Statistical mechanics of hysteretic capillary phenomena: predictions of contact angle on rough surfaces

http://grainflowresearch.mae.cornell.edu/

InterPore 2017, Rotterdam, May 10, 2017

- and
- liquid retention in unsaturated porous media

Michel Louge

Cornell University

Member of Qatar Joundation

Ludwig Eduard Boltzmann (February 20, 1844 – September 5, 1906)

Statistical Mechanics

Jin Xu and Michel Louge, Phys. Rev. E 92 (2015)

Statistical Mechanics of **Unsaturated Porous Media**

Jin Xu and Michel Louge, Phys. Rev. E 92 (2015)

Van Genuchten (1980)

Statistical Mechanics of Unsaturated Porous Media

Jin Xu and Michel Louge, Phys. Rev. E 92 (2015)

Jin Xu and Michel Louge, Phys. Rev. E 92 (2015)

Pot, et al Adv. Water Res. (2015)

Pore volume V_p pore surface area a_p each pore has several necks with overall cross-section a_n

Filling state variable

Ising model: the simplest statistical mechanics

$\sigma = -1$ pore full of liquid $\sigma = +1$ pore full of gas

Degree of Saturation S

$$0 \leq \left[S = \frac{\theta}{1 - \nu} = \frac{1 - \bar{\sigma}}{2}\right] \leq$$

$\sigma = -1$ pore full of liquid $\sigma = +1$ pore full of gas

θ = liquid volume fraction v = solid volume fraction

Two state variables: pore filling and tension

mean field $\overline{\sigma} = f(\psi^*)$

gas-liquid interfacial energy $\gamma_{\ell g}$

$\sigma = -1$ pore full of liquid $\sigma = +1$ pore full of gas

pressure work

Dimensionless energy of a single pore

pressure work $a_p v_p^{''}$

specific pore wall area

numerical simulations of Patrick Richard

model: mass conservation and viscous dissipation of latent energy

Haines jumps: latent energy dissipation

data of Armstrong & Berg, Phys. Rev E 88 (2013)

Statistical Mechanics of the Triple Gas-Solid-Liquid Contact Line

Michel Louge, Phys. Rev. E 95 (2017)

Statistical mechanics of the contact line

Predict advancing and receding contact angles from surface cavity geometry and surface energies with an equilibrium theory

advancing contact line

data of Shibuishi, et al (1996)

data of Shibuishi, et al (1996)

- cavity volume V_p ; cavity opening area a_0 ; cavity surface area a_n
 - solid surface area \mathcal{A}_{c}
 - several necks of of index (i) and cross section $\mathcal{A}_{n,i}$

Energy of a single surface cavity

$$\gamma_{\ell g} \frac{\sigma}{2} \Big[(2\chi - 1)a_0 + a_p \cos \theta_e - a_n \overline{\sigma} \Big]$$

Energy required for line displacement

 $\mathrm{dG} = \gamma_{s\ell} \mathrm{dA}_{s\ell} + \gamma_{\ell g} \mathrm{dA}_{\ell g} + \gamma_{gs} \mathrm{dA}_{gs}$

without surface cavities

Tadmor (2004)

Energy required for line displacement

 $\mathrm{d}\mathbf{G} = \gamma_{s\ell} \mathrm{d}A$

 dA_{gs} $dA_{\ell g}$ $\mathbf{d}A$

constant volume spherical cap

without surface cavities

Tadmor (2004)

$$_{s\ell} + \gamma_{\ell g} dA_{\ell g} + \gamma_{gs} dA_{gs}$$

$$- = \cos\theta \cos\theta_e = \frac{\gamma_{gs} - \gamma_{s\ell}}{\gamma_{\ell g}}$$

