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Abstract. We create nearly perfect centimetric spheres of water by splitting a cavity consisting of two metal
hemispheres coated with a hydrophobic paint and under-filled with liquid, while releasing the apparatus in
free-fall. A high-speed camera captures how water spread on hydrophobic aluminum and polycarbonate plates
perforated with cylindrical capillaries. We compare observations at the ZARM drop tower in Bremen with
Lattice-Boltzmann numerical simulations of Frank, Perré and Li for the inertial phase of imbibition.

1 Background

The wetting of porous surfaces is crucial to any applica-
tion where the three states of matter coexist [1]. When
a liquid drop touches a dry porous medium, it spreads as
if laid on a composite surface. Specifically, the porous
surface first behaves as a hydrophobic material, since the
liquid must penetrate pores filled with air. As soon as con-
tact is established, part of the liquid is absorbed by capil-
lary forces that are resisted by viscous losses growing with
the length of the imbibed region. This process is compli-
cated by the motion of triple gas-liquid-solid contact lines
progressively overcoming each capillary. For simplicity,
Cassie and Baxter [2] treated the porous surface as an ef-
fective material made up of a solid trapping air cavities.
Because this approach did not entirely explain the dynam-
ics of liquid imbibition, later studies also considered the
balance of viscous forces and capillarity [3–9].

Imbibition of a liquid sphere of density ρ, viscosity
µ, surface tension σ and radius Ri always begins with
an inertial regime on a time scale τ = (ρR3

i /σ)1/2 [10].
The relative importance of bulk liquid inertia and viscous
forces on the porous surface is measured by a Reynolds
number based on drop size and characteristic capillary in-
vasion speed uc ∼ σ/µ, known as the Laplace number
La ≡ ρRiσ/µ2. Because La ∝ 1/µ2, it is large even for
tiny water drops, and therefore inertia cannot be ignored.

In that context, Frank, Perré and Li [11, 12] ob-
served the role of inertia in lattice-Boltzmann (LB) nu-
merical simulations without gravity. For simplicity, they
neglected contact angle hysteresis [13] and modeled the
porous medium as a periodic array of cylindrical cap-
illaries perpendicular to the free surface. By following
the evolution of the effective contact angle while resolv-
ing flow details in and around capillaries, they found that
drop spreading and penetration take place simultaneously.
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However, to stage a specific viscosity while remaining nu-
merically stable, their LB simulations had to fix the ra-
tio of the temporal increment δt and the square of the
spatial grid size δx [14]. For imbibition, this required
(δt/τ) ∝ (δx/Ri)2La1/2. Meanwhile, to avoid unphysical
compressibility, the LB technique kept the pseudo Mach
number Ma = ucδt/δx ∝ La3/4(δt/τ)1/2 small by limiting
the Laplace number. Despite these challenges, Frank, et
al [11, 12] achieved sufficiently high La = 41 or 135 to
show that inertia governs imbibition initially by slowing
down the rate of decrease in drop height. Once inertia was
defeated, they found that drop height decreased at a more
rapid rate mitigated by viscous capillary invasion.

Unfortunately, the La values of Frank, et al [11, 12]
were smaller than expected. For example, a water drop
(σ ≃ 0.072 J/m2, ρ = 1000 kg/m3, µ ≃ 8.9.10−4 kg/m.s) of
1 mm diameter has La ≃ 4.5.104). Therefore, an objective
was to verify that this mismatch was inconsequential. In
addition, because pores delay the progression of the air-
water interface, we set out to establish whether the contact
line pins, as happens at smaller scales [15], particularly
with substantial hysteresis between advancing and reced-
ing contact angles [16, 17]. To those ends, we designed a
microgravity experiment with a drop large enough to re-
solve details around individual pores. However, we staged
solids that turned out to possess hydrophobic advancing
angles. Therefore, our results are mainly relevant to the
spreading of water on hydrophobic textured surfaces.

We deployed the apparatus at the 4.74 s ZARM micro-
gravity drop tower in Bremen (Germany). After a brief de-
scription, we present results and discuss their significance.

2 Experiments

Figure 1 shows components of one of four identical rigs
deployed in the payload capsule of the evacuated 120-m



Figure 1. Free-fall apparatus. (A) Viewed by a side camera, the backlit sphere of water just created by the splitting of two hydrophobic
hemispherical cavities hovers above the rising capillary plate of aluminum with ε = 44%, while the solenoid coil is extended. (B –
D) Typical high-speed frames. Red and green arrows represent direction of motion of cavities and plate, respectively. (C) The drop
spreads on the capillary plate. (D) Superimposed computer-generated outlines and notation. (E) Perspective drawing of a 20 × 20 mm2

aluminum or polycarbonate plate with 146 cylindrical open capillaries of 1 mm on a triangular lattice at ε = 44% to 6.4 mm depth. (A
plate of similar geometry with ε = 11% had 46 holes). (F) Close-up of one of the release mechanisms. (G) Overview of the microgravity
payload before insertion into ZARM’s hermetic capsule, consisting of four identical apparatuses, each with a different capillary plate
(Table 1). (H) Filling the cavity of 19 mm diameter with demineralized water using a curved syringe needle on the closed cavity. (I)
Prior test of cavity hydrophobicity with a similar water volume in one of the hemispheres; the arrow points to the filling channel.

free-fall tower. Before sealing the hermetic capsule, dem-
ineralized water was introduced to fill roughly 40% of each
spherical cavity treated with a hydrophobic coating (e.g.
Rust-Oleum® NeverWet®, contact angle ≃ 154 ○). Under-
filling the cavity was essential to let air insinuate itself un-
der the nascent drop and produce a nearly perfect water
sphere (radial distortion δRi/Ri < 2%, see Table 1).

