Spectral integrals for blackbody radiation

Michel Y. Louge
Sibley School of Mechanical and Aerospace Engineering
Cornell University
Ithaca, NY 14853, USA

August 11, 2008

1 Blackbody spectral distribution

Planck’s (1899) spectral distribution of an equilibrium blackbody at temperature T versus wavelength λ is

$$I_{\lambda,b} = \frac{2hc^2}{\lambda^5 \left[\exp \left(\frac{hc}{\lambda kT} \right) - 1 \right]}, \quad (1)$$

where $h \simeq 6.6 \times 10^{-34}$ J.s is Planck’s constant, $k \simeq 1.4 \times 10^{-23}$ J/°K is Boltzmann’s constant, and $c \simeq 3 \times 10^8$ m/s is the speed of light in vacuo. Defining the dimensionless photon energy $E^\ddagger \equiv (hc/\lambda)/(kT)$, the differentiation of Eq. (1) indicates that $I_{\lambda,b}$ peaks at values of E^\ddagger satisfying

$$E^\ddagger \exp E^\ddagger = 5[\exp E^\ddagger - 1]. \quad (2)$$

Because $\exp E^\ddagger \gg 1$, the solution to Eq. (2) is $E^\ddagger \simeq 5$, which defines the locus of the peaks of Planck’s distribution. This simple solution is called “Wien’s displacement law” [1].

Because the blackbody has isotropic emission (i.e., independent of direction), its total radiative power \dot{q} emitted per unit area A is

$$E = \frac{d\dot{q}}{dA} = \int_0^\infty \pi I_{\lambda,b}d\lambda = \frac{2\pi^5k^4}{15c^2h^3}T^4, \quad (3)$$

where the group $2\pi^5k^4/(15c^2h^3) \equiv \sigma \simeq 5.7 \times 10^{-8}$ W/m2 °K4 is called the Stefan-Boltzmann constant. Incropera, et al. [1] report this constant as $\sigma = (\pi^5/15)(c_1/c_2^4)$, where $c_1 \equiv 2hc^2$ and $c_2 \equiv hc/k$.

*Corresponding author. Voice (607) 255 4193; electronic mail: Michel.Louge@cornell.edu
2 Band emission

In some circumstances, it is useful to evaluate the blackbody radiative power emitted within a given band of wavelength $\lambda_1 \leq \lambda \leq \lambda_2$, see Incropera, et al., section 12.3.4 p. 739 [1]. To that end, it is convenient to define Planck’s radiation function $P(\lambda^\dagger)$ such that

$$\frac{E_{\lambda,b}}{\sigma T^5} \equiv \left(\frac{k}{hc}\right) P(\lambda^\dagger) = \frac{\pi I_{\lambda,b}}{\sigma T^5},$$

(4)

where the dimensionless wavelength is the inverse of E^\dagger,

$$\lambda^\dagger \equiv \frac{kT \lambda}{hc} = \frac{1}{E^\dagger}.$$

(5)

Planck’s radiation function

$$P(\lambda^\dagger) \equiv \frac{15}{\pi^4} \frac{1}{\lambda^{15}} \left(\exp\left(\frac{1}{\lambda^\dagger}\right) - 1\right)$$

(6)

is normalized i.e.,

$$\int_0^\infty P(\lambda^\dagger)d\lambda^\dagger = 1,$$

(7)

and its properties are summarized at mathworld.wolfram.com/PlancksRadiationFunction.html. This function is a “marginal” distribution in statistics’ lingo. Its integral is the “cumulative” distribution for all dimensionless wavelengths below λ^\dagger

$$F(\lambda^\dagger) \equiv \int_0^{\lambda^\dagger} P(\iota)d\iota,$$

(8)

where ι is a dummy variable of integration. Because P is normalized according to Eq. (7), the function F asymptotes to unity as $\lambda^\dagger \to \infty$. Also, it obviously vanishes at $\lambda^\dagger = 0$. A convenient least-squares fit is

$$F(\lambda^\dagger) \simeq \begin{cases} 0 & \text{for } 0 \leq \lambda^\dagger < 0.092 \\ (\lambda^\dagger^2 - 0.1655\lambda^\dagger + 0.00694)/(\lambda^\dagger^2 - 0.181\lambda^\dagger + 0.0526) & \text{for } 0.092 \leq \lambda^\dagger < 2.05 \\ 1 & \text{for } \lambda^\dagger \geq 2.05. \end{cases}$$

(9)

Using the change of variable from λ to λ^\dagger in the integral (8), it is relatively easy to show that the power per unit surface contained in the wavelength range $\lambda_1 \leq \lambda \leq \lambda_2$ is

$$\int_{\lambda_1}^{\lambda_2} E_{\lambda,b}d\lambda = \int_{\lambda_1}^{\lambda_2} \pi I_{\lambda,b}d\lambda = \sigma T^4[F(\lambda_2^\dagger) - F(\lambda_1^\dagger)].$$

(10)

Some may find this expression and the fit of Eq. (9) easier to use than Table 12.1 p. 720 of Incropera, et al. [1].

References