Energy required for line displacement

 $\mathrm{d}\mathbf{G} = \gamma_{s\ell} \mathrm{d}A$

potential energy change upon incrementing $\mathrm{d}A_{s\ell}$

 $\mathrm{dG} = \gamma_{\ell g} \mathrm{dA}_{s\ell} \left(\cos \theta - \cos \theta_{e} \right)$

constant volume spherical cap

without surface cavities

Tadmor (2004)

$$_{s\ell} + \gamma_{\ell g} dA_{\ell g} + \gamma_{gs} dA_{gs}$$

$$- = \cos\theta \cos\theta_e = \frac{\gamma_{gs} - \gamma_{s\ell}}{\gamma_{\ell g}}$$

With surface cavities

$$dG = \gamma_{\ell g} dA_{s\ell} \left(\cos \theta - \cos \theta_a \right)$$

$$\cos \theta_a = (1 - \varepsilon) \cos \theta_e - \varepsilon \int_0^1 \overline{\sigma} \, d\chi + \varepsilon \Delta E$$

eckered solid surface cavity filling latent energy

$$d\mathbf{G} = \gamma_{\ell g} dA_{s\ell} \left(\cos \theta - \cos \theta_a \right)$$

$$\cos \theta_a = (1 - \varepsilon) \cos \theta_e - \varepsilon \int_0^1 \overline{\sigma} \, d\chi + \varepsilon \Delta E$$

checkered solid surface cavity filling latent energy

Advance

$$dG = \gamma_{\ell g} dA_{s\ell} \left(\cos \theta - \cos \theta_a \right)$$

$$\cos \theta_a = (1 - \varepsilon) \cos \theta_e - \varepsilon \int_0^1 \overline{\sigma} \, d\chi + \varepsilon \Delta E$$

different sign

$$dG = \gamma_{\ell g} dA_{s\ell} \left(\cos \theta - \cos \theta_r \right)$$

$$\cos \theta_r = (1 - \varepsilon) \cos \theta_e - \varepsilon \int_0^1 \overline{\sigma} \, d\chi - \varepsilon \Delta E$$

latent energy

$$dG = \gamma_{\ell g} dA_{s\ell} \left(\cos \theta - \cos \theta_a \right)$$

$$\cos \theta_a = (1 - \varepsilon) \cos \theta_e - \varepsilon \int_0^1 \overline{\sigma} \, d\chi + \varepsilon \Delta E$$

different sign

$$dG = \gamma_{\ell g} dA_{s\ell} \left(\cos \theta - \cos \theta_r \right)$$

$$\cos \theta_r = (1 - \varepsilon) \cos \theta_e - \varepsilon \int_0^1 \overline{\sigma} \, d\chi - \varepsilon \Delta E$$

latent energy

Advance

Advance

$$dG = \gamma_{\ell g} dA_{s\ell} \left(\cos \theta - \cos \theta_a \right)$$

$$\cos \theta_a = (1 - \varepsilon) \cos \theta_e - \varepsilon \int_0^1 \overline{\sigma} \, d\chi + \varepsilon \Delta E$$
different sign
$$dG = \gamma_{\ell g} dA_{s\ell} \left(\cos \theta - \cos \theta_r \right)$$

$$\cos \theta_r = (1 - \varepsilon) \cos \theta_e - \varepsilon \int_0^1 \overline{\sigma} \, d\chi - \varepsilon \Delta E$$
latent energy

Advancing vs receding line

Advancing angle Receding angle

regime	χ_c^+	χ_c^-	$\cos\theta_a - (1-\epsilon)\cos\theta_e$	$\cos\theta_r - (1-\epsilon)\cos\theta_e$
Ι	$\in [0,1]$	$\in [0,1]$	$+\epsilon(\alpha\cos\theta_e-2\lambda)$	$+\epsilon(\alpha\cos\theta_e+2\lambda)$
II	$\in [0,1]$	< 0	$+\epsilon(\alpha\cos\theta_e-2\lambda)$	$+\epsilon$
III	> 1	$\in [0,1]$	$-\epsilon$	$+\epsilon(\alpha\cos\theta_e+2\lambda)$
IV	< 0	< 0	$+\epsilon$	$+\epsilon$
V	> 1	< 0	$-\epsilon$	$+\epsilon$
VI	> 1	> 1	$-\epsilon$	$-\epsilon$

Each regime allows zero, one or two transitions.

