L0)(dν + cνν)
, (48)

0

5

10

15

q/q0

0.01 0.1 1 10 100 1000

Ks/Kg

no oscillations of Kg or H

ks suppressed

Figure 5. Flux ratio q/q0 versus Ks/Kg for Nu
= 1, ks/kg = 5900, L/d = 9.7, and ν = 30%.
Circles are thermal simulations; for these data,
Ks and Kg are evaluated with the average gran-
ular temperature Θ and volume fraction ν in the
cell, using Eqs. (7) and (4), respectively. The top
dashed line is the prediction of Eq. (19), in which
wall-induced spatial oscillations are ignored. This
clearly fails. The bottom dotted line is a model
in which spatial oscillations derive from the HAB
theory of Eqs. (27) to (31), but where heat is
artificially barred from conducting through the
spheres, ks = kgξs = 0 in Eq. (4), despite Bi
� 1. This fails as well. The solid line is our
recommended model, which incorporates spatial
oscillations of Ia in H̃ and the mixture conduc-
tivity from Eqs. (4) and (32). Such oscillations
make it necessary to solve Eqs. (1) and (2) nu-
merically. The upper bound of simulated Ks/Kg

is limited by computation time, which grows with
f , fc, Fo

−1
, or Ks.
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Figure 6. Effective Nusselt number capturing the
effects of spatial oscillations versus bulk solid vol-
ume fraction. The abrupt change of abscissa at
ν = 0.03 is meant to highlight the dependence of
Nueff on L/d at low ν; such dependence is contin-
uous.

where L0/d ≈ 12.8, aν ≈ 1385, bν ≈ 230, cν ≈
4370, and dν ≈ 327. Spatial oscillations reduce
Nueff at remarkably low ν. Nonetheless, with a
mixture conductivity given by Eq. (4), the wall
heat transfer is always enhanced at vanishing Biot
number, ∀ν. This is because, to lowest order, the
flux ratio rises with ν and L/d > 5 as q̃/q0 =
1 + [3 + (bν − dν)(1− e−L/L0)/2 + Nu(L/d)2]ν +
o(ν2) > 1.

Although Nueff was meant to capture q̃/q0

analytically for Bi � 1 in the exchange limit
(Ks/Kg → ∞, or Da → 0), it is also a good
approximation for any Damköhler ratio. For ex-
ample, substituting Nueff from Eq. (48) for Nu in
Eq. (16) yields a flux ratio q̃/q0 calculated from
Eq. (19) with a relative error < 4% at ν = 0.01
and < 9% at ν = 0.5.

As Fig. 5 illustrates, the wall heat flux is
affected by gradient-driven conduction through
solid spheres. If such conduction was suppressed
by making ξs = 0 in Eq. (4), while artificially
keeping Bi � 1, then q̃/q0 would be under-
predicted, as the dashed line clearly shows. To
capture this conduction within the spheres as sim-
ply as possible, we assume that it is driven by
∇Tg through the mixture conductivity (4) in the
energy equation for the fluid. When spatial vari-

ations of the mixture conductivity are taken into
account by adopting Eq. (32), and when H̃ is
allowed to oscillate near the wall through Ia in
Eq. (37), our relatively simple model agrees well
with simulations (Fig. 5).

Nonetheless, the thermal simulations are crude
for several reasons. First, they ignore any cou-
pling between particle and gas velocities, and pos-
sible effects of the latter on convective heat trans-
fer between fluid and solids. Instead, they adopt a
constant heat transfer coefficient independent of
local solid volume fraction and particle-induced
gas velocity fluctuations. Then, they simplify
the three-dimensional conjugate fluid-solid heat
transfer problem by privileging a gradient direc-
tion in each sphere, and by ignoring fluid temper-
ature gradients perpendicular to the y-axis.

Despite these simplications, they confirm that
the local gradient ∇Tg and the local temperature
difference (Ts − Tg) simultaneously play a role in
setting the overall heat transfer flux. In particu-
lar, they show that, in addition to the exchange
carried by (Ts− Tg) through the locally available
exchange surface area, the gradient also drives a
heat flux through the spheres that is well cap-
tured by homogenization models, as long as the
solid volume fraction is allowed to oscillate in re-
sponse to spatial ordering from the flat thermal
walls. At large Biot, they also provide a first taste
of the role of thermal history by revealing that the
appropriate Fourier number is based on the mean
time of flight of the colliding spheres.

In the next sections, we attempt to refine our
description of the heat transfer between fluid and
solid by adopting simple corrections to the heat
transfer coefficient h, and by correcting the ho-
mogenized mixture conductivity with turbulent
enhancements driven by particle agitation. We
will describe the experiments that elicited these
refinements in Part II.