In a sequence optimized by trial and error, an Arduino
UNO microcontroller delayed cavity opening by 2 s after
onboard telemetry detected free-fall to let water relax be-
fore splitting the cavity. It then triggered the video cam-
era (2000 fps, 512× 512 pixels), and turned on LED back-
lighting last to avoid heating. To split the cavity rapidly
without vibration, we designed a mechanism consisting of
a solenoid tighly-wound around a permanent neodymium
bar magnet, linear bearings, springs and shock absorbers.
Once a nearly perfect water sphere hovered motionless,
an actuator raised a capillary plate to meet it. We tested
plates made up of polycarbonate or aluminum, pierced
with open-ended cylinders of 1 mm diameter on periodic
triangular arrays with opening surface fraction ε = 44%

or 11%. Separate measurements on a Rame-Hart 500
Goniometer established that the aluminum had advanc-
ing and receding contact angles θa = 93.5 ± 1.6 ○ and
θr = 82.6±2.2 ○, respectively, while the polycarbonate had
θa = 103 ± 5 ○ and θr = 90 ± 2 ○.

As Fig. 1D shows, the Image Processing Toolbox of
Matlab recorded left and right drop outlines at distances
xmin ≡ min(x) and xmax ≡ max(x) parallel to the plate
and altitude z above it. We also recorded time-histories
of drop height h ≡ max(z) and contact patch radius r ≡
(xmax−xmin)/2 at z = 0. Because the actuator was operated
by the microcomputer in open-loop, the plate reached the
water sphere with a finite speed u0 that produced waves.
Unfortunately, the absence of images from different cam-
era orientations prevented us from calculating the water
volume V above the plate with precision. Instead, we ex-
ploited the instantaneous drop outline to find the estimate

V ≃ ∫
h

z=0

π

4
(xmax − xmin)2 dz, (1)

which was subject to artificial oscillations as the drop sur-
face lost instantaneous axisymmetry.



3 Results

In a typical test, nearly perfect water spheres were met by
the capillary plate, thus initiating a rapid spread illustrated
as time-histories of contact patch radius in Fig. 2. The con-
tact line pinned at times ∼ τ, marking the end of the spread-
ing phase. Slowly-decaying oscillations, which remained
after plate and water touched, later reflected downward,
allowing us to trace the effective advancing and receding
contact angles θa,eff and θr,eff on the textured surface.

As Table 1 and Fig. 2 show, hardly any water pene-
trated capillaries, as expected for the hydrophobic advanc-
ing angles that our solids turned out to possess. For a
pinned spherical cap with θa,eff, a reduction δV in initial
volume Vi (Table 1) would imply a mean imbibition depth

d̄ = 3Ri

8 × 21/3ε
(δV

Vi
) (2 − 3 cos θa,eff + cos3 θa,eff)2/3

sin2 θa,eff

, (2)

or d̄ ≃ 0.5 mm for Al at ε = 44%, 1.7 mm for Al at ε = 11%,
and 0.3 mm for PC at ε = 44%. Therefore, our experiments
chiefly tested spreading of water spheres on hydrophobic
textured surfaces in the absence of gravity.

Frank, et al [11, 12] fitted such inertial spreading of the
contact patch of radius r to the power law

r
Ri

≃ C ( t
τ
)
α

. (3)

Figure 2 illustrates similar fits of our data, with constants
summarized in Table 1. Figures 3 and 4 compare these re-
sults to simulations that Frank, et al [12] conducted with-
out capillaries (ε = 0) at different values of θa = θr. The
agreement implies that the effective advancing contact an-
gle conformed to the model that they recommended,

cos θmod
a,eff = (1 − ε) cos θa − ε, (4)

so long as capillaries were hardly invaded. As Table 1
shows, measurements of θa,eff also support this Cassie-
Baxter expression. The data suggest a similar relation for

cos θmod
r,eff = (1 − ε) cos θr − ε. (5)

In short, this behavior of textured surfaces on hy-
drophobic solids is consistent with the Cassie-Baxter de-
scription [2], which Louge [18] identified as the last of
six equilibrium regimes of the hysteretic contact line. In
regime VI, the internal surface of a cavity on a hydropho-
bic solid is large compared with its opening, while ad-
jacent cavities remain unconnected [18]. Further micro-
gravity experiments with hydrophilic solids should be con-
ducted to explore adjacent regimes and test whether drop
spreading would behave differently.
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