Advancing angle Receding angle

regime	χ_c^+	χ_c^-	$\cos \theta$	$\theta_a - (1 - \epsilon) \cos \theta_e$	$\cos\theta_r - (1-\epsilon)\cos\theta_e$]
Ι	$\in [0,1]$	$\in [0,1]$	+	$\epsilon(\alpha\cos\theta_e - 2\lambda)$	$+\epsilon(\alpha\cos\theta_e+2\lambda)$	
II	$ \in [0,1]$	< 0	+0	$\epsilon(\alpha\cos\theta_e - 2\lambda)$	$+\epsilon$	
III	> 1	$\in [0,1]$		$-\epsilon$	$+\epsilon(\alpha\cos\theta_e+2\lambda)$	
IV	< 0	< 0		$+\epsilon$	$+\epsilon$	
V	> 1	< 0		$-\epsilon$	$+\epsilon$	
VI	> 1	> 1		$-\epsilon$	$-\epsilon$	
						-

Example: regime III

Advancing angle Receding angle 0 0 11 \mathbf{a} $+\epsilon(\alpha \cos \alpha)$ $+\epsilon(\alpha \cos \alpha)$

allowed transitions

$(1-\epsilon)\cos\theta_e$	$\cos\theta_r - (1-\epsilon)\cos\theta_e$
$\cos \theta_e - 2\lambda$)	$+\epsilon(\alpha\cos\theta_e+2\lambda)$
$\cos \theta_e - 2\lambda$	$+\epsilon$
$-\epsilon$	$+\epsilon(\alpha\cos\theta_e+2\lambda)$
$+\epsilon$	$+\epsilon$
$-\epsilon$	$+\epsilon$
$-\epsilon$	$-\epsilon$

Advancing angle Receding angle

regime	χ_c^+	χ_c^-	$\cos\theta_a - (1-\epsilon)\cos\theta_e$	$\cos\theta_r - (1-\epsilon)\cos\theta_e$
Ι	$\in [0,1]$	$\in [0,1]$	$+\epsilon(\alpha\cos\theta_e-2\lambda)$	$+\epsilon(\alpha\cos\theta_e+2\lambda)$
II	$\in [0,1]$	< 0	$+\epsilon(\alpha\cos\theta_e-2\lambda)$	$+\epsilon$
III	> 1	$\in [0,1]$	$-\epsilon$	$+\epsilon(\alpha\cos\theta_e+2\lambda)$
IV	< 0	< 0	$+\epsilon$	$+\epsilon$
V	> 1	< 0	$-\epsilon$	$+\epsilon$
VI	> 1	> 1	$-\epsilon$	$(-\epsilon)$

"Cassie-Baxter state" (1944)

Advancing angle Receding angle

'Metastable' states: cavities do not fill spontaneously before recession

Callies and Quéré, Soft Matter (2005)

$(1-\epsilon)\cos\theta_e$	$\cos\theta_r - (1-\epsilon)\cos\theta_e$
$\cos\theta_e - 2\lambda)$	$+\epsilon(\alpha\cos\theta_e+2\lambda)$
$\cos\theta_e - 2\lambda)$	$+\epsilon$
$-\epsilon$	$+\epsilon(\alpha\cos\theta_e+2\lambda)$
$+\epsilon$	$+\epsilon$
$-\epsilon$	$+\epsilon$
$-\epsilon$	$-\epsilon$

Bed of rods

Comparison with data

mixtures of water and 1,4 dioxane on surfaces of alkylketene dimer (AKD) and dialkylketone (DAK)

Comparison with data

Lam, et al, Adv. Colloid Interface Sci (2002)

Regime I $\cos\theta_r - \cos\theta_a = 4\lambda\varepsilon$

"Wenzel state"

Statistical Mechanics is a useful framework for analyzing capillary phenomena.

Jin Xu and Michel Louge, Phys. Rev. E 92 (2015)

Ludwig Eduard Boltzmann (February 20, 1844 – September 5, 1906)

Michel Louge, Phys. Rev. E 95 (2017)

THOM STORES

200