3.4. Enhancements at high agitation
We apply the present analysis to situations in

which particle agitation is not derived from fluid
velocity fluctuations. This is the case, for ex-
ample, when relatively dense suspensions of mas-
sive particles owe their fluctuation velocity to re-
peated collisions. Such particles have a Stokes
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number St ≡ ρsd
2/18µτ ≫ 1, where µ is the

fluid’s dynamic viscosity and τ is a characteristic
time of the flow. We also restrict attention to sit-
uations without a mean relative velocity between
fluid and solids.

For massive particles in a gas at relatively large
solid volume fractions (ρs � ρg, ν > 0.05), it is
challenging to test our model with experiments
in the presence of gravitational accelerations. To
defeat gravity without imposing a relative veloc-
ity between gas and solids, considerable agitation
must be given to the particles. Although massive
particles with St ≫ 1 are not affected by gas
velocity fluctuations, their agitation can induce
such fluctuations in their wakes, thus augment-
ing the mixture conductivity Kg in Eqs. (4) and
(32), and raising the conductivity on which the
Nusselt number in Eq. (3) is based. An under-
standing of these effects requires a detailed model
of gas-solid interactions. In dilute turbulent sus-
pensions, much progress has been made on two-
way coupling between gas and solids, which can
either enhance or reduce turbulent gas velocity
fluctuations, and ultimately augment kg and Kg

[35–41]. In the experiments described in Part II,
the suspension is too dense (ν > 0.06) and the
Stokes number too large (430 < St < 16, 000) for
us to adopt this existing turbulent framework.

A suitable model for the thermal exchange be-
tween grain and gas must simultaneously account
for the effects of high solid volume fraction and
for a surrounding turbulence that is not gener-
ated by a mean relative velocity between solids
and gas. Thus, in contrast to the dilute “riser”
flows considered by Louge, et al [18], we do not
expect correlations like Whitaker’s [42], which
correct the infinite-fluid, pure-conduction result
Nu = 1 for small relative velocity between an iso-
lated particle at rest and a steady gas flow, to
capture the role of high agitation on the source
term by increasing Nu with a particle Reynolds
number based on

√
Θ. Instead, as outlined next,

we adopt Nu = 1, account for gas velocity fluctu-
ations by augmenting the conductivity on which
Nu is based, and capture the role of high solid
volume fraction through the mixture conductiv-
ity. The experiments in Part II will test the merit
of this approach.

0

4

8

12

q/q0

0.1 1 10 100 1000

Ks/Kg

qq0 none

qq0 Bi=0

qq0 Nu kg

qq0 Kg

qq0 all

Figure 7. Relative importance of augmentation
mechanisms of q/q0 with high agitation. Here we
assume uniform Θ and ν, but integrate Eqs. (1)
and (2) numerically using oscillating Iν and Ia

from Eqs. (29) and (31) near the walls. The ab-
scissa is Ks/Kg, where Kg is the static mixture
conductivity given by Eq. (4) at the bulk solid vol-
ume fraction ν = 0.195. Conditions are Pr = 0.7,
ρgcg/ρscs = 7× 10−4, ks/kg = 5, and L/d = 7.9,
corresponding to 3.2 mm acrylic spheres in a box
of L = 25.4 mm filled with air. From top to bot-
tom: the thin solid line marks the recommended
model, which substitutes Kgt for Kg, bases the
Nusselt number on kgt, and implements the Biot-
Fourier correction of Eq. (38); the dotted line
bases Nu on kg instead, but still substitutes Kgt

for Kg; the dashed line uses Kg, but bases Nu
on kgt; the thick horizontal asymptote ignores
all augmentation mechanisms (kt = 0) and takes
Bi = 0. Under these conditions, high-agitation
augmentation mechanisms become significant at
Ks/Kg > 65, where Re > 4.5 and St > 1900.
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Verberg and Koch [43] conducted Lattice-
Boltzmann numerical simulations of spheres
sheared a semi-infinite domain between two
bumpy boundaries to refine the expressions of
Sangani, et al [7,8] for the volumetric rate of dis-
sipation of granular fluctuation energy

γvis =
54νµΘ

d2
Rdiss(ν, εm,Re/

√
3) (49)

by providing the coefficient Rdiss in terms of ν,
a parameter εm = 9.76 λg/d accounting for non-
continuum lubrication between colliding spheres
in a gas of molecular mean free path λg, and a
Reynolds number based on

√
Θ and d. Combining

Eqs. (5) and (7), this particle Reynolds number
is

Re√
3

=
9
√

πg12

Pr

(ρgcg

ρscs

)
fM (ν; ξs)× (50)(Ks

Kg

)
(1 + 2 Kn)Les,

where fM is defined in Eq. (4) and is evaluated
at the bulk ν.

Verberg and Koch [43] also measured the di-
mensionless Reynolds stress −u′iu

′
j/[d Γu/2]2 and

granular temperature
√

Θ/[d Γu/2], where u′i is
the gas fluctuation velocity in the cartesian di-
rection i and Γu is the applied strain rate. They
found that both quantities are proportional to the
ratio Stγ/Rdiss, where Stγ ≡ ρsd

2Γu/18µ, so the
Reynolds stress scales as

ρgu′iu
′
j = −ω ρgΘ1/2

( ∂ui

∂xj
+

∂uj

∂xi

)
d, (51)

where ω is a constant expected to depend on
ν; they reported ω = 0.037 (+0.014,−0.010) at
ν = 0.3 with i and j in the flow and gradient
directions, respectively.

To model the augmentation of kg by gas veloc-
ity fluctuations, we invoke “Reynolds’ analogy”
and write

kgt = kg + kt, (52)

where( kt

ρgcg

)
=

(µt/ρg)
Prt

(53)

is the additional heat diffusivity induced by gas
velocity fluctuation, Prt ' 0.9 is a turbulent
Prandtl number [18], and µt is an eddy viscos-
ity defined as

ρgu′iu
′
j = −µt

( ∂ui

∂xj
+

∂uj

∂xi

)
. (54)

Combining Eqs. (51), (53) and (54), and elimi-
nating Θ in terms of Ks using Eqs. (5) and (7),
we find

kt

kg
= ω

9
√

πLes

Prt

(ρgcg

ρscs

)
fM (ν; ξs)g12 × (55)

(1 + 2Kn)
(Ks

Kg

)
.

This equation reveals that, unless ρgcg/ρscs

nearly vanishes (as it would, for example, under
the low atmospheric pressure of Mars), solid ve-
locity fluctuations affect heat transfer in the ex-
change limit by raising the conductivity of the gas
to kgt. In the limit of small solid volume fractions,
Eq. (55) reduces to

lim
ν→0

kt

kg
= ω

√
Θ d

Prt (kg/ρgcg)
. (56)

Because particle-induced gas transport coeffi-
cients should vanish as solids disappear, we ex-
pect that kt → 0 as ν → 0. Because Θ does
not tend to zero in that limit, ω should vary with
ν, and vanish with it. In the absence of pub-
lished data for ω(ν), we assume ω ∝ ν and adopt
the value that Verberg and Koch [43] measured
at ν = 0.3 i.e., ω = ν × 0.037/0.3. Our thermal
measurements in Part II will test the merit of this
simple expression for ω.

Therefore, in our view, high particle agitation
has three principal effects on the exchange limit.
First, it increases the source term, so that kgt

must be substituted for kg in Eq. (16) for L† (but
not in Eq. (19), where kg represents the molec-
ular conductivity of pure gas). Second, the Biot
number increases to (kgt/ks) Nu, possibly lead-
ing to significant corrections of H̃ calculated with
Eq. (38). Third, the mixture conductivity Kg

rises to a new Kgt, which we model as in Eq. (4),

Kgt = kgt fM (ν; ξst), (57)
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where ξst ≡ ks/kgt, and which we substitute
wherever Kg appears in Eqs. (1), (16), (18) and
(19).

Near the wall, where ν oscillates, we replace K̃g

by K̃gt as shown in Eq. (32). To account for these
oscillations, we integrate once again Eqs. (1) and
(2) numerically along y with Matlab’s bvp4c us-
ing kgt and Kgt instead of kg and Kg, respec-
tively. Because gas velocity fluctuations diffuse
on a length scale on the order of d, we ignore
fluctuations of ν̃ to evaluate kt, but instead use
the bulk solid volume fraction in Eq. (55). Fig-
ure 7 illustrates the results and shows the relative
importance of raising kg to kgt and Kg to Kgt.
Notably, we find that numerical integration can
be avoided by capturing spatial oscillations using
the effective Nueff in Eq. (48), while substituting
kgt for kg in Eq. (16) and Kgt for Kg in Eqs. (16)
and (19). For conditions of Fig. 7, this approxi-
mation for q/q0 has relative error < 8%.

3.5. Enhancement limitations
In principle, enhancements of q/q0 induced

by high solids agitation rise ad infinitum with
Ks/Kg. However, as the following calculation
shows, collisional dissipation limits practical val-
ues of granular temperature, and thus Ks, which
may be achieved away from boundaries that im-
part agitation on the grains. In Part II, we will
describe a model for solids agitation in the vi-
brated box. We adopt a simpler approach here.
In the absence of gravity, stress work or convec-
tion, the balance of fluctuation energy for nearly
elastic, frictionless spheres experiencing instanta-
neous, binary collisions in a semi-infinite domain
bounded by a wall of normal z is

0 = − d

dz

(
− κ

dΘ
dz

)
− γ, (58)

where κ = (4/
√

π)Mρsν
2g12d

√
Θ is the con-

ductivity of granular fluctuation energy, M =
1 + (9π/32)[1 + 5/(12νg12)]2, γ = (12/

√
π)(1 −

e2)ρsν
2g12Θ3/2/d is the volumetric rate of colli-

sional dissipation, and 0 6 e < 1 is a dimen-
sionless kinematic coefficient characterizing the
incomplete post-impact restitution of the normal
component of the relative velocity of two col-
liding grains [44]. (In our experiments of Part

II, the dissipation of granular fluctuation energy
by the gas can be neglected in Eq. (58) i.e.,
γvis � γ). Defining the dimensionless distance
z∗ ≡ z/d from an energetic wall at granular tem-
perature Θ0 and the dimensionless fluctuation ve-
locity w∗ ≡

√
Θ/Θ0, and assuming an invari-

ant ν, Eq. (58) can be written d2w∗3/dz∗2 =
9(1− e2)w∗3/2M . Its solution w∗ = exp[−z∗/`∗]
decays from the wall on a dimensionless length
scale `∗ =

√
2M/(1− e2), which decreases with

denser ν and lower e. `∗ is relatively small for
values of e typical of real sphere materials. For
example, at ν = 5% and e = 0.9, `∗ ≈ 26; at
ν = 30%, it is down to `∗ ≈ 6.

Beyond a distance from the wall z > d × `∗,
the granular medium is unlikely to have sufficient
agitation to augment K̃g and kg, or perhaps to
remain in the exchange limit. In practical situ-
ations, our thermal analysis must be coupled to
granular mechanics equations describing the pro-
files of Θ and ν [9], which, for simplicity, we have
taken to be constant in Part I, but will revisit in
greater detail in Part II.

4. Conclusions

In Part I, we outlined a theory for the enhance-
ment of heat transfer through a flat thermal wall
bounding a homogeneous suspension of agitated
spherical grains in a fluid. The theory is based
on explicit hypotheses and independently mea-
surable material parameters. Its crucial assump-
tion is that grains do not exchange any thermal
energy during their ephemeral contacts with each
other or with the wall. However, their presence
enhances heat transfer by modifying the mixture
conductivity and by steepening the fluid temper-
ature gradient at the wall. The steepening is
the result of a competition between thermal self-
diffusion of the grains and their exchange of heat
with the surrounding fluid, which is arbitrated by
a Damköhler second ratio. Self-diffusion is a pro-
cess that is not driven by a gradient of particle
concentration, but rather by grain agitation. It
gives rise to conduction through the solid phase
if the latter possesses a thermal temperature gra-
dient.

At high values of Da, which we call the “diffu-
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sion limit,” the enhancement is governed by gran-
ular self-diffusion. The diffusion limit is relevant
to small particles or low agitation. At low values
of Da, which we call the “exchange limit,” the
volumetric rate of heat exchange dominates. We
derived expressions for this exchange up to Biot
numbers ∼ o(10), and tested these in crude, but
instructive numerical simulations.

We showed that the ordering imposed by the
flat thermal wall affects heat transfer by chang-
ing the local mixture conductivity and volume ex-
change rate between fluid and solids. It remains
to establish whether these spatial oscillations af-
fect the thermal self-diffusion of the grains as well.
Because the wall affects the velocity distribution
function in its neighborhood [45], it may change
the form of the self-diffusivity in Eq. (5). Unfor-
tunately, to our knowledge, no kinetic theory has
yet captured this effect, which may be responsi-
ble for deviations of the model from numerical
simulations at low Ks/Kg in Fig. 5.

Finally, we showed that heat transfer in the ex-
change limit can be further augmented by gran-
ular agitation, if the latter is intense enough
to induce velocity fluctuations in the gas. We
proposed a model for such augmentation that
is based on the measurements of Verberg and
Koch [43] in Lattice-Boltzmann numerical simu-
lations of dense suspensions. In this model, we
replaced the molecular conductivity of the gas
by a higher conductivity arising from particle-
induced gas velocity fluctuations. Part II will
test the merit of this approach using experiments
with grains vibrated in a box in air, for which
such particle-induced augmentation of conductiv-
ity must be taken into account. Part III will fo-
cus on the diffusion limit, which is relevant to
colloidal suspensions or to experiments in micro-
gravity